wildlife; remote sensing; satellite imagery; survey; deep learning
Abstract :
[en] Wildlife surveys are key to assessing the health of global biodiversity. Traditional field and aerial methods however have significant limitations, including high costs, substantial time investment, and potentially biased estimates. The increasing availability of high-throughput monitoring sensors in recent years has opened new perspectives for wildlife studies. Very-high-resolution (VHR) satellite sensors promise large spatial and temporal coverage while seemingly being less costly than traditional methods. Deep learning (DL) has shown increasingly impressive capabilities for processing remote sensing imagery, suggesting good prospects for imagery-based wildlife surveys. We reviewed all taxa and geographic area studies that use satellite imagery for wildlife detection, counting and surveys. Through an analysis of 49 peer-reviewed papers, this study examined the sensors and resolutions employed along with the methods used to detect, count and survey wildlife in various biomes. Results have revealed an increasing trend of publications. Mammals and birds are the focus of most of the papers, mainly in polar/alpine and pelagic ocean waters biomes. Visual interpretation is the most common method used for wildlife detection and counting while total count is mostly used for surveying. Most of the papers present a proof of concept to detect, count and survey wildlife. Technological advances are expected to enhance the spatial and temporal resolutions of satellite imagery, as well as image processing capabilities. Three main bottlenecks preventing the development of on-demand operational approaches for wildlife surveys were identified: 1) the business model of VHR satellite imagery providers is not conducive to wildlife studies; 2) satellite imagery is rarely shared; and 3) the training of multidisciplinary highly qualified personnel is underdeveloped. In response, this review presents key research priorities for advancing remote sensing for wildlife monitoring. They include wildlife-dedicated satellite constellations at enhanced spatial and temporal resolutions, increased data accessibility and sharing, adapted survey strategy, development of foundational DL model and multidisciplinary integration. We believe that progress in these directions will foster new survey strategies that are certain to revolutionize wildlife monitoring in the decades to come.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Agriculture & agronomy Life sciences: Multidisciplinary, general & others
Théau, Jérôme; Departement of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada ; Quebec Centre for Biodiversity Science (QCBS), Stewart Biology, McGill University, Montréal, QC, Canada
Foucher, Samuel; Departement of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada
Serati, Ghazaleh; Departement of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada ; Quebec Centre for Biodiversity Science (QCBS), Stewart Biology, McGill University, Montréal, QC, Canada
Durand, Simon; Departement of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada ; Quebec Centre for Biodiversity Science (QCBS), Stewart Biology, McGill University, Montréal, QC, Canada
Lejeune, Philippe ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Language :
English
Title :
Wildlife detection, counting and survey using satellite imagery: are we there yet?
F.R.S.-FNRS - Fonds de la Recherche Scientifique NSERC - Natural Sciences and Engineering Research Council
Funding text :
This work was supported by the Fonds de la Recherche Scientifique (FNRS) as part of Alexandre Delplanque’s Fund for Research Training in Industry and Agriculture (FRIA) grant and the Natural Sciences and Engineering Research Council of Canada (NSERC) – Discovery Grants.
Ainley, D. G., M. A., Larue, I., Stirling, S., Stammerjohn, and D. B., Siniff. 2015. “An Apparent Population Decrease, or Change in Distribution, of Weddell Seals Along the Victoria Land Coast.” Marine Mammal Science31 (4): 1338–29. https://doi.org/10.1111/mms.12220.
Al-Wassai, F. A., and N. V., Kalyankar. 2013. “Major Limitations of Satellite Images. (arXiv:1307.2434). arXiv. https://doi.org/10.48550/arXiv.1307.2434.
Apollo Mapping. 2023. “Download Imagery & DEM Price Lists–Apollo Mapping | the Image Hunters.” Accessed April15, 2023. https://apollomapping.com/download-imagery-dem-price-lists.
Arnemo, J. M., P., Ahlqvist, R., Andersen, F., Berntsen, G., Ericsson, J., Odden, S., Brunberg, P., Segerström, and J. E., Swenson. 2006. “Risk of Capture-Related Mortality in Large Free-Ranging Mammals: Experiences from Scandinavia.” Wildlife Biology12 (1): 109–113. https://doi.org/10.2981/0909-6396(2006)12[109:ROCMIL]2.0.CO;2.
Bamford, C. C. G., N., Kelly, L., Dalla Rosa, D. E., Cade, P. T., Fretwell, P. N., Trathan, H. C., Cubaynes, et al. 2020. “A Comparison of Baleen Whale Density Estimates Derived from Overlapping Satellite Imagery and a Shipborne Survey.” Scientific Reports10 (1): Article 1. https://doi.org/10.1038/s41598-020-69887-y.
Barber-Meyer, S. M., G. L., Kooyman, and P. J., Ponganis. 2007. “Estimating the Relative Abundance of Emperor Penguins at Inaccessible Colonies Using Satellite Imagery.” Polar Biology30 (12): 1565–1570. https://doi.org/10.1007/s00300-007-0317-8.
Bommasani, R., D. A., Hudson, E., Adeli, R., Altman, S., Arora, S., von Arx, M. S., Bernstein, et al. 2022. “On the Opportunities and Risks of Foundation Models. (arXiv:2108.07258). arXiv. https://doi.org/10.48550/arXiv.2108.07258.
Borowicz, A., H., Le, G., Humphries, G., Nehls, C., Höschle, V., Kosarev, H. J., Lynch, and P., Pławiak. 2019. “Aerial-Trained Deep Learning Networks for Surveying Cetaceans from Satellite Imagery.” Public Library of Science ONE14 (10): e0212532. https://doi.org/10.1371/journal.pone.0212532.
Bowler, E., P. T., Fretwell, G., French, and M., Mackiewicz. 2020. “Using Deep Learning to Count Albatrosses from Space: Assessing Results in Light of Ground Truth Uncertainty.” Remote Sensing12 (12): Article 12. https://doi.org/10.3390/rs12122026.
Brack, I. V., A., Kindel, L. F. B., Oliveira, and K., Scales. 2018. “Detection Errors in Wildlife Abundance Estimates from Unmanned Aerial Systems (UAS) Surveys: Synthesis, Solutions, and Challenges.” Methods in Ecology and Evolution9 (8): 1864–1873. https://doi.org/10.1111/2041-210X.13026.
Burke, C., M., Rashman, S., Wich, A., Symons, C., Theron, and S., Longmore. 2019. “Optimizing Observing Strategies for Monitoring Animals Using Drone-Mounted Thermal Infrared Cameras.” International Journal of Remote Sensing40 (2): 439–467. https://doi.org/10.1080/01431161.2018.1558372.
Butcher, P. A., A. P., Colefax, R. A., Gorkin, S. M., Kajiura, N. A., López, J., Mourier, C. R., Purcell, et al. 2021. “The Drone Revolution of Shark Science: A Review.” Drones5 (1): Article 1. https://doi.org/10.3390/drones5010008.
Ceballos, G., P. R., Ehrlich, and P. H., Raven. 2020. “Vertebrates on the Brink As Indicators of Biological Annihilation and the Sixth Mass Extinction.” Proceedings of the National Academy of Sciences117 (24): 13596–13602. https://doi.org/10.1073/pnas.1922686117.
Chabot, D., S., Stapleton, and C. M., Francis. 2022. “Using Web Images to Train a Deep Neural Network to Detect Sparsely Distributed Wildlife in Large Volumes of Remotely Sensed Imagery: A Case Study of Polar Bears on Sea Ice.” Ecological Informatics68:101547. https://doi.org/10.1016/j.ecoinf.2021.101547.
Charry, B., E., Tissier, J., Iacozza, M., Marcoux, and C. A., Watt. 2021. “Mapping Arctic Cetaceans from Space: A Case Study for Beluga and Narwhal.” Public Library of Science ONE16 (8): e0254380. https://doi.org/10.1371/journal.pone.0254380.
Christin, S., É., Hervet, N., Lecomte, and H., Ye. 2019. “Applications for Deep Learning in Ecology.” Methods in Ecology and Evolution10 (10): 1632–1644. https://doi.org/10.1111/2041-210X.13256.
Clarke, P. J., H. C., Cubaynes, K. A., Stockin, C., Olavarría, A., de Vos, P. T., Fretwell, and J. A., Jackson. 2021. “Cetacean Strandings from Space: Challenges and Opportunities of Very High Resolution Satellites for the Remote Monitoring of Cetacean Mass Strandings.” Frontiers in Marine Science8. https://doi.org/10.3389/fmars.2021.650735.
Corcoran, E., M., Winsen, A., Sudholz, and G., Hamilton. 2021. “Automated Detection of Wildlife Using Drones: Synthesis, Opportunities and Constraints.” Methods in Ecology and Evolution12 (6): 1103–1114. https://doi.org/10.1111/2041-210X.13581.
Corley, I., C., Robinson, R., Dodhia, J. M. L., Ferres, and P., Najafirad. 2023. “Revisiting Pre-Trained Remote Sensing Model Benchmarks: Resizing and Normalization Matters. (arXiv:2305.13456). arXiv. https://doi.org/10.48550/arXiv.2305.13456.
Corrêa, A. A., J. H., Quoos, A. S., Barreto, K. R., Groch, and P. P. B., Eichler. 2022. “Use of Satellite Imagery to Identify Southern Right Whales (Eubalaena Australis) on a Southwest Atlantic Ocean Breeding Ground.” Marine Mammal Science38 (1): 87–101. https://doi.org/10.1111/mms.12847.
Craig, G. C., 2012. Monitoring the Illegal Killing of Elephants: Aerial Survey Standards for the MIKE Programme. Version 2.0. Nairobi, Kenya: CITES MIKE programme.
Cubaynes, H. C., P. J., Clarke, K. T., Goetz, T., Aldrich, P. T., Fretwell, K. E., Leonard, and C. B., Khan. 2023. “Annotating Very High-Resolution Satellite Imagery: A Whale Case Study.” MethodsX10:102040. https://doi.org/10.1016/j.mex.2023.102040.
Cubaynes, H. C., and P. T., Fretwell. 2022. “Whales from Space Dataset, an Annotated Satellite Image Dataset of Whales for Training Machine Learning Models.” Scientific Data9 (1): Article 1. https://doi.org/10.1038/s41597-022-01377-4.
Cubaynes, H. C., P. T., Fretwell, C., Bamford, L., Gerrish, and J. A., Jackson. 2019. “Whales from Space: Four Mysticete Species Described Using New VHR Satellite Imagery.” Marine Mammal Science35 (2): 466–491. https://doi.org/10.1111/mms.12544.
Curzi, G., D., Modenini, and P., Tortora. 2020. “Large Constellations of Small Satellites: A Survey of Near Future Challenges and Missions.” Aerospace7 (9): Article 9. https://doi.org/10.3390/aerospace7090133.
Davis, A. J., D. A., Keiter, E. M., Kierepka, C., Slootmaker, A. J., Piaggio, J. C., Beasley, and K. M., Pepin. 2020. “A Comparison of Cost and Quality of Three Methods for Estimating Density for Wild Pig (Sus Scrofa).” Scientific Reports10 (1): Article 1. https://doi.org/10.1038/s41598-020-58937-0.
Davis, K. L., E. D., Silverman, A. L., Sussman, R. R., Wilson, and E. F., Zipkin. 2022. “Errors in Aerial Survey Count Data: Identifying Pitfalls and Solutions.” Ecology and Evolution12 (3): e8733. https://doi.org/10.1002/ece3.8733.
Delisle, Z. J., P. G., McGovern, B. G., Dillman, R. K., Swihart, T., Sankey, and G. V., Laurin. 2023. “Imperfect Detection and Wildlife Density Estimation Using Aerial Surveys with Infrared and Visible Sensors.” Remote Sensing in Ecology and Conservation9 (2): 222–234. https://doi.org/10.1002/rse2.305.
Delplanque, A., S., Foucher, P., Lejeune, J., Linchant, J., Théau, T., Sankey, and A., Carter. 2022. “Multispecies Detection and Identification of African Mammals in Aerial Imagery Using Convolutional Neural Networks.” Remote Sensing in Ecology and Conservation8 (2): 166–179. https://doi.org/10.1002/rse2.234.
Delplanque, A., S., Foucher, J., Théau, E., Bussière, C., Vermeulen, and P., Lejeune. 2023. “From Crowd to Herd Counting: How to Precisely Detect and Count African Mammals Using Aerial Imagery and Deep Learning?” ISPRS Journal of Photogrammetry and Remote Sensing197:167–180. https://doi.org/10.1016/j.isprsjprs.2023.01.025.
Deng, J., W., Dong, R., Socher, L.-J., Li, K., Li, and L., Fei-Fei. 2009. “ImageNet: A Large-Scale Hierarchical Image Database.” 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848.
Ditmer, M. A., J. B., Vincent, L. K., Werden, J. C., Tanner, T. G., Laske, P. A., Iaizzo, D. L., Garshelis, and J. R., Fieberg. 2015. “Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.” Current Biology25 (17): 2278–2283. https://doi.org/10.1016/j.cub.2015.07.024.
Duporge, I., O., Isupova, S., Reece, D. W., Macdonald, T., Wang, N., Pettorelli, and G., Buchanan. 2021. “Using Very-High-Resolution Satellite Imagery and Deep Learning to Detect and Count African Elephants in Heterogeneous Landscapes.” Remote Sensing in Ecology and Conservation7 (3): 369–381. https://doi.org/10.1002/rse2.195.
Dyo, V., S. A., Ellwood, D. W., Macdonald, A., Markham, N., Trigoni, R., Wohlers, C., Mascolo, B., Pásztor, S., Scellato, and K., Yousef. 2012. “WILDSENSING: Design and Deployment of a Sustainable Sensor Network for Wildlife Monitoring.” ACM Transactions on Sensor Networks8 (4)::29:1–:29:33. https://doi.org/10.1145/2240116.2240118.
Edney, A. J., and M. J., Wood. 2021. “Applications of Digital Imaging and Analysis in Seabird Monitoring and Research.” Ibis163 (2): 317–337. https://doi.org/10.1111/ibi.12871.
Eikelboom, J. A. J., J., Wind, E., van de Ven, L. M., Kenana, B., Schroder, H. J., de Knegt, F., van Langevelde, and H. H. T., Prins. 2019. “Improving the Precision and Accuracy of Animal Population Estimates with Aerial Image Object Detection.” Methods in Ecology and Evolution10 (11): 1875–1887. https://doi.org/10.1111/2041-210X.13277.
Fretwell, P. T., J. A., Jackson, M. J. U., Encina, V., Häussermann, M. J. P., Alvarez, C., Olavarría, C. S., Gutstein, and A., Fujimura. 2019. “Using Remote Sensing to Detect Whale Strandings in Remote Areas: The Case of Sei Whales Mass Mortality in Chilean Patagonia.” Public Library of Science ONE14 (10): e0222498. https://doi.org/10.1371/journal.pone.0222498.
Fretwell, P. T., M. A., LaRue, P., Morin, G. L., Kooyman, B., Wienecke, N., Ratcliffe, A. J., Fox, et al. 2012. “An Emperor Penguin Population Estimate: The First Global, Synoptic Survey of a Species from Space.” Public Library of Science ONE7 (4): e33751. https://doi.org/10.1371/journal.pone.0033751.
Fretwell, P. T., I. J., Staniland, J., Forcada, and T., Gilbert. 2014. “Whales from Space: Counting Southern Right Whales by Satellite.” Public Library of Science ONE9 (2): e88655. https://doi.org/10.1371/journal.pone.0088655.
Goddijn-Murphy, L., N. J., O’Hanlon, N. A., James, E. A., Masden, and A. L., Bond. 2021. “Earth Observation Data for Seabirds and Their Habitats: An Introduction.” Remote Sensing Applications: Society & Environment24:100619. https://doi.org/10.1016/j.rsase.2021.100619.
Gonçalves, B. C., B., Spitzbart, and H. J., Lynch. 2020. “SealNet: A Fully-Automated Pack-Ice Seal Detection Pipeline for Sub-Meter Satellite Imagery.” Remote Sensing of Environment239:111617. https://doi.org/10.1016/j.rse.2019.111617.
Green, K. M., M. K., Virdee, H. C., Cubaynes, A. I., Aviles-Rivero, P. T., Fretwell, P. C., Gray, D. W., Johnston, C.-B., Schönlieb, L. G., Torres, and J. A., Jackson. 2023. “Gray Whale Detection in Satellite Imagery Using Deep Learning.” Remote Sensing in Ecology and Conservation9 (6): 829–840. https://doi.org/10.1002/rse2.352.
Guérard, J., F., Baudin, and A., Hertzog. 2016May. “High Altitude Drones for Science. Near Space in the Near Future.” SONDRA 4th Workshop. https://hal.science/hal-01993992.
Guinet, C., P., Jouventin, and J., Malacamp. 1995. “Satellite Remote Sensing in Monitoring Change of Seabirds: Use of Spot Image in King Penguin Population Increase at Ile Aux Cochons, Crozet Archipelago.” Polar Biology15 (7): 511–515. https://doi.org/10.1007/BF00237465.
Guirado, E., S., Tabik, M. L., Rivas, D., Alcaraz-Segura, and F., Herrera. 2019. “Whale Counting in Satellite and Aerial Images with Deep Learning.” Scientific Reports9 (1): Article 1. https://doi.org/10.1038/s41598-019-50795-9.
He, K., X., Zhang, S., Ren, and J., Sun 2016. “Deep Residual Learning for Image Recognition.” Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90.
Hoeser, T., F., Bachofer, and C., Kuenzer. 2020. “Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review—Part II: Applications.” Remote Sensing12 (18): Article 18. https://doi.org/10.3390/rs12183053.
Hoeser, T., and C., Kuenzer. 2020. “Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends.” Remote Sensing12 (10): Article 10. https://doi.org/10.3390/rs12101667.
Hollings, T., M., Burgman, M., van Andel, M., Gilbert, T., Robinson, A., Robinson, and J., McPherson. 2018. “How Do You Find the Green Sheep? A Critical Review of the Use of Remotely Sensed Imagery to Detect and Count Animals.” Methods in Ecology and Evolution9 (4): 881–892. https://doi.org/10.1111/2041-210X.12973.
Hughes, B. J., G. R., Martin, and S. J., Reynolds. 2011. “The Use of Google EarthTM Satellite Imagery to Detect the Nests of Masked Boobies Sula Dactylatra.” Wildlife Biology17 (2): 210–216. https://doi.org/10.2981/10-106.
Hughey, L. F., A. M., Hein, A., Strandburg-Peshkin, and F. H., Jensen. 2018. “Challenges and Solutions for Studying Collective Animal Behaviour in the Wild.” Philosophical Transactions of the Royal Society B: Biological Sciences373 (1746): 20170005. https://doi.org/10.1098/rstb.2017.0005.
Irvine, J. M., J., Nolan, N., Hofmann, D., Lewis, T., Simpamba, P., Zyambo, A. J., Travis, and S., Hemami. 2019. “Estimating the Population of Large Animals in the Wild Using Satellite Imagery: A Case Study of Hippos in Zambia’s Luangwa River.” 2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 1–8. https://doi.org/10.1109/AIPR47015.2019.9174564.
Jetz, W., M. A., McGeoch, R., Guralnick, S., Ferrier, J., Beck, M. J., Costello, M., Fernandez, et al. 2019. “Essential Biodiversity Variables for Mapping and Monitoring Species Populations.” Nature Ecology & Evolution3 (4): Article 4. https://doi.org/10.1038/s41559-019-0826-1.
Jiménez López, J., and M., Mulero-Pázmány. 2019. “Drones for Conservation in Protected Areas: Present and Future.” Drones3 (1): Article 1. https://doi.org/10.3390/drones3010010.
Jocher, G., A., Stoken, and J., Borovec. 2021. Ultralytics/yolov5: V5.0 - YOLOv5-P6 1280 Models, AWS, Supervise.Ly and YouTube Integrations [Computer Software]. Zenodo. https://doi.org/10.5281/zenodo.4679653.
Jolly, G. M., 1969. “Sampling Methods for Aerial Censuses of Wildlife Populations.” East African Agricultural and Forestry Journal34 (sup1): 46–49. https://doi.org/10.1080/00128325.1969.11662347.
Kapoor, S., M., Kumar, and M., Kaushal. 2023. “Deep Learning Based Whale Detection from Satellite Imagery.” Sustainable Computing: Informatics and Systems38:100858. https://doi.org/10.1016/j.suscom.2023.100858.
Keith, D. A., J. R., Ferrer-Paris, E., Nicholson, M. J., Bishop, B. A., Polidoro, E., Ramirez-Llodra, M. G., Tozer, et al. 2022. “A Function-Based Typology for Earth’s Ecosystems.” Nature610 (7932): Article 7932. https://doi.org/10.1038/s41586-022-05318-4.
Kellenberger, B., D., Tuia, D., Morris, and L., Graham. 2020. “AIDE: Accelerating Image-Based Ecological Surveys with Interactive Machine Learning.” Methods in Ecology and Evolution11 (12): 1716–1727. https://doi.org/10.1111/2041-210X.13489.
Kellenberger, B., T., Veen, E., Folmer, D., Tuia, N., Horning, and K., Scales. 2021. “21 000 Birds in 4.5 H: Efficient Large-Scale Seabird Detection with Machine Learning.” Remote Sensing in Ecology and Conservation7 (3): 445–460. https://doi.org/10.1002/rse2.200.
Khan, C. B., K. T., Goetz, H. C., Cubaynes, C., Robinson, E., Murnane, T., Aldrich, M., Sackett, et al. 2023. “A Biologist’s Guide to the Galaxy: Leveraging Artificial Intelligence and Very High-Resolution Satellite Imagery to Monitor Marine Mammals from Space.” Journal of Marine Science and Engineering11 (3): Article 3. https://doi.org/10.3390/jmse11030595.
Koh, J. Y., D., Fried, and R. R., Salakhutdinov. 2024. “Generating Images with Multimodal Language Models.” Advances in Neural Information Processing Systems36: 21487–21506.
Krebs, C. J., 2006. “Mammals.” In Ecological Census Techniques: A Handbook, edited by W. J., Sutherland, 351–369. 2nd ed. Cambridge University Press. https://doi.org/10.1017/CBO9780511790508.011.
Kuenzer, C., M., Ottinger, M., Wegmann, H., Guo, C., Wang, J., Zhang, S., Dech, and M., Wikelski. 2014. “Earth Observation Satellite Sensors for Biodiversity Monitoring: Potentials and Bottlenecks.” International Journal of Remote Sensing35 (18): 6599–6647. https://doi.org/10.1080/01431161.2014.964349.
Labrousse, S., D., Iles, L., Viollat, P., Fretwell, P. N., Trathan, D. P., Zitterbart, S., Jenouvrier, M., LaRue, N., Pettorelli, and T., Kuemmerle. 2022. “Quantifying the Causes and Consequences of Variation in Satellite-Derived Population Indices: A Case Study of Emperor Penguins.” Remote Sensing in Ecology and Conservation8 (2): 151–165. https://doi.org/10.1002/rse2.233.
Lahoz-Monfort, J. J., and M. J. L., Magrath. 2021. “A Comprehensive Overview of Technologies for Species and Habitat Monitoring and Conservation.” BioScience71 (10): 1038–1062. https://doi.org/10.1093/biosci/biab073.
Laliberte, A. S., and W. J., Ripple. 2003. “Automated Wildlife Counts from Remotely Sensed Imagery.” Wildlife Society Bulletin31 (2): 362–371.
Lamprey, R., F., Pope, S., Ngene, M., Norton-Griffiths, H., Frederick, B., Okita-Ouma, and I., Douglas-Hamilton. 2020. “Comparing an Automated High-Definition Oblique Camera System to Rear-Seat-Observers in a Wildlife Survey in Tsavo, Kenya: Taking Multi-Species Aerial Counts to the Next Level.” Biological Conservation241:108243. https://doi.org/10.1016/j.biocon.2019.108243.
LAND INFO Worldwide Mapping, LLC. 2023. “Buying Satellite Imagery: Pricing Information for High Resolution Satellite Imagery.” LLC: LAND INFO Worldwide Mapping. Accessed April15, 2023. https://landinfo.com/satellite-imagery-pricing/.
LaRue, M. A., H. J., Lynch, P. O. B., Lyver, K., Barton, D. G., Ainley, A., Pollard, W. R., Fraser, and G., Ballard. 2014. “A Method for Estimating Colony Sizes of Adélie Penguins Using Remote Sensing Imagery.” Polar Biology37 (4): 507–517. https://doi.org/10.1007/s00300-014-1451-8.
LaRue, M. A., J. J., Rotella, R. A., Garrott, D. B., Siniff, D. G., Ainley, G. E., Stauffer, C. C., Porter, and P. J., Morin. 2011. “Satellite Imagery Can Be Used to Detect Variation in Abundance of Weddell Seals (Leptonychotes Weddellii) in Erebus Bay, Antarctica.” Polar Biology34 (11): 1727–1737. https://doi.org/10.1007/s00300-011-1023-0.
LaRue, M. A., and S., Stapleton. 2018. “Estimating the Abundance of Polar Bears on Wrangel Island During Late Summer Using High-Resolution Satellite Imagery: A Pilot Study.” Polar Biology41 (12): 2621–2626. https://doi.org/10.1007/s00300-018-2384-4.
LaRue, M. A., S., Stapleton, and M., Anderson. 2017. “Feasibility of Using High-Resolution Satellite Imagery to Assess Vertebrate Wildlife Populations.” Conservation Biology31 (1): 213–220. https://doi.org/10.1111/cobi.12809.
LaRue, M. A., S., Stapleton, C., Porter, S., Atkinson, T., Atwood, M., Dyck, and N., Lecomte. 2015. “Testing Methods for Using High-Resolution Satellite Imagery to Monitor Polar Bear Abundance and Distribution.” Wildlife Society Bulletin39 (4): 772–779. https://doi.org/10.1002/wsb.596.
Lee, P. Q., K., Radhakrishnan, D. A., Clausi, K. A., Scott, L., Xu, and M., Marcoux. 2021. “Beluga Whale Detection in the Cumberland Sound Bay Using Convolutional Neural Networks.” Canadian Journal of Remote Sensing47 (2): 276–294. https://doi.org/10.1080/07038992.2021.1901221.
Le, H., D., Samaras, H. J., Lynch, N., Pettorelli, and T., Kuemmerle. 2022. “A Convolutional Neural Network Architecture Designed for the Automated Survey of Seabird Colonies.” Remote Sensing in Ecology and Conservation8 (2): 251–262. https://doi.org/10.1002/rse2.240.
LeTourneux, F., G., Gauthier, R., Pradel, J., Lefebvre, and P., Legagneux. 2022. “Evidence for Synergistic Cumulative Impacts of Marking and Hunting in a Wildlife Species.” Journal of Applied Ecology59 (11): 2705–2715. https://doi.org/10.1111/1365-2664.14268.
Linchant, J., J., Lisein, J., Semeki, P., Lejeune, and C., Vermeulen. 2015. “Are Unmanned Aircraft Systems (UASs) the Future of Wildlife Monitoring? A Review of Accomplishments and Challenges.” Mammal Review45 (4): 239–252. https://doi.org/10.1111/mam.12046.
Lin, T.-Y., M., Maire, S., Belongie, J., Hays, P., Perona, D., Ramanan, P., Dollár, and C. L., Zitnick. 2014. “Microsoft COCO: Common Objects in Context.” In Computer Vision–ECCV 2014, edited by D., Fleet, T., Pajdla, B., Schiele, and T., Tuytelaars, 740–755. Springer International Publishing. https://doi.org/10.1007/978-3-319-10602-1_48.
Lynch, H. J., and M. A., LaRue. 2014. “First Global Census of the Adélie Penguin.” The Auk131 (4): 457–466. https://doi.org/10.1642/AUK-14-31.1.
Lynch, H. J., M. R., Schwaller, and G. J.-P., Schumann. 2014. “Mapping the Abundance and Distribution of Adélie Penguins Using Landsat-7: First Steps Towards an Integrated Multi-Sensor Pipeline for Tracking Populations at the Continental Scale.” Public Library of Science ONE9 (11): e113301. https://doi.org/10.1371/journal.pone.0113301.
Lynch, H. J., R., White, A. D., Black, and R., Naveen. 2012. “Detection, Differentiation, and Abundance Estimation of Penguin Species by High-Resolution Satellite Imagery.” Polar Biology35 (6): 963–968. https://doi.org/10.1007/s00300-011-1138-3.
Mateo-Garcia, G., J., Veitch-Michaelis, L., Smith, S. V., Oprea, G., Schumann, Y., Gal, A. G., Baydin, and D., Backes. 2021. “Towards Global Flood Mapping Onboard Low Cost Satellites with Machine Learning.” Scientific Reports11 (1): Article 1. https://doi.org/10.1038/s41598-021-86650-z.
McMahon, C. R., H., Howe, J. V. D., Hoff, R., Alderman, H., Brolsma, M. A., Hindell, and Y., Ropert-Coudert. 2014. “Satellites, the All-Seeing Eyes in the Sky: Counting Elephant Seals from Space.” Public Library of Science ONE9 (3): e92613. https://doi.org/10.1371/journal.pone.0092613.
Meng, C., E., Liu, W., Neiswanger, J., Song, M., Burke, D., Lobell, and S., Ermon. 2022. “IS-Count: Large-Scale Object Counting from Satellite Images with Covariate-Based Importance Sampling.” Proceedings of the AAAI Conference on Artificial Intelligence36 (11): Article 11. https://doi.org/10.1609/aaai.v36i11.21462.
Momose, H., T., Kaneko, and T., Asai. 2020. “Systems and Circuits for AI Chips and Their Trends.” Japanese Journal of Applied Physics59 (5): 050502. https://doi.org/10.35848/1347-4065/ab839f.
Moor, M., O., Banerjee, Z. S. H., Abad, H. M., Krumholz, J., Leskovec, E. J., Topol, and P., Rajpurkar. 2023. “Foundation Models for Generalist Medical Artificial Intelligence.” Nature616 (7956): Article 7956. https://doi.org/10.1038/s41586-023-05881-4.
Mücher, C. A., S., Los, G. J., Franke, and C., Kamphuis. 2022. “Detection, Identification and Posture Recognition of Cattle with Satellites, Aerial Photography and UAVs Using Deep Learning Techniques.” International Journal of Remote Sensing43 (7): 2377–2392. https://doi.org/10.1080/01431161.2022.2051634.
Murthy, K., M., Shearn, B. D., Smiley, A. H., Chau, J., Levine, and M. D., Robinson. 2014. “SkySat-1: Very High-Resolution Imagery from a Small Satellite.” Sensors, Systems, and Next-Generation Satellites XVIII9241:367–378. https://doi.org/10.1117/12.2074163.
Naveen, R., H. J., Lynch, S., Forrest, T., Mueller, and M., Polito. 2012. “First Direct, Site-Wide Penguin Survey at Deception Island, Antarctica, Suggests Significant Declines in Breeding Chinstrap Penguins.” Polar Biology35 (12): 1879–1888. https://doi.org/10.1007/s00300-012-1230-3.
Nazir, S., and M., Kaleem. 2021. “Advances in Image Acquisition and Processing Technologies Transforming Animal Ecological Studies.” Ecological Informatics61:101212. https://doi.org/10.1016/j.ecoinf.2021.101212.
Newey, S., P., Davidson, S., Nazir, G., Fairhurst, F., Verdicchio, R. J., Irvine, and R., van der Wal. 2015. “Limitations of Recreational Camera Traps for Wildlife Management and Conservation Research: A practitioner’s Perspective.” AMBIO: A Journal of the Human Environment44 (4): 624–635. https://doi.org/10.1007/s13280-015-0713-1.
Nguyen, N. L., J., Anger, A., Davy, P., Arias, and G., Facciolo. 2022. “Self-Supervised Super-Resolution for Multi-Exposure Push-Frame Satellites.” Presented at the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1848–1858. https://doi.org/10.1109/CVPR52688.2022.00190.
Norouzzadeh, M. S., A., Nguyen, M., Kosmala, A., Swanson, M. S., Palmer, C., Packer, and J., Clune. 2018. “Automatically Identifying, Counting, and Describing Wild Animals in Camera-Trap Images with Deep Learning.” Proceedings of the National Academy of Sciences115 (25): E5716–E5725. https://doi.org/10.1073/pnas.1719367115.
Peng, J., D., Wang, X., Liao, Q., Shao, Z., Sun, H., Yue, and H., Ye. 2020. “Wild Animal Survey Using UAS Imagery and Deep Learning: Modified Faster R-CNN for Kiang Detection in Tibetan Plateau.” ISPRS Journal of Photogrammetry and Remote Sensing169:364–376. https://doi.org/10.1016/j.isprsjprs.2020.08.026.
Petrou, Z. I., I., Manakos, and T., Stathaki. 2015. “Remote Sensing for Biodiversity Monitoring: A Review of Methods for Biodiversity Indicator Extraction and Assessment of Progress Towards International Targets.” Biodiversity and Conservation24 (10): 2333–2363. https://doi.org/10.1007/s10531-015-0947-z.
Petso, T., R. S., Jamisola, and D., Mpoeleng. 2021. “Review on Methods Used for Wildlife Species and Individual Identification.” European Journal of Wildlife Research68 (1): 3. https://doi.org/10.1007/s10344-021-01549-4.
Pettorelli, N., W. F., Laurance, T. G., O’Brien, M., Wegmann, H., Nagendra, W., Turner, and E. J., Milner‐Gulland. 2014. “Satellite Remote Sensing for Applied Ecologists: Opportunities and Challenges.” Journal of Applied Ecology51 (4): 839–848. https://doi.org/10.1111/1365-2664.12261.
Pettorelli, N., H., Schulte to Bühne, A., Tulloch, G., Dubois, C., Macinnis-Ng, A. M., Queirós, et al. 2018. “Satellite Remote Sensing of Ecosystem Functions: Opportunities, Challenges and Way Forward.” Remote Sensing in Ecology and Conservation4 (2): 71–93. https://doi.org/10.1002/rse2.59.
Ramesh, A., P., Dhariwal, A., Nichol, C., Chu, and M., Chen. 2022. “Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv preprint arXiv:2204.06125https://arxiv.org/abs/2204.06125.
Redmon, J., and A., Farhadi. 2018. YOLOv3: An Incremental Improvement(arXiv:1804.02767). arXiv. https://doi.org/10.48550/arXiv.1804.02767.
Ren, S., K., He, R., Girshick, and J., Sun. 2017. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence39: 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031.
Robinson, T., 2022. “Zephyr–Down but Definitely Not Out.” Royal Aeronautical Society. Accessed April15, 2023. https://www.aerosociety.com/news/zephyr-down-but-definitely-not-out/.
Ronneberger, O., P., Fischer, and T., Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, edited by N., Navab, J., Hornegger, W. M., Wells, and A. F., Frangi, 234–241. Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28.
Rosso, M. P. D., A., Sebastianelli, D., Spiller, and S. L., Ullo. 2022. “A Demo Setup Testing Onboard CNNs for Volcanic Eruption Detection.” 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), 719–724. https://doi.org/10.1109/MetroXRAINE54828.2022.9967684.
Sánchez-Díaz, B., and E. E., Mata-Zayas. 2019. “Remote Sensing As Indispensable Technology in Ecology to Support the Protection of Biodiversity: A Review.” International Journal of Conservation Science10 (4): 811–820.
Sarwar, F., A., Griffin, S. U., Rehman, and T., Pasang. 2021. “Detecting Sheep in UAV Images.” Computers and Electronics in Agriculture187:106219. https://doi.org/10.1016/j.compag.2021.106219.
Sasamal, S. K., S. B., Chaudhury, R. N., Samal, and A. K., Pattanaik. 2008. “QuickBird Spots Flamingos off Nalabana Island, Chilika Lake, India.” International Journal of Remote Sensing29 (16): 4865–4870. https://doi.org/10.1080/01431160701814336.
Schlossberg, S., M. J., Chase, C. R., Griffin, and A. L., Roca. 2016. “Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta Africana).” Public Library of Science ONE11 (10): e0164904. https://doi.org/10.1371/journal.pone.0164904.
Schwaller, M. R., C. J., Southwell, and L. M., Emmerson. 2013. “Continental-Scale Mapping of Adélie Penguin Colonies from Landsat Imagery.” Remote Sensing of Environment139:353–364. https://doi.org/10.1016/j.rse.2013.08.009.
Seidlitz, A., A. F., Wayne, M. C., Calver, N. J., Armstrong, K. A., Bryant, K. A., Bryant, N. J., Armstrong, M. C., Calver, A. F., Wayne, and A., Seidlitz. 2021. “Sign Surveys Can Be More Efficient and Cost Effective Than Driven Transects and Camera Trapping: A Comparison of Detection Methods for a Small Elusive Mammal, the Numbat (Myrmecobius Fasciatus).” Wildlife Research48 (6): 491–500. https://doi.org/10.1071/WR20020.
Shahinfar, S., P., Meek, and G., Falzon. 2020. ““How Many Images Do I need?” Understanding How Sample Size per Class Affects Deep Learning Model Performance Metrics for Balanced Designs in Autonomous Wildlife Monitoring.” Ecological Informatics57:101085. https://doi.org/10.1016/j.ecoinf.2020.101085.
Shen, Y., K., Song, X., Tan, D., Li, W., Lu, and Y., Zhuang. 2023. “HuggingGPT: Solving AI Tasks with ChatGPT and Its Friends in Hugging Face(arXiv:2303.17580). arXiv. https://doi.org/10.48550/arXiv.2303.17580.
Sidle, J. G., D. H., Johnson, B. R., Euliss, and M., Tooze. 2002. “Monitoring Black-Tailed Prairie Dog Colonies with High-Resolution Satellite Imagery.” Wildlife Society Bulletin30 (2): 405–411.
Singh, N. J., N. G., Yoccoz, Y. V., Bhatnagar, and J. L., Fox. 2009. “Using Habitat Suitability Models to Sample Rare Species in High-Altitude Ecosystems: A Case Study with Tibetan Argali.” Biodiversity and Conservation18 (11): 2893–2908. https://doi.org/10.1007/s10531-009-9615-5.
Skydweller Aero Inc. 2022. “Luxembourg’s Directorate of Defence, Skydweller Aero and Leonardo Announce Collaboration Agreement to Support Flight Test Programme for Ultra-Persistent, Solar-Powered, Unmanned Aerial Platform.” June14. Accessed May25, 2023. http://gouvernement.lu/en/actualites/toutes_actualites/communiques/2022/06-juin/14-bausch-uas.html.
Stapleton, S., M., LaRue, N., Lecomte, S., Atkinson, D., Garshelis, C., Porter, T., Atwood, and Y., Ropert-Coudert. 2014. “Polar Bears from Space: Assessing Satellite Imagery as a Tool to Track Arctic Wildlife.” Public Library of Science ONE9 (7): e101513. https://doi.org/10.1371/journal.pone.0101513.
Swinbourne, M. J., D. A., Taggart, A. M., Swinbourne, M., Lewis, and B., Ostendorf. 2018. “Using Satellite Imagery to Assess the Distribution and Abundance of Southern Hairy-Nosed Wombats (Lasiorhinus Latifrons).” Remote Sensing of Environment211:196–203. https://doi.org/10.1016/j.rse.2018.04.017.
Szegedy, C., V., Vanhoucke, S., Ioffe, J., Shlens, and Z., Wojna. 2016. “Rethinking the Inception Architecture for Computer Vision.” Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, USA, 2818–2826. https://doi.org/10.1109/CVPR.2016.308.
Tao, C., J., Qi, W., Lu, H., Wang, and H., Li. 2022. “Remote Sensing Image Scene Classification with Self-Supervised Paradigm Under Limited Labeled Samples.” IEEE Geoscience and Remote Sensing Letters19:1–5. https://doi.org/10.1109/LGRS.2020.3038420.
Thisdell, D., 2020. “BAE Joins High-Altitude Race with Maiden PHASA-35 Flight.” Flight Global. Accessed June21, 2023. https://www.flightglobal.com/aerospace/bae-joins-high-altitude-race-with-maiden-phasa-35-flight/136767.article.
Tkachenko, M., M., Malyuk, A., Holmanyuk, and N., Liubimov. 2020. “Label Studio: Data Labeling Software.” Computer Software. https://github.com/heartexlabs/label-studio.
Tong, K., Y., Wu, and F., Zhou. 2020. “Recent Advances in Small Object Detection Based on Deep Learning: A Review.” Image and Vision Computing97:103910. https://doi.org/10.1016/j.imavis.2020.103910.
Tuia, D., B., Kellenberger, S., Beery, B. R., Costelloe, S., Zuffi, B., Risse, A., Mathis, et al. 2022. “Perspectives in Machine Learning for Wildlife Conservation.” Nature Communications13 (1): Article 1. https://doi.org/10.1038/s41467-022-27980-y.
Turner, W., 2014. “Sensing Biodiversity.” Science346 (6207): 301–302. https://doi.org/10.1126/science.1256014.
Vas, E., A., Lescroël, O., Duriez, G., Boguszewski, and D., Grémillet. 2015. “Approaching Birds with Drones: First Experiments and Ethical Guidelines.” Biology Letters11 (2): 20140754. https://doi.org/10.1098/rsbl.2014.0754.
Wang, R., and J. A., Gamon. 2019. “Remote Sensing of Terrestrial Plant Biodiversity.” Remote Sensing of Environment231:111218. https://doi.org/10.1016/j.rse.2019.111218.
Wang, D., Q., Shao, and H., Yue. 2019. “Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned Aerial Systems (UASs): A Review.” Remote Sensing11 (11): Article 11. https://doi.org/10.3390/rs11111308.
Wang, D., Q., Song, X., Liao, H., Ye, Q., Shao, J., Fan, N., Cong, X., Xin, H., Yue, and H., Zhang. 2020. “Integrating Satellite and Unmanned Aircraft System (UAS) Imagery to Model Livestock Population Dynamics in the Longbao Wetland National Nature Reserve, China.” Science of the Total Environment746: 140327. https://doi.org/10.1016/j.scitotenv.2020.140327.
Weinstein, B. G., and L., Prugh. 2018. “A Computer Vision for Animal Ecology.” Journal of Animal Ecology87 (3): 533–545. https://doi.org/10.1111/1365-2656.12780.
Whitford, M., and A. P., Klimley. 2019. “An Overview of Behavioral, Physiological, and Environmental Sensors Used in Animal Biotelemetry and Biologging Studies.” Animal Biotelemetry7 (1): 26. https://doi.org/10.1186/s40317-019-0189-z.
Wu, Z., C., Zhang, X., Gu, I., Duporge, L. F., Hughey, J. A., Stabach, A. K., Skidmore, et al. 2023. “Deep Learning Enables Satellite-Based Monitoring of Large Populations of Terrestrial Mammals Across Heterogeneous Landscape.” Nature Communications14 (1): Article 1. https://doi.org/10.1038/s41467-023-38901-y.
Xue, Y., T., Wang, and A. K., Skidmore. 2017. “Automatic Counting of Large Mammals from Very High Resolution Panchromatic Satellite Imagery.” Remote Sensing9 (9): Article 9. https://doi.org/10.3390/rs9090878.
Yang, Z., T., Wang, A. K., Skidmore, J. D., Leeuw, M. Y., Said, J., Freer, and M., Cristani. 2014. “Spotting East African Mammals in Open Savannah from Space.” Public Library of Science ONE9 (12): e115989. https://doi.org/10.1371/journal.pone.0115989.
Zhang, B., Y., Wu, B., Zhao, J., Chanussot, D., Hong, J., Yao, and L., Gao. 2022. “Progress and Challenges in Intelligent Remote Sensing Satellite Systems.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing15:1814–1822. https://doi.org/10.1109/JSTARS.2022.3148139.
Zhao, Z.-Q., P., Zheng, S.-T., Xu, and X., Wu. 2019. “Object Detection with Deep Learning: A Review.” IEEE Transactions on Neural Networks and Learning Systems30 (11): 3212–3232. https://doi.org/10.1109/TNNLS.2018.2876865.