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Wildlife detection, counting and survey using satellite imagery: are we there yet?
Alexandre Delplanque a, Jérôme Théaub,c, Samuel Foucherb, Ghazaleh Seratib,c, Simon Durandb,c 

and Philippe Lejeunea

aTERRA Teaching and Research Centre (Forest Is Life), ULiège, Gembloux Agro-Bio Tech, Gembloux, Belgium; bDepartement of Applied 
Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada; cQuebec Centre for Biodiversity Science (QCBS), Stewart Biology, McGill 
University, Montréal, QC, Canada

ABSTRACT
Wildlife surveys are key to assessing the health of global biodiversity. Traditional field and aerial 
methods however have significant limitations, including high costs, substantial time investment, and 
potentially biased estimates. The increasing availability of high-throughput monitoring sensors in 
recent years has opened new perspectives for wildlife studies. Very-high-resolution (VHR) satellite 
sensors promise large spatial and temporal coverage while seemingly being less costly than traditional 
methods. Deep learning (DL) has shown increasingly impressive capabilities for processing remote 
sensing imagery, suggesting good prospects for imagery-based wildlife surveys. We reviewed all taxa 
and geographic area studies that use satellite imagery for wildlife detection, counting and surveys. 
Through an analysis of 49 peer-reviewed papers, this study examined the sensors and resolutions 
employed along with the methods used to detect, count and survey wildlife in various biomes. Results 
have revealed an increasing trend of publications. Mammals and birds are the focus of most of the 
papers, mainly in polar/alpine and pelagic ocean waters biomes. Visual interpretation is the most 
common method used for wildlife detection and counting while total count is mostly used for 
surveying. Most of the papers present a proof of concept to detect, count and survey wildlife. 
Technological advances are expected to enhance the spatial and temporal resolutions of satellite 
imagery, as well as image processing capabilities. Three main bottlenecks preventing the development 
of on-demand operational approaches for wildlife surveys were identified: 1) the business model of VHR 
satellite imagery providers is not conducive to wildlife studies; 2) satellite imagery is rarely shared; 
and 3) the training of multidisciplinary highly qualified personnel is underdeveloped. In response, this 
review presents key research priorities for advancing remote sensing for wildlife monitoring. They 
include wildlife-dedicated satellite constellations at enhanced spatial and temporal resolutions, 
increased data accessibility and sharing, adapted survey strategy, development of foundational DL 
model and multidisciplinary integration. We believe that progress in these directions will foster new 
survey strategies that are certain to revolutionize wildlife monitoring in the decades to come.
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1. Introduction and background

Biodiversity loss is one of the most significant envir-
onmental crises, threatening the survival of human 
civilization (Ceballos, Ehrlich, and Raven 2020). 
Wildlife surveys are key data for characterizing and 
monitoring biodiversity, but current tools and meth-
ods make it difficult to rapidly survey large areas and 
often provide potentially incomplete and biased esti-
mates (Tuia et al. 2022; Turner 2014).

Most survey data are acquired using traditional 
field methods, which are costly and time-consuming, 
and present important limitations related to the 
accessibility of the territory and the areas covered 
(Davis et al. 2020; Seidlitz et al. 2021; Tuia et al.  

2022). For several decades, aerial surveys have been 
used to survey species distributed over large areas, 
especially those that are not easily accessible or over 
rugged terrain (Davis et al. 2022; Krebs 2006). Aerial 
surveys are generally limited to direct visual detection 
(and occasional imagery) and are subject to biases 
associated with the subjectivity of human observation 
and observer disturbance, in addition to posing 
a significant risk of accidents (Schlossberg et al.  
2016; Tuia et al. 2022). The main counting errors 
associated with aerial surveys are usually related to 
false negatives; observers often miss individuals, 
especially species in small groups (Lamprey et al.  
2020). Although much work has been done to reduce 
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these errors, the precision and accuracy of counts 
remain limited and impact the effectiveness of man-
agement actions for some populations and species 
(Brack et al. 2018; Davis et al. 2022).

Over the past few years, the increasing availability 
of numerous in situ sensors has opened new perspec-
tives for wildlife surveys. Camera traps, geolocation 
tracking devices, drones, sound sensors, cellphones, 
and environmental DNA analysis are increasingly used 
as survey methods, creating unique opportunities for 
wildlife monitoring (Hughey et al. 2018; Lahoz- 
Monfort and Magrath 2021; Turner 2014; Whitford 
and Klimley 2019). However, despite this growing 
availability, these in situ devices still require intensive 
field effort for deployment (e.g. camera trap installa-
tion, access the territory to flight drones), have a low 
sampling rate, and require maintenance in varying 
conditions (e.g. cold, humidity, rain) that can affect 
their performance (Dyo et al. 2012; Newey et al. 2015). 
The use of these sensors can also impact the behavior 
of some species (Ditmer et al. 2015; Vas et al. 2015) or 
even their survival (Arnemo et al. 2006; LeTourneux 
et al. 2022). Moreover, the ratio of generated to useful 
data is very high and leads to a very high amount of 
data in multiple formats to manage and process 
(Lahoz-Monfort and Magrath 2021; Tuia et al. 2022).

Earth observation satellite sensors have provided 
images since the 1980s, with increasing spatial, tem-
poral, and spectral resolutions. Following the advent of 
satellites capable of providing imagery at sub-meter 
resolutions (i.e. very high resolution, or VHR), several 
studies have focused on the use of this type of imagery 
for wildlife surveys, primarily to detect terrestrial and 
marine mammals (Hollings et al. 2018; D. Wang, Shao, 
and Yue 2019). Despite the tantalizing potential of 
these images thanks to their global terrestrial coverage, 
their potential for high acquisition frequency (e.g. daily) 
and the archiving of historical images, and their rela-
tively low acquisition cost compared to field data 
acquisition, there are still limitations to wildlife detec-
tion. LaRue et al. (2017) identified 3 minimum neces-
sary criteria for the detection of wildlife using VHR 
images: 1) an open landscape; 2) a sufficient body 
size to be detected or a positive indicator of the tar-
geted species’ presence; and 3) a contrasting color of 
the animal with the landscape. In addition, there are 
other limitations related to the availability of good 
quality images (e.g. cloud-free) at the targeted periods 
and for the targeted regions, as well as the high costs of 

some VHR images, especially over large territories (D. 
Wang, Shao, and Yue 2019).

In parallel with the development of sensors, the field 
of machine learning and especially deep learning (DL) 
has produced a stunning acceleration of massive data 
processing capabilities (LeCun, Bengio, and Hinton  
2015). Specifically, in the field of imagery applied to 
Earth observation (Hoeser and Kuenzer 2020; Hoeser, 
Bachofer, and Kuenzer 2020; Zhao et al. 2019) and 
wildlife detection (Christin et al. 2019; Delplanque 
et al. 2022; Eikelboom et al. 2019; Kellenberger et al.  
2021; Lee et al. 2021; Peng et al. 2020), approaches 
based on object detection using convolutional neural 
networks (CNNs) have the potential to automate the 
detection and counting of individuals with higher 
detection rates than conventional surveys, while sig-
nificantly reducing costs and analysis time 
(Norouzzadeh et al. 2018; Tuia et al. 2022). Although 
these approaches have thus far been applied mainly on 
proximal (e.g. camera traps) and aerial (e.g. drones) 
imagery, their potential combined with the increasing 
availability of satellite imagery at very high spatial and 
temporal resolutions could represent a major advance 
in wildlife detection and survey techniques.

Several review papers on wildlife detection, count-
ing or survey using remote sensing imagery have 
been published in the last decade (Butcher et al.  
2021; Clarke et al. 2021; Corcoran et al. 2021; Delisle 
et al. 2023; Edney and Wood 2021; Goddijn-Murphy 
et al. 2021; Hollings et al. 2018; Jiménez López and 
Mulero-Pázmány 2019; Kuenzer et al. 2014; LaRue, 
Stapleton, and Anderson 2017; Linchant et al. 2015; 
Nazir and Kaleem 2021; Petrou, Manakos, and Stathaki  
2015; Petso, Jamisola, and Mpoeleng 2021; Pettorelli 
et al. 2014; Sánchez-Díaz and Mata-Zayas 2019; Wang, 
Shao, and Yue 2019; Weinstein and Prugh 2018). 
However, none of them focused systematically and 
specifically on the use of satellite imagery, nor did any 
attempt to cover all taxa and geographic areas 
(Appendix A1). Moreover, a high number of papers 
have been published on these topics since the last 
systematic reviews were applied on papers from 2018 
and earlier (40% of papers selected in the present 
review were published after 2018). Considering the 
very rapid evolution of image processing approaches 
combined with the increasing availability of satellite 
imagery at very high spatial, temporal, and spectral 
resolutions, a systematic and up-to-date literature 
review is needed.
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The objectives of this paper are: (1) to provide 
a systematic review of existing studies that used satel-
lite imagery to detect, count and survey animal popu-
lations; (2) to identify bottlenecks to efficient wildlife 
detection, counting and surveys using satellite ima-
gery; and (3) to offer valuable perspectives and iden-
tify key research priorities for the next decade.

This review paper is organized into 5 main sections: 
(1) “Methods,” in which we present our paper search 
strategy, selection criteria and definition of important 
terms; (2) “Results,” in which we examine spatial and 
temporal publication trends, followed by an analysis 
of studied species, biomes and image processing 
methods; (3) “Discussion,” in which we focus on and 
discuss sensors, resolutions, and methods employed 
for wildlife monitoring. It covers detection criteria, 
Ground Sampling Distance (GSD), spatial and tem-
poral aspects, cost considerations and data sharing 
practices; (4) “Perspectives,” in which we present the 
key research priorities identified, covering data reso-
lution, accessibility, survey strategies, deep learning 
and multimodal integration; (5) “Summary and 
Conclusions,” where we summarize and highlight 
the main bottlenecks and key priorities for advancing 
remote sensing for wildlife monitoring.

2. Methods

A comprehensive peer-reviewed paper search was 
performed using the Scopus database. Three concept 
combinations using boolean operators (AND between 
concepts and OR between synonyms) were defined as 
follows and used as keywords in the databases search: 
Concept 1: satellite, remote sensing, remotely sensed; 
Concept 2: wildlife, animal, bird, fish, mammal; 
Concept 3: counting, survey, detection. The prelimin-
ary list of papers was completed by reviewing the lists 
of references in each selected paper. The paper search 
was performed on works published up to 
September 2023.

A final selection was performed after applying 
the following six criteria, determined prior to the 
research: (1) only papers written in English were 
selected; (2) papers dealing with indirect counting 
were selected (e.g. wombat warrens, bird nests) 
when the objective of the study was to provide 
a direct relationship with population size; (3) 
reviews without a case study and non-peer- 
reviewed papers were excluded; (4) only papers 

focusing on non-microscopic and moving animals 
were selected (i.e. excluding groups of species 
such as corals and zooplankton); (5) papers focus-
ing only on habitat or Global Navigation Satellite 
Systems (GNSS) localization of individuals were 
excluded; and (6) papers using only platforms 
other than satellite were excluded.

It is important to highlight that, for the context of 
this study, the terms detection, counting, and sur-
veying have been dissociated and defined as 
follows:

Detection: The process of searching for and pin-
pointing individuals or groups of individuals belong-
ing to a species within a satellite image. While the 
results may yield count values, this aspect is not per-
formed systematically. Detection may be confined to 
the approximate location of a group of individuals or 
to a presence indicator.

Counting: The estimation of the number of indivi-
duals present within a predetermined portion of 
a satellite image or the entire image. If the counting 
method employed encompasses the entire area 
intended for surveying, counting may be deemed 
equivalent to surveying.

Surveying: The estimation of the population size 
of a species within the scope of its habitat or living 
area. Surveys may involve the utilization of spatial or 
temporal sampling techniques.

3. Results

The paper search and selection process yielded 49 peer- 
reviewed papers that employed satellite imagery for the 
purposes of wildlife detection, counting, or surveying 
(Appendix B). The results of the analysis are presented in 
the four following sections: 1) spatial and temporal 
trends observed in the selected publications; 2) studied 
species and biomes; 3) sensors and resolutions used; 
and, 4) methods used for detection, counting, and 
surveying.

3.1. Spatial and temporal publication trends

Most of the publications come from America 
(Figure 1), with 49% of the articles published. More 
precisely, 45% come from the United States of 
America (USA), followed by Europe (37%), with 22% 
from the United Kingdom (UK), Asia (10%), and 
Australia (4%).

GISCIENCE & REMOTE SENSING 3



The temporal evolution of publications shows an 
increasing trend, the first being that of Guinet et al. 
published in 1995, in Europe. From 2011–2021, 
research works from America were published 
every year, while research from Europe was discontin-
uous (gaps of 1 and 2 years) before 2019, and then 
continuous until 2023. Australian and Asian teams 
published sporadically during this period. Two pub-
lication peaks occurred, in 2014 and 2021, both with 7 
papers, dominated by American researchers. Only one 
paper was published in 2022.

3.2. Species and biomes studied

Among the 49 selected publications, two animal classes 
have been studied: the mammals class (Mammalia), stu-
died in 33 papers; and the birds class (Aves), studied in 17 
papers (Figure 2). More than 25 mammalian species 
were studied, spread into 11 families: right whales 
(Balaenidae), rorquals (Balaenopteridae), bovids 
(Bovidae), elephants (Elephantidae), equids (Equidae), 

hippopotamus (Hippopotamidae), monodontids 
(Monodontidae), earless seals (Phocidae), bears 
(Ursidae), squirrels (Sciuridae) and wombats 
(Vombatidae). Regarding birds, more than 13 species 
were studied, spread into 5 families: anatids (Anatidae), 
albatrosses (Diomedeidae), flamingos 
(Phoenicopteridae), penguins (Spheniscidae) and sulids 
(Sulidae). The papers of Guirado et al. (2019) and Kapoor 
et al. (2023), did not mention the species studied but 
only the order, which was cetaceans (Cetacea).

The species families most studied using satellite ima-
gery were penguins (appearing in 24% of the papers), 
bovids (16%) and earless seals (12%), closely followed by 
rorquals (10%), bears and right whales (8% each). 
Penguins and earless seals have been mostly studied 
on the Antarctica coastline, making this continent the 
most studied to date (Figure 2). In fact, the polar/alpine 
(cryogenic) biome appeared in 37% of the papers, nearly 
equaled by the pelagic ocean waters biome (39%) which 
includes the sea ice functional group (Keith et al. 2022). 
Polar bears were studied in northern Canada and in the 

Figure 1. Historical trend of publications and overview of first author affiliation grouped by country and continent. Number of papers 
published are indicated in parentheses.
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Figure 2. Spatial distribution and overview of the studied species and biomes. The location of study areas was determined using the 
information in the papers (i.e. geographical coordinates and/or use of the figures and places mentioned). The biomes were 
determined by selecting the most representative biome of each study area, using the IUCN global ecosystem typology (v2.1) maps 
(Keith et al. 2022). The numbers above each bar correspond to the number of published papers.
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northwestern Russian Federation in these two biomes 
(Figure 2). The shorelines biome (20%) is linked to coastal 
species such as albatrosses, sulids, and certain cetacean 
species. Cetaceans (i.e. right whales, rorquals and mono-
dontids) were mainly found in the marine realm, not far 
from coasts or islands around the world, while water 
birds (i.e. anatids and flamingos) were found in fresh-
water realms. Bovids, encompassing a wide range of 
terrestrial and aquatic biomes, were studied extensively 
due to their broad global distribution across diverse 
geographical regions (Figure 2).

It appeared that most of the papers (88%) 
focused on homogeneous and open habitats such 
as polar regions, waters, or shorelines leading to 
a generally acceptable contrast with the targeted 
species. Few papers studied heterogeneous land-
scapes (Duporge et al. 2021; Wu et al. 2023; Xue, 
Wang, and Skidmore 2017; Yang et al. 2014), likely 
due to the added complexity this poses for 
detection.

3.3. Sensors and resolutions

A total of 11 sensor types were employed for space- 
based animal detection (see Figure 3); the type used 
most frequently was WorldView (WV), used in 71% of 
the papers, followed by QuickBird (QB) and GeoEye 
(GE), each used in 24% of the papers. These three 
sensor types, alongside Pleiades (4%), possess 
a submeter resolution panchromatic band, which is 
often leveraged to enhance the resolution of other 
spectral bands through pan-sharpening techniques. 
Consequently, most of the papers examined animals 
at a very high resolution (<1 m/pixel), using multiple 
spectral bands (see Figure 3). Lower resolution sen-
sors (>1 m/pixel) were commonly employed for 
detecting larger animals (e.g. cetaceans) or identify-
ing presence indicators of specific species, for exam-
ple penguin guano (Schwaller, Southwell, and 
Emmerson 2013), wombat warrens (Swinbourne 
et al. 2018) or prairie dog burrow mounds (Sidle 

Figure 3. Overview of sensors used in the studies and the spatial and spectral resolutions of imagery used. The numbers next to or 
above each bar indicate the number of papers. ‘n/a’ means that the information was not available. Note that since some articles used 
several sensors with different spatial and/or spectral resolutions, the number indicated above the bars of the scatter plot does not 
necessarily correspond to the number of points.
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et al. 2002). Finally, 8 papers (16%) did not specify the 
sensor used; instead, the authors mentioned the 
application employed to obtain satellite imagery 
(e.g. Google Earth), the commercial company from 
which the images were purchased (e.g. 
DigitalGlobe), or provided no information on this 
matter.

In terms of spectral resolution, multispectral (i.e. >3 
spectral bands) images were used in 39% of the paper, 
followed by optical (i.e. red-green-blue bands) images 
(33%) and panchromatic (one-band) images (27%) 
(Figure 3). While most species appeared to be studied 
with optical and multispectral imagery, the spectral 
bands used rarely exceed red-green-blue and or red- 
green-blue and near-infrared. Beyond these bands, only 
Fretwell et al. (2014, 2019). have used a wider spectrum 
to detect whales, i.e. 9 bands including coastal bands.

Regarding the temporal aspect, close to three- 
quarters of the studies (76%) incorporated images 
from multiple dates, while single-date studies 
accounted for 24% of the total. Some researchers 
used multiple images to monitor populations over 
several months or years (12%), but only a few species 
have been monitored over time, such as Weddell seals 
(Ainley et al. 2015; LaRue et al. 2011), southern right 
whales (Corrêa et al. 2022), penguins (LaRue et al.  
2014; Naveen et al. 2012) or wildebeests (Wu et al.  
2023). Other authors also used multiple images to 
identify target species (8%) like polar bears (LaRue 
et al. 2015; Stapleton et al. 2014) or wildebeests and 
zebras (Wu et al. 2023; Xue, Wang, and Skidmore  
2017) by distinguishing them using a reference 
image devoid of animals. However, multiple images 
were primarily used to allow the coverage of the 
entire study area (59% of the papers).

3.4. Methods used for detection, counting and 
surveying

The various methods used for animal detection, count-
ing, and surveying using satellite imagery are listed and 
categorized by validation methods and main limita-
tions identified by the authors in those papers 
(Table 1). It should be emphasized that the limits stated 
in Table 1 are only those put forward by the authors of 
the selected papers. As our aim in this section is to 
present the results of paper analysis, we have decided 
not to interpret limits that were not highlighted by the 

authors. All the studies performed detection, while 
80% extended to counting and 45% to surveying. 
A total of 8 method categories were identified for 
detection, 5 for counting and 3 for surveying.

3.4.1. Detection
The main detection methods utilized by these studies 
were visual interpretation, used in 55% of the papers, 
supervised pixel classification (37%), supervised 
object detection (8%) and change detection (8%). It 
should be noted that authors of the selected papers 
mainly used change detection as a guide to facilitate 
manual interpretation (Stapleton et al. 2014; Wu et al.  
2023; Xue, Wang, and Skidmore 2017). Only LaRue 
et al. (2015) have evaluated this approach as an auto-
matic detection method. Visual interpretation seems 
to be a powerful method for detecting animals, espe-
cially small-sized ones (e.g. Bowler et al. 2020), but it 
requires experts. Such methods can only be properly 
validated under specific conditions, i.e. the exclusive 
presence of the species in a given and known loca-
tion, as well as the availability of ground truth data. 
Supervised pixel classifiers or supervised object detec-
tion were either used for positive indicator detection 
(e.g. penguin guano stains, LaRue et al. 2014) or for 
direct animal detection (e.g. wildebeests, Wu et al.  
2023). They are trained on labeled data to use spectral 
information from the satellite image to search for 
pixels or groups of pixels defining target objects 
(e.g. animals). In theory, a high spectral resolution 
provides a better discriminating power to detect spe-
cific objects, which is why pan-sharpening is com-
monly used to keep both spatial and spectral 
information. Detection methods were mostly vali-
dated using ground and/or aerial survey data or by 
testing them on independent imagery.

The main limitations of non-automated detection 
methods (i.e. visual interpretation and change detec-
tion) were the high time investment, the need for 
experienced interpreters and the need for reference 
images to distinguish animals from landscape fea-
tures. Regarding automated methods, the main lim-
itation trends were the confusion with landscape 
features, the difficulties in differentiating species, 
and the reliance on specific environmental conditions 
to achieve adequate performance. While multispectral 
instead of panchromatic imagery was recommended 
for better detection of wildlife (Barber-Meyer, 
Kooyman, and Ponganis 2007; LaRue et al. 2015), it 
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has been shown that supervised pixel classifiers 
struggled to differentiate animals in habitat with simi-
lar spectral signatures (Barber-Meyer, Kooyman, and 
Ponganis 2007; Cubaynes et al. 2019; Fretwell et al.  
2019; Yang et al. 2014), were temporally inconsistent 
(Fretwell et al. 2014; Labrousse et al. 2022) and were 
prone to produce a high number of false positives 
(Fretwell et al. 2014, 2019; Lynch, Schwaller, and 
Schumann 2014). These considerations may also be 
valid for the histogram thresholding method, as 
LaRue et al. (2015) and Laliberte and Ripple (2003) 
observed that the surrounding landscape of terrestrial 
animals (polar bears and cattle, respectively) showed 
similar reflectance values to their bodies. 
Nevertheless, Fretwell et al. (2014) showed that 
thresholding the coastal band (400–450 nm) was the 
best approach to detect whales compared to unsu-
pervised pixel classification methods. To overcome 
this animal-landscape spectrum similarity concern, 
image differencing (i.e. change detection), in which 
values of a reference image are subtracted from 
values of a target image, could be the solution. 
However, this method requires two orthorectified 
overlapping images taken at relatively close time 
intervals. It has thus far been shown to be effective 
for automatically detecting polar bears on relatively 
flat and open terrain (LaRue et al. 2015).

The use of deep learning is very recent, with the first 
paper published in 2019, and is therefore still in its 
infancy. To date, 10 peer-reviewed papers have applied 
deep learning to detect wildlife from satellite imagery, 
with the target species being: cetaceans (Borowicz et al.  
2019; Green et al. 2023; Guirado et al. 2019; Kapoor, 
Kumar, and Kaushal 2023), albatrosses (Bowler et al.  
2020), cattle (Mücher et al. 2022), African elephants 
(Duporge et al. 2021), wildebeests (Wu et al. 2023), 
seals (Gonçalves, Spitzbart, and Lynch 2020), and pen-
guins (Le et al. 2022). Borowicz et al. (2019) trained 
a CNN-based image classifier, ResNet-152 (He et al.  
2016), on down-scaled aerial image patches to discrimi-
nate the presence of whales in satellite tiles. Related to 
this idea, Guirado et al. (2019) trained a CNN-based 
image classifier, Inception-v3 (Szegedy et al. 2016), to 
discriminate whales from water, submerged rocks and 
ships, and then added a second step to locate and count 
individuals in the resulting tiles using Faster- R-CNN 
(Region-based CNN), a CNN-based object detector (Ren 
et al. 2017). This object detector was also used by 
Duporge et al. (2021) to directly detect and count 

African elephants on VHR satellite images. Kapoor et al. 
(2023) used another object detector called “Tiny YOLO 
(You-Only-Look-Once) v3” (Redmon and Farhadi 2018) 
to detect cattle and Green et al. (2023 used YOLO v5 
(Jocher, Stoken, and Borovec 2021) to detect gray 
whales. Other works used the U-Net architecture 
(Ronneberger, Fischer, and Brox 2015) to detect alba-
trosses (Bowler et al. 2020) and wildebeests (Wu et al.  
2023), or an adapted version of it to detect and count 
pack-ice seals (SealNet, Gonçalves, Spitzbart, and Lynch  
2020) or to segment penguin colonies (PenguinNet, Le 
et al. 2022).

3.4.2. Counting
The most common counting methods were visual 
interpretation, used in 46% of papers conducting 
counts, the use of detection method results to esti-
mate counts (44%) and the use of regression models 
(26%) generally fitted to reliable ground truth esti-
mates. Except for the use of detection method results, 
counting methods were usually validated by compar-
ing their results to ground and/or aerial counts, or to 
previous population data. The primary limitations of 
counting methods were analogous to those of detec-
tion methods. The need for precise, reliable and con-
current ground truth estimates was critical for the 
success of regression and extrapolation methods.

3.4.3. Surveying
Finally, total counting, which accounted for 86% of the 
papers conducting surveys, sample counting (23%) and 
mark and recapture (5%) were the three methods used 
for surveying. Sample counting relies on the use of 
sample units selected over the census area. For instance, 
LaRue and Stapleton (2018) used full non-overlapping 
satellite images and LaRue et al. (2015) used plots 
selected from non-overlapping satellite images. The lat-
ter assessed the sampling requirements and investi-
gated the effect of sample plot size on polar bear 
population estimates on Rowley Island. Their findings 
suggested that sampling 50% of the study area could 
strike a balance between reliable results and the asso-
ciated cost of using VHR satellite imagery. They also 
observed that plot size did not significantly impact the 
reliability of the results. Mark and recapture was only 
used by Stapleton et al. (2014) who used the counting 
results of two independent interpreters and treated 
each result as an independent sampling period to gen-
erate capture histories for mark-recapture analysis. The 
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abundance estimate they obtained was like the one 
derived from aerial surveys conducted at nearby dates.

The results of survey methods were typically vali-
dated by comparing them with other estimates or 
with previous estimates. Survey methods were pri-
marily constrained by the challenge of estimating 
population parameters, including factors such as 
availability and variability, as well as ensuring the 
representativeness of the sample.

4. Discussion

4.1. Detection criteria

The relevance of using satellite imagery for wildlife 
monitoring or survey directly stems from the feasibil-
ity of detecting the target species in its surrounding 
habitat. To evaluate the feasibility of satellite imagery 
for wildlife studies, LaRue et al. (2017) established 
a set of eight detection criteria, categorized as pri-
mary or secondary. The primary criteria encompass 
three essential conditions that must be satisfied by 
a prospective system: 1) the presence of an open 
landscape; 2) a discernible color contrast between 
the target species and the surrounding environment; 
and 3) a target species possessing a detectable size or 
displaying positive indications of its presence. 
According to the authors, secondary criteria serve to 
enhance the utility of satellite imagery: 4) species- 
landscape differentiation, which entails a significant 
distinction between the target species’ visual appear-
ance and the surrounding landscape; 5) habitat asso-
ciations, indicating the consistent presence of the 
species at specific locations; 6) temporal exclusivity, 
wherein the target species exclusively occupies an 
area during a specific time period; 7) coloniality, refer-
ring to the congregation of the target species in herds 
or groups; and 8) ground truthing, which involves the 
availability of accurate population data or ground 
validation for the detected species.

We observed that most of the selected papers 
reached primary criteria, while they varied among 
species and study areas for secondary criteria. 
Studies involving birds, whales or seals generally ful-
filled all the criteria, while studies involving large 
terrestrial mammals (e.g. elephants, wildebeests) 
appeared to reach fewer secondary criteria, due 
mostly to poor temporal exclusivity, poor habitat 
associations and/or no ground truthing. Our trend 

results for the biomes studied revealed that most 
papers focused on homogeneous and open habitats. 
Recent studies have however demonstrated note-
worthy levels of accuracy (approximately 80%) in 
detecting terrestrial mammals within heterogeneous 
landscapes using DL models (Duporge et al. 2021; Wu 
et al. 2023). Their results highlight the potential to 
overcome previous limitations related to heterogene-
ity and emphasize that continued advances in DL may 
further improve detection in diverse landscapes. In 
contrast, certain studies that satisfied most of the 
criteria exhibited inferior detection results because 
of heterogeneous coloration of animals (Fretwell 
et al. 2019), lack of animal-landscape differentiation 
(LaRue, Stapleton, and Anderson 2017), or many con-
fusing landscape elements produced by other species 
or vegetation (Lynch, Schwaller, and Schumann 2014 
This could be addressed using improved detection 
methods. These criteria are indeed predicated upon 
a human-centric detection paradigm, disregarding 
the potential processing capabilities of a computer 
that can effectively analyze and extract information 
from more extensive spatial and spectral data. 
Therefore, we propose that complementary charac-
teristics, related primarily to satellite images proces-
sing and acquisition, need to be considered and are 
therefore addressed in the following sections.

4.2. Ground sampling distance

At spectral level, the main criterion for proper ani-
mal detection is a sufficient contrast between the 
target species and its surrounding landscape. At 
spatial level, GSD can be considered as the most 
critical criterion to detect animals as it is directly 
related to the level of details provided in imagery. 
Nevertheless, satellite design must deal with multi-
ple trade-offs between spatial resolution and data 
volume, spectral resolution, and noise (Al-Wassai 
and Kalyankar 2013). Since the 2010s, there have 
been significant advances in spatial resolution with 
the launch of Worldview-1, which provides 50 cm 
resolution in the panchromatic band, and subse-
quently WV-4, which provides 30 cm resolution 
(Khan et al. 2023). As illustrated in Figure 4, 
a decimetric GSD is critical for the identification of 
medium-size species or individuals, particularly in 
high-density contexts. Several pixels are necessary 
to identify an animal on imagery, nine to ten pixels 
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being previously identified as a minimum size for 
detectability on visible (Wu et al. 2023) and thermal 
imagery (Burke et al. 2019). Considering that the 
highest resolution available is 30 cm/pixel, only 
large animals are directly detectable (e.g. whales, 
elephants), smaller ones being detectable using 
indicators of presence (e.g. guano, warrens), as 
shown in the reviewed papers (Figure 5). Small (i.e. 
under nine to ten pixels) animals also appear to be 
detectable, but this relies on prior knowledge of the 
species location, its surrounding habitat and its 

temporal behavior. For example, albatrosses have 
been detected and counted by insider personnel 
during their nesting period (Bowler et al. 2020), 
but would only appear as white spots on satellite 
imagery to inexperienced personnel (Figure 5a).

In addition, even if a species is detectable, differ-
entiation between species of the same size seems 
difficult, if not impossible (Bamford et al. 2020; Wu 
et al. 2023; Yang et al. 2014). Fine-scale features (i.e. 
similar size of the target species) such as individual 
trees, small water bodies, or vegetation structure may 

Figure 4. Spatial representation of multiple wildlife species under varying environments and ground sampling distances, simulating 
various satellite spatial resolutions and their impact on image clarity, species identification and high-density individual distinction: 
(a) African buffalo (syncerus caffer), (b) topi (damaliscus lunatus jimela), (c) caribou (Rangifer tarandus), (d) harp seal (pagophilus 
groenlandicus), and (e) nests of great blue heron (Ardea Herodias). Note that ultra-high resolution aerial images (< 5cm) were artificially 
down-sampled to simulate these different satellite resolutions. Images of African buffalo and topi (a, b) are samples from the dataset 
of Delplanque et al. (2022) with permission of the authors. Images of caribou, harp seal and great blue heron were shared by the 
Alaska Department of Fish and Game (c), fisheries and oceans Canada-québec (d), and the government of Quebec and CERFO (e).
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also be difficult to discern (Fretwell et al. 2014; Irvine 
et al. 2019; Laliberte and Ripple 2003; McMahon et al.  
2014; Xue, Wang, and Skidmore 2017), limiting the 
accurate assessment of population distributions. 
Multispectral imagery may nevertheless be helpful 
to distinguish species from confusing background 
features, or even among other species (Lynch et al.  
2012). The lack of spatial resolution can impede the 
detection and monitoring of cryptic or elusive species 
that rely on camouflage or occupy densely vegetated 
and obstructed environments. Finally, the inability to 
discriminate between closely spaced individuals 
(Corrêa et al. 2022; Fretwell et al. 2019; Xue, Wang, 
and Skidmore 2017), between adults and calves 
(Cubaynes et al. 2019; Stapleton et al. 2014), and/or 
the persistence of presence indicators (Hughes, 
Martin, and Reynolds 2011) may also hinder the esti-
mation of population densities and demographic 
parameters.

4.3. Spatial coverage

Satellite imagery covers relatively large areas com-
pared to other types of imagery (e.g. aerial), allowing 
the acquisition of snapshots over very large territories. 
This enables animals to be counted at several spatial 
scales, ranging from a few tens of square kilometers to 
cover local areas (e.g. Bowler et al. 2020) to several 
thousand to cover vast territories (e.g. Cubaynes et al.  
2019; Wu et al. 2023). Available VHR imagery can 
cover swath widths between 12 to 20 km (Khan et al.  
2023), which can provide data not only on animals 
but also on their habitats. In these cases, although 
panchromatic bands can provide some radiometric 
and textural information, the additional use of multi-
spectral bands (higher GSD) in visible and near- 
infrared domains is usually required for characterizing 
habitats or background (Goddijn-Murphy et al. 2021; 
Wang, Shao, and Yue 2019).

Figure 5. Examples of species studied using VHR satellite imagery: (a) Albatrosses (diomedea Exulans). Image from Bowler et al. (2020), 
printed with permission from the authors, copyright (2023), maxar technologies. (b) Wombat (lasiorhinus latifrons) warrens. Figure 
reprinted from Swinbourne et al. (2018), copyright (2018), with permission from Elsevier. (c) Polar bears (Ursus maritimus). Figure 
reprinted from LaRue et al. (2015), copyright (2015), with permission from John Wiley and sons. (d) Right whale (Eubalaena australis) 
and gray whales (Eschrichtius robustus). Images from Cubaynes et al. (2019), printed with permission from the authors, copyright 
(2022), maxar technologies. (e) Wildebeests (connochaetes taurinus) and zebras (equus quagga). Figure reprinted from Xue et al. 
(2017), copyright (2017), maxar technologies. (f) African elephants (Loxodonta africana). Figure from Duporge et al. (2021), copyright 
(2021), maxar technologies. (g) Penguin guano stains. Figure reprinted from Le et al. (2022), copyright (2021), with permission from 
John Wiley and sons.
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The spatial coverage of satellite images also gives 
access to any location on Earth, removing all limita-
tions linked to the accessibility or dangerousness of 
a study area. This type of imagery also causes no 
disturbance to wildlife, and considerably reduces the 
deployment of field logistics. These characteristics are 
widely exploited in existing studies, as the vast major-
ity of published articles focus on environments that 
have very low (polar/alpine (cryogenic) biome: 37%) 
or low (pelagic ocean water biome: 39%, shoreline 
biome: 20%) accessibility.

These spatial characteristics also limit certain 
survey biases. Wide territorial coverage means 
that a larger sample of a population can be sur-
veyed compared to traditional methods, theoreti-
cally providing more accurate estimates (LaRue 
et al. 2015). This coverage, combined with the 
absence of disturbance, also limits certain detec-
tion biases linked to animal movement (e.g. dou-
ble counting between flight transects). In the case 
of aggregating species (e.g. migratory ungulates, 
penguin colonies), satellite imagery opens oppor-
tunities for total count (e.g. Bamford et al. 2020; 
Labrousse et al. 2022, Wang et al. 2020; Wu et al.  
2023). The latter would greatly increase the accu-
racy of population abundance estimations, cur-
rently limited by statistical constraints associated 
with the sampling of this type of heterogeneous 
and autocorrelated spatial distribution (Wu et al.  
2023).

4.4. Temporal resolution

The revisit rate of the nine satellite sensors offering 
very high spatial resolution images currently ranges 
from less than 3 days to 2 times a day (Khan et al.  
2023). This frequency therefore provides more than 
daily theoretical coverage of the Earth’s surface and 
allows specific periods to be targeted with great pre-
cision. As wildlife surveys are often carried out during 
specific periods of the annual population cycle like 
open water season for whales (e.g. Charry et al. 2021), 
African ungulate migrations (e.g. Wu et al. 2023), seal 
breeding (e.g. Ainley et al. 2015), albatross nesting 
(e.g. Bowler et al. 2020), or flamingo wintering (e.g. 
Sasamal et al. 2008), a high revisit rate favors the 
availability of imagery in these time slots. Although 
most papers use satellite imagery at specific points in 
time to detect individuals or populations, some 

(LaRue et al. 2015; Stapleton et al. 2014; Wu et al.  
2023; Xue, Wang, and Skidmore 2017) exploit this 
revisit rate in the detection approach itself by analyz-
ing the temporal changes to identify individuals (i.e. 
moving targets) and to eliminate static confusing 
objects.

The continuous coverage of a territory over time 
also makes it possible to monitor populations over 
time at a relatively high frequency compared to tradi-
tional methods involving field logistics (Ainley et al.  
2015, Corrêa et al. 2022; LaRue et al. 2011, 2014; 
Naveen et al. 2012; Wu et al. 2023). Without comple-
tely replacing traditional surveys, satellite imagery 
could increase their frequency while providing better 
reproducibility related to the objective nature of the 
information contained in the images and the use of 
automatic detection approaches. The use of tradi-
tional census approaches would remain important 
to validate the results obtained by image processing 
but could be carried out less frequently and over 
reduced areas (Wu et al. 2023).

However, these revisit rates remain theoretical, and 
several factors can influence the availability of images. 
For example, the shorter the targeted acquisition per-
iod, the lower the availability of imagery. As for tradi-
tional ground or aerial survey, weather conditions 
(e.g. sea state, cloud cover) may limit data collection 
during critical periods by disturbing or obscuring 
satellite views (Bamford et al. 2020; LaRue and 
Stapleton 2018; LaRue et al. 2011; Lynch et al. 2012). 
Finally, mosaics of scenes acquired at different dates 
are not adapted to wildlife surveys since wildlife is 
mobile.

4.5. Cost and availability of imagery

Although large web-based processing platforms such 
as Google Earth Engine and Microsoft Planetary 
Computer have democratized advanced image pro-
cessing, the availability of VHR imagery remains very 
restricted and strongly limits the availability of images 
and their use for wildlife surveys. The cost of VHR 
satellite imagery may be a major obstacle to wildlife 
studies. Satellite imagery pricing varies according to 
several factors such as the image provider, type of 
demand (e.g. archiving, tasking, priority tasking), 
image resolution and spectral characteristics, level of 
processing, coverage area, licensing terms, and 
intended use. While it is difficult to give a precise 
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estimate, as they are often linked to requests for 
quotations, prices can range from several hundreds 
to thousands of dollars per minimum-size ordered 
scene (25 to 100 km2), resulting in prohibitive costs 
for covering large areas (Apollo Mapping 2023; LAND 
INFO Worldwide Mapping, LLC 2023).

Current sale conditions of satellite images also sig-
nificantly limit their application to wildlife surveys. 
Large animals, the type most targeted by satellite ima-
gery, generally occupy large and sparsely inhabited 
territories in low density, and their spatial distribution 
varies over time while being relatively unpredictable. 
The availability of images must therefore respond to 
these constraints by covering large territories, consid-
ering that most of them do not contain animals, and by 
acquiring images at specific times, often determined 
with very short advance notice. Although less expen-
sive than tasked images, the availability of archived 
images is limited because satellites usually acquire 
imagery only when tasked by customers. Archive cata-
logs do not allow for a full resolution preview which 
makes it impossible to evaluate the presence of ani-
mals before purchase. Archived imagery is therefore of 
limited interest if specific periods and sites are tar-
geted. On the other hand, tasking imagery also has 
several limitations such as: high prices, a low level of 
priority which does not guarantee their acquisition 
(highest priority being given to military and commer-
cial applications), an acquisition window of several 
weeks (with no control on a specific acquisition date), 
and a limit on coverage areas and acquisition periods.

However, these acquisition constraints are not 
raised in the reviewed papers. Most of them presented 
a proof of concept regarding species detection or 
population estimation using satellite imagery that 
requires relatively few constraints on image acquisi-
tion, given that the study usually covered a relatively 
small area and the site and target period can be flex-
ible. The few articles (Ainley et al. 2015; Fretwell et al.  
2012; LaRue et al. 2011; Lynch and LaRue 2014; Wu 
et al. 2023) that carried out operational studies (i.e. total 
count, temporal monitoring) focused on fixed and 
known study areas (e.g. Antarctic nesting sites, wildlife 
corridors) associated with relatively large observation 
windows, which favor image availability. These acquisi-
tion constraints thus remain underestimated in the 
literature but represent a major obstacle to the devel-
opment of future operational survey tools.

4.6. Image processing

Reducing the tedious and costly workload associated 
with the manual interpretation of satellite imagery is 
a high-priority achievement that would enable larger- 
scale wildlife monitoring, more frequent surveys and 
consequently more robust population estimates 
(Cubaynes et al. 2019; Fretwell et al. 2014, 2019; 
LaRue et al. 2015). Hence, various (semi-)automated 
detection and counting methods have been applied 
on satellite imagery containing wildlife, often providing 
promising results, but with limitations. Several authors 
suggest that object-based detection methods might 
be more appropriate to detect and count wildlife on 
satellite imagery because such methods use 
a combination of shape, texture and spectral character-
istics to detect objects (Cubaynes et al. 2019; Fretwell 
et al. 2019; LaRue et al. 2015; Yang et al. 2014). In recent 
years, these characteristics have proven to be automa-
tically and particularly well-leveraged by CNNs, a type 
of artificial neural network used in various DL 
approaches that has demonstrated great success in 
the detection of objects in images (LeCun, Bengio, 
and Hinton 2015). While earlier object detection meth-
ods, i.e. not using DL, struggled with detecting small- 
sized objects, recent advances in DL have shown 
increasing promise for small object detection tasks 
(Tong, Wu, and Zhou 2020). Objects occupying just 
a few pixels, like animals on remote sensing imagery, 
may be then detected by such DL methods (e.g. 
Delplanque et al. 2023; Sarwar et al. 2021). DL is 
undoubtedly the future for all image processing tasks 
and would leverage the massive amount of remote 
sensing data, but it is still in its infancy for satellite- 
based wildlife monitoring. Expert-based visual interpre-
tation may nevertheless still provide value for detect-
ing species against complex landscapes containing 
numbers of confusing elements. In such cases, 
a hybrid approach combining DL and human experts 
should be more effective. DL might handle scalability 
by directing human attention to areas of interest and 
experts might verify DL model predictions and provide 
additional training data. The expertise of visual analysts 
will thus likely continue playing a role even as auto-
mated image processing techniques progress.

As described in section 3.4, different DL 
approaches have already been considered for the 
detection and counting of animals in satellite ima-
gery, each with promising and sometimes stunning 
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results. Training supervised deep learning models 
starting from random weights requires however 
a large amount of labeled data, which is not easy 
to produce for wildlife. As an example, a common 
dataset used for everyday object detection is 
Microsoft Common Object in Context (COCO), 
a large-scale dataset containing more than 
200,000 labeled images with 1.5 million object 
instances (Lin et al. 2014). Unfortunately, the size 
of the datasets we usually encounter is much smal-
ler because of the significant cost and time 
involved for labeling. For this reason, in most sur-
veyed papers, deep learning object detectors are 
typically derived from pre-trained backbones built 
on large computer vision training sets such as 
ImageNet (Deng et al. 2009). While this is 
a reasonable approach when training data are lim-
ited, there is evidence that spatial resolution and 
data preprocessing are not always appropriate for 
satellite imagery (Corley et al. 2023). This technique 
is commonly called “fine-tuning” and is widely 
used in various research domains. Nonetheless, 
one might ask how many samples are needed for 
the proper detection of wildlife in satellite images. 
This is not an obvious question, but the literature 
suggests some answers. Shahinfar et al. (2020) stu-
died the effect of training sample size on the 
accurate classification of wildlife by CNNs in cam-
era trap imagery. They observed that 150–500 
images per class is sufficient to achieve reasonable 
performance when using fine-tuning. Even if it is 
somewhat similar, image classification differs from 
object detection, and we may still wonder about 
the minimum number of samples and annotated 
objects to perform satisfactory detection. Future 
research should clarify this aspect, but results of 
previous studies using deep learning for wildlife 
detection on satellite imagery still provide some 
indications. As an example, Guirado et al. (2019) 
reached a detection performance of 81% by using 
fine-tuning and 700 training samples per class, 
containing 945 animals. Similarly, Duporge et al. 
(2021) used only 188 training satellite tiles contain-
ing 1,125 animals and achieved an overall detec-
tion performance of 75% for both homogeneous 
and heterogeneous landscapes. Therefore, it seems 
that a few hundred training samples and around 
1000 animal objects per class would be sufficient 

for the acceptable detection of wildlife by deep 
learning and satellite imagery.

4.7. Data sharing and multidisciplinarity

Sharing satellite imagery and annotations would cer-
tainly promote the development of automated or 
semi-automated detection models. Unfortunately, 
satellite images are often licensed by the selling com-
panies (e.g. DigitalGlobe), which severely limits data 
sharing. In fact, among the 16 papers that announced 
the availability of their data, more than half gave the 
product identifier to purchase the image in the ven-
dor’s catalog, and only Yang et al. (2014) made the 
image used in their study freely available. As for the 
availability of the code for processing the satellite 
images, only 6 of the 49 reviewed papers made it 
freely available. However, as these 6 are recent (after 
2018), we can hope that this will become a common 
practice.

In addition to data sharing, the collaboration 
between remote sensing and ecology communities 
remains an obstacle to the development of wildlife 
remote sensing, which mobilizes multidisciplinary 
expertise. For a long time, these communities evolved 
in silos, creating collaborative challenges linked to 
semantic gaps, reference frame gaps, as well as differ-
ences in needs and constraints regarding data and 
targeted results (Kuenzer et al. 2014; Pettorelli et al.  
2014). As an indication, the first publications combin-
ing the keywords “remote sensing” and “biodiversity” 
date back to the early 1990s, and only 65 articles were 
published between 1990 and 2000 (compared to 
more than 200 every year recently) (Wang and 
Gamon 2019). This period also corresponds to the 
first articles on remote sensing of wildlife using satel-
lite imagery. The recent advent of Earth observation 
big data combined with the development of proces-
sing approaches based on machine learning has pro-
pelled these disciplines toward each other, opening 
new perspectives for wildlife characterization at dif-
ferent spatio-temporal scales (Tuia et al. 2022).

5. Perspectives

Based on the research projects made in the last dec-
ades, we believe that future developments of wildlife 
detection and survey using satellite imagery will be 
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related to developments in 6 main axes: 1) spatial and 
temporal resolutions; 2) image accessibility and avail-
ability; 3) survey strategy; 4) deep learning and multi-
modal integration; 5) data and code sharing; and 6) 
training and multidisciplinarity.

5.1. Spatial and temporal resolution of images

Given that GSD is a determining factor in the detect-
ability of animals on satellite images, the future avail-
ability of imagery at resolutions of less than 30 cm is 
a key factor in the widespread use of this type of data. 
We therefore believe that the future direction of 
research and technology should be toward low cost 
solutions such as Lower Earth Orbits (LEOs) satellites, 
High-Altitude Pseudo-Satellites (HAPS) or High 
Altitude and Long Endurance (HALE) drones. 
Missions such as Albedo1 are currently underway to 
acquire imagery at a GSD of 10 cm (visible) and 2 m 
(thermal) using LEO satellite. At the same time, micro-
satellite technology for Very Low Earth orbits (VLEOs) 
between 250 and 500 km is quickly advancing. The 
deployment of constellations of dozens of small, low- 
cost satellites, each less than a meter in diameter will 
potentially improve the radiometric performance of 
optical, LIDAR and radar instruments as well as the 
temporal coverage. The number of constellations of 
micro and small satellites has greatly increased with 
nearly 1,000 spacecrafts in orbit forecasted for 2022 
(Curzi, Modenini, and Tortora 2020). These constella-
tions, with their high revisit rate – multiple times 
daily – will enable more accurate, comprehensive 
and timely mapping, providing a clearer understand-
ing of conditions on the ground. Decimetric spatial 
resolutions could be envisioned at the cost of smaller 
swath widths, therefore requiring more revisiting 
orbits to cover a targeted area. As these spacecrafts 
are deployed in greater numbers and in less- 
traditional circular orbits, constellations can be 
formed that can offer more frequent revisit opportu-
nities and thus improved temporal resolution. 
However, atmospheric drag will significantly reduce 
the sensor lifespan, which can impact data continuity.

As for HAPS and HALE drones, they can maintain 
a fixed position in the stratosphere (10 to 50 km), 
between satellites and conventional aircrafts 
(Guérard, Baudin, and Hertzog 2016). HAPS can be in 
the form of lightweight platforms such as airplanes, 
airships, or balloons, and are moving rapidly toward 

maturity, thanks to trends in solar power, battery 
storage, and artificial intelligence (AI). They are 
designed to operate at high altitudes using solar 
energy but have limited payloads and cannot operate 
well at extreme latitudes. Some notable examples of 
HAPS platforms that have been in development for 
several years include the Airbus Zephyr platform 
(Robinson 2022), the BAE Phasa-35 (Thisdell 2020) 
and the Leonardo Skydweller (Skydweller Aero Inc  
2022).

In addition to sensor improvements and lower 
orbits, computational techniques have emerged as 
a powerful tool for improving spatial resolution. 
Specifically, push-frame satellites, such as Planet’s 
SkySat (Murthy et al. 2014), can observe Earth’s loca-
tions multiple times, creating short videos of up to 40 
frames. Subsequently, multi-image super resolution 
techniques can be used to increase the effective spa-
tial resolution by a factor of 2 by merging multiple 
observations (Nguyen et al. 2022).

5.2. Image accessibility and availability

While developments of Earth observation applica-
tions have greatly benefited from open-source satel-
lite imagery such as the Landsat and Sentinel 
collections, VHR imagery availability remains very 
restricted for the time being. Even with precise task-
ing, the mere definition of acquisition parameters 
does not ensure the retrieval of an image that is useful 
in terms of the presence of animals. The next 
advancement in this field is likely to be smart tasking, 
where image acquisition is predicated on the pre-
sence of specific objects within the image. Such 
downstream data processing services are already 
offered by some satellite companies2 and can detect 
objects of interest such as roads and buildings, or 
simply alert the user about changes between two 
acquisition dates. These strategies could be easily 
extended to other objects of interest such as the 
presence of animals. Upstream, at the data acquisition 
level, AI chipsets for edge computing continue to 
improve (Momose, Kaneko, and Asai 2020) and may 
become part of the satellite payload. This strategy will 
both greatly reduce the bandwidth required by high 
temporal frequency constellations and simplify image 
management and tasking. Instead of providing large 
volumes of raw images, satellites will directly supply 
high-level information streams regarding events or 
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objects of interest. Already, on-board processing with 
AI chips has facilitated the recognition of distinct 
features in an image, such as volcanic eruptions (Del 
Rosso et al. 2022). Intel has provided AI processing for 
PhiSat-1, guiding the onboard retrieval of cloud-free 
images and is currently being extended to flood event 
detection (Mateo-Garcia et al. 2021). With the advent 
of intelligent remote sensing (Zhang et al. 2022), we 
can foresee fleets of low-cost smart satellites dedi-
cated to specific missions such as wildlife monitoring. 
The availability of such constellations providing open 
data dedicated exclusively to wildlife monitoring is 
critical, given the specific acquisition constraints asso-
ciated to these targets (e.g. movement, low densities, 
unpredictable and large spatial distribution) which 
are not compatible with multi-application VHR mis-
sions such as WorldView, GeoEye, and QuickBird.

5.3. Survey strategy

In cases where species do not exhibit period-specific 
aggregation behavior, achieving a total count using 
VHR satellite imagery may not be feasible given the 
current limits of VHR satellites. Therefore, appropriate 
sampling methods need to be developed and should 
evolve simultaneously with advances in remote sen-
sing imagery. For instance, sampling strategies might 
incorporate covariates (Meng et al. 2022), such as 
previous species distribution from ground or aerial 
surveys, or habitat suitability models (Singh et al.  
2009) to identify locations of interest within the 
study area. At the moment, we assume that existing 
methods used in ecology may be applied or adapted 
in some cases. For instance, the sampling method of 
Jolly (1969), commonly employed in aerial survey 
standards (Craig 2012; Norton-Griffiths 1978), may 
be adapted to obtain population estimates over vast 
areas using satellite imagery. The sample units might 
be non-overlapping full images or plots selected from 
the latter (e.g. LaRue and Stapleton 2018; LaRue et al.  
2015). Nevertheless, satellite imagery estimates 
should still be combined with ground efforts to 
ensure accurate assessment of population trends. 
This combination is necessary for image interpreta-
tion and because quantifying detection errors 
remains challenging (Ainley et al. 2015; Fretwell 
et al. 2012; LaRue and Stapleton 2018; LaRue et al.  
2011; LaRue, Stapleton, and Anderson 2017; Pettorelli 
et al. 2018; Swinbourne et al. 2018; Wu et al. 2023). 

Furthermore, VHR satellite imagery may be used com-
plementarily to identify and evaluate interesting or 
unsurveyed areas for future ground or aerial counts.

5.4. Deep learning and multimodal integration

Given the large amount of satellite data available and 
anticipated, there is an opportunity to build self- 
supervised sensor-specific models instead of simply 
fine-tuning pre-trained models as the availability of 
annotations becomes a bottleneck. One strategy is to 
adopt unsupervised or self-supervised techniques 
that allow neural networks to build better sensor- 
specific representations. Large datasets can be lever-
aged, reaching performances superior to pre-trained 
models (Tao et al., 2022). Generative techniques could 
also potentially help alleviate the lack of training 
samples by generating entirely new samples 
(Ramesh et al. 2022). Still, the same challenge remains, 
as most available generative models are also trained 
on massive proximal computer vision datasets (Koh, 
Fried, and Salakhutdinov 2024). In this regard, the 
development of specific generative models based on 
overhead imagery could be a promising research 
avenue.

Animals on satellite imagery can appear as a small 
group of pixels on satellite imagery. Given the results 
obtained by previous studies (Bowler et al. 2020; Wu 
et al. 2023), we argue that pixel-based object detec-
tion CNNs should provide the best detection perfor-
mance for small-size (few pixels) animal detection in 
satellite imagery. Attractive point-based architectures 
developed on aerial images, and which provided 
good detection results for small animal detection, 
such as HerdNet (Delplanque et al. 2023), the seabird 
CNN detector of Kellenberger et al. (2021) or the 
sheep CNN detector of Sarwar et al. (2021), should 
be experimented with in the future.

The task of wildlife monitoring is inherently multi-
modal, with a wide range of possible data sources 
such as satellite, airborne, and drone imagery, as 
well as proximal data such as camera trap images, 
GNSS collars, in-situ microphones, and so on. 
Independently, so-called “Foundational Models,” 
trained on very large and diverse training sets in 
a self-supervised and unsupervised way, have 
emerged, first in natural language processing, and 
also in computer vision (Bommasani et al. 2022). We 
believe that the future of wildlife monitoring relies on 
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such models and that future research should focus on 
this. Remarkably, these models are “few-shots” lear-
ners and can be readily applied to downstream tasks 
with very few training examples (Moor et al. 2023). 
Some of them are also multimodal and can handle 
speech, text, and computer vision, allowing the user 
to interact directly in text format. Large language 
models are providing an underlying structure to 
relate information from different sources and models 
(Shen et al. 2023). This capability is already being used 
in various domains, such as general medicine (Moor 
et al. 2023). These approaches could replicate what 
a photo interpreter would do when analyzing an 
image, taking into account a larger context of multi-
modal information. Pending the development of plat-
forms that would handle multimodal data for training 
foundational models, large volumes of data from 
a wide range of sources are already available on 
online portals. These include for example Wildlife 
Insights3 for camera trap images, Movebank4 for wild-
life GPS data and trajectories, AWIR5 for aerial wildlife 
imagery, or BioAcoustica6 for bioacoustic recordings. 
These data may also be cross-referenced with past 
satellite imagery acquisitions, providing ground 
truth for the development or validation of automatic 
methods. As a result, there is an opportunity for the 
emergence of specialized multimodal approaches 
that blend multi-sensor imagery, sound, and textual 
reports that can aid in the conduct of wildlife surveys.

5.5. Data and code sharing

Sharing data and code would further help the expan-
sion and development of automated detection 
approaches. Moreover, building a large “wildlife satel-
lite imagery” database similar to ImageNet or COCO is 
crucial and would lead to pre-trained CNN parameters, 
usable for various wildlife detection tasks. In this vein, 
Cubaynes and Fretwell (2022) have created an open- 
access dataset of satellite images containing annotated 
whales. This is bound to motivate other researchers to 
do the same in the near future. In recent years, multiple 
annotation tools have emerged, such as AIDE 
(Kellenberger et al. 2020) or Label-Studio (Tkachenko 
et al. 2020), and even a protocol to correctly annotate 
wildlife on satellite imagery (Cubaynes et al. 2023). 
Such tools should promote data sharing and collabora-
tive work for future wildlife research. Pending an open 
database of wildlife satellite images or foundational 

wildlife models described in section 5.4, alternatives 
like using Web images (Chabot, Stapleton, and Francis  
2022) or down-scaled aerial images should be devel-
oped (Borowicz et al. 2019).

5.6. Training and multidisciplinarity

The need for interdisciplinary integration has become 
obvious in the study and monitoring of biodiversity, 
as evidenced by the development of essential biodi-
versity variables (Jetz et al. 2019) and the develop-
ment of global monitoring networks such as GeoBon,7 

which bring together scientists from a wide range of 
backgrounds. This interdisciplinary integration must 
continue and even be strengthened to accelerate the 
development of tools in this field, notably through 
the creation of open resources (e.g. best practices, 
data, code). This effort must also be reflected in the 
training of highly qualified personnel, through the 
development of more multidisciplinary programs 
combining geomatics, ecology, and computer 
science. This new generation of data scientists trained 
outside traditional disciplinary silos is certainly one of 
the most promising prospects for advancing knowl-
edge in wildlife remote sensing.

6. Summary and conclusions

Satellite wildlife monitoring has emerged in recent 
years with the increasing availability of high- and very 
high-resolution satellite imagery. Several proofs of con-
cepts have since demonstrated the potential of this new 
technology to detect large mammals or large bird colo-
nies, mainly in open and homogeneous areas. To 
reduce the burden of manual interpretation, several 
automated image processing methods have been 
applied. The recent advent of deep learning opens 
important perspectives for increasing both the precision 
and the efficiency of image processing, while allowing 
multimodal data integration. New satellite acquisition 
platforms are being developed, anticipating the increas-
ing availability of high spatial and temporal resolution. 
A revolution in wildlife monitoring techniques is there-
fore theoretically possible, but are we there yet?

The development of operational approaches that 
enable on-demand wildlife surveys and temporal mon-
itoring is currently severely limited by three major bot-
tlenecks: (1) The business model of VHR image 
providers is currently not adapted to wildlife studies; 
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(2) Current VHR satellite imagery is rarely shared, as it is 
limited by commercial license, even though it is essen-
tial for the development of robust machine learning 
approaches; (3) Training of multidisciplinary highly qua-
lified personnel (geomatics, ecology, computer science) 
and interdisciplinary research is needed but still limited 
by traditional discipline-oriented training and commu-
nities. Once these bottlenecks are addressed, satellite 
wildlife remote sensing should enter a new era and will 
revolutionize wildlife monitoring.

Therefore, our key research priorities and recommen-
dations are: (1) Wildlife-dedicated VHR satellite constel-
lations should be developed and designed to offer freely 
available imagery at high spatial and temporal resolu-
tions; (2) Sampling methods need to be developed and 
should evolve simultaneously with advances in remote 
sensing imagery and image processing methods; (3) 
Foundational DL models should be developed for pro-
cessing data from various wildlife monitoring projects; 
(4) Initiatives to develop sharing and collaborative anno-
tation platforms need to be further strengthened; (5) 
Initiatives to increase the number and quality of events, 
training, publications and funding programs dedicated 
to merge these disciplines should be encouraged.

Notes

1. https://albedo.com/
2. https://www.planet.com/products/analytics/
3. https://www.wildlifeinsights.org/
4. https://www.movebank.org/
5. https://projectportal.gri.msstate.edu/awir/
6. https://bio.acousti.ca/
7. https://geobon.org/
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