[en] Quasiprobability has become an increasingly popular notion for characterising non-classicality in quantum information, thermodynamics, and metrology. Two important distributions with non-positive quasiprobability are the Wigner function and the Glauber-Sudarshan function. Here we study properties of the spin Wigner function for finite-dimensional quantum systems and draw comparisons with its infinite-dimensional analog, focusing in particular on the relation to the Glauber-Sudarshan function and the existence of absolutely Wigner-bounded states. More precisely, we investigate unitary orbits of mixed spin states that are characterized by Wigner functions lower-bounded by a specified value. To this end, we extend a characterization of the set of absolutely Wigner positive states as a set of linear eigenvalue constraints, which together define a polytope centred on the maximally mixed state in the simplex of spin-j states. The lower bound determines the relative size of such absolutely Wigner bounded (AWB) polytopes and we study their geometric characteristics. In each dimension a Hilbert-Schmidt ball representing a tight purity-based sufficient condition to be AWB is exactly determined, while another ball representing a necessary condition to be AWB is conjectured. Special attention is given to the case where the polytope separates orbits containing only positive Wigner functions from other orbits because of the use of Wigner negativity as a witness of non-classicality. Comparisons are made to absolute symmetric state separability and spin Glauber-Sudarshan positivity, with additional details given for low spin quantum numbers.
Disciplines :
Physics
Author, co-author :
Denis, Jérôme ; Université de Liège - ULiège > Département de physique > Optique quantique
Davis, Jack
Mann, Robert B.
Martin, John ; Université de Liège - ULiège > Département de physique
Language :
English
Title :
Polytopes of Absolutely Wigner Bounded Spin States
Publication date :
04 December 2024
Journal title :
Quantum
eISSN :
2521-327X
Publisher :
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, Austria
Computational resources were provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11.
G. Champagne, N. Johnston, M. MacDonald, and L. Pipes. “Spectral properties of symmetric quantum states and symmetric entanglement witnesses”. Linear Algebra Its Appl. 649, 273-300 (2022).
E. Serrano-Ensástiga and J. Martin. “Maximum entanglement of mixed symmetric states under unitary transformations”. SciPost Phys. 15, 120 (2023).
E. Serrano-Ensástiga, J. Denis, and J. Martin. “Absolute-separability witnesses for symmetric multiqubit states”. Phys. Rev. A 109, 022430 (2024).
A. Acín, N. J. Cerf, A. Ferraro, and J. Niset. “Tests of multimode quantum nonlocality with homodyne measurements”. Phys. Rev. A 79, 012112 (2009).
V. Veitch, C. Ferrie, D. Gross, and J. Emerson. “Negative quasi-probability as a resource for quantum computation”. New J. Phys. 14, 113011 (2012).
A. Mari and J. Eisert. “Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient”. Phys. Rev. Lett. 109, 230503 (2012).
M. Howard, J. Wallman, V. Veitch, and J. Emerson. “Contextuality supplies the 'magic' for quantum computation”. Nature 510, 351-355 (2014).
H. Pashayan, J. J. Wallman, and S. D. Bartlett. “Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities”. Phys. Rev. Lett. 115, 070501 (2015).
N. Delfosse, C. Okay, J. Bermejo-Vega, D. E. Browne, and R. Raussendorf. “Equivalence between contextuality and negativity of the Wigner function for qudits”. New J. Phys. 19, 123024 (2017).
D. Schmid, H. Du, J. H. Selby, and M. F. Pusey. “Uniqueness of Noncontextual Models for Stabilizer Subtheories”. Phys. Rev. Lett. 129, 120403 (2022).
R. I. Booth, U. Chabaud, and P.-E. Emeriau. “Contextuality and Wigner Negativity Are Equivalent for Continuous-Variable Quantum Measurements”. Phys. Rev. Lett. 129, 230401 (2022).
V. Veitch, S. A. Hamed Mousavian, D. Gottesman, and J. Emerson. “The resource theory of stabilizer quantum computation”. New J. Phys. 16, 013009 (2014).
F. Albarelli, M. G. Genoni, M. G. A. Paris, and A. Ferraro. “Resource theory of quantum non-Gaussianity and Wigner negativity”. Phys. Rev. A 98, 052350 (2018).
R. Takagi and Q. Zhuang. “Convex resource theory of non-Gaussianity”. Phys. Rev. A 97, 062337 (2018).
X. Wang, M. M. Wilde, and Y. Su. “Quantifying the magic of quantum channels”. New J. Phys. 21, 103002 (2019).
R. L. Stratonovich. “On Distributions in Representation Space”. Journal of Experimental and Theoretical Physics 4, 1012-1020 (1956). url: http://jetp.ras.ru/cgi-bin/e/index/e/4/6/p891?a=list.
C. D. Mink, D. Petrosyan, and M. Fleischhauer. “Hybrid discrete-continuous truncated wigner approximation for driven, dissipative spin systems”. Phys. Rev. Res. 4, 043136 (2022).
C. D. Mink and M. Fleischhauer. “Collective radiative interactions in the discrete truncated Wigner approximation”. SciPost Phys. 15, 233 (2023).
C. Brif and A. Mann. “Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries”. Phys. Rev. A 59, 971-987 (1999).
N. Abbasli, V. Abgaryan, M. Bures, A. Khvedelidze, I. Rogojin, and A. Torosyan. “On Measures of Classicality/Quantumness in Quasiprobability Representations of Finite-Dimensional Quantum Systems”. Phys. Part. Nuclei 51, 443-447 (2020).
V. Abgaryan and A. Khvedelidze. “On Families of Wigner Functions for N-Level Quantum Systems”. Symmetry 13, 1013 (2021).
V. Abgaryan, A. Khvedelidze, and A. Torosyan. “The Global Indicator of Classicality of an Arbitrary N-Level Quantum System”. J. Math. Sci. 251, 301-314 (2020).
V. Abgaryan, A. Khvedelidze, and A. Torosyan. “Kenfack - Życzkowski indicator of nonclassicality for two non-equivalent representations of Wigner function of qutrit”. Phys. Lett. A 412, 127591 (2021).
G. S. Agarwal. “Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions”. Phys. Rev. A 24, 2889-2896 (1981).
J. P. Dowling, G. S. Agarwal, and W. P. Schleich. “Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms”. Phys. Rev. A 49, 4101-4109 (1994).
M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P. Treutlein. “Atom-chip-based generation of entanglement for quantum metrology”. Nature 464, 1170-1173 (2010).
R. Schmied and P. Treutlein. “Tomographic reconstruction of the Wigner function on the Bloch sphere”. New J. Phys. 13, 065019 (2011).
R. McConnell, H. Zhang, J. Hu, S. Ćuk, and V. Vuletić. “Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon”. Nature 519, 439-442 (2015).
B. Chen, J. Geng, F. Zhou, L. Song, H. Shen, and N. Xu. “Quantum state tomography of a single electron spin in diamond with Wigner function reconstruction”. Appl. Phys. Lett. 114, 041102 (2019).
A. B. Klimov, J. L. Romero, and H. de Guise. “Generalized SU(2) covariant Wigner functions and some of their applications”. J. Phys. A 50, 323001 (2017).
J. C. Várilly and J. M. Gracia-Bondía. “The Moyal representation for spin”. Ann. Phys. 190, 107-148 (1989).
J.-P. Amiet and S. Weigert. “Contracting the Wigner kernel of a spin to the Wigner kernel of a particle”. Phys. Rev. A 63, 012102 (2000).
O. Giraud, P. Braun, and D. Braun. “Classicality of spin states”. Phys. Rev. A 78, 042112 (2008).
F. Bohnet-Waldraff, D. Braun, and O. Giraud. “Partial transpose criteria for symmetric states”. Phys. Rev. A 94, 042343 (2016).
F. Bohnet-Waldraff, O. Giraud, and D. Braun. “Absolutely classical spin states”. Phys. Rev. A 95, 012318 (2017).
K. E. Cahill and R. J. Glauber. “Density Operators and Quasiprobability Distributions”. Phys. Rev. 177, 1882-1902 (1969).
C. T. Lee. “Measure of the nonclassicality of nonclassical states”. Phys. Rev. A 44, R2775-R2778 (1991).
F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas. “Atomic coherent states in quantum optics”. Phys. Rev. A 6, 2211-2237 (1972).
B. Koczor, R. Zeier, and S. J. Glaser. “Continuous phase-space representations for finite-dimensional quantum states and their tomography”. Phys. Rev. A 101, 022318 (2020).
R. P. Rundle and M. J. Everitt. “Overview of the Phase space Formulation of Quantum Mechanics with Application to Quantum Technologies”. Adv. Quantum Technol. 4, 2100016 (2021).
A. Grossmann. “Parity operator and quantization of delta-functions”. Commun. Math. Phys. 48, 191-194 (1976).
A. Royer. “Wigner function as the expectation value of a parity operator”. Phys. Rev. A 15, 449-450 (1977).
D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii. “Quantum Theory of Angular Momentum”. World Scientific. (1988).
J. Davis, M. Kumari, R. B. Mann, and S. Ghose. “Wigner negativity in spin-j systems”. Phys. Rev. Research 3, 033134 (2021).
S. Heiss and S. Weigert. “Discrete Moyal-type representations for a spin”. Phys. Rev. A 63, 012105 (2000).
C. Brif and A. Mann. “A general theory of phase-space quasiprobability distributions”. J. Phys. A: Math. Gen. 31, L9-L17 (1998).
W. Dür, G. Vidal, and J. I. Cirac. “Three qubits can be entangled in two inequivalent ways”. Phys. Rev. A 62, 062314 (2000).
F. J. Narcowich. “Conditions for the convolution of two Wigner distributions to be itself a Wigner distribution”. J. Math. Phys 29, 2036-2041 (1988).
J. M. Gracia-Bondía and J. C. Várilly. “Non-negative mixed states in Weyl-Wigner-Moyal theory”. Phys. Lett. A 128, 20-24 (1988).
T. Bröcker and R. F. Werner. “Mixed states with positive Wigner functions”. J. Math. Phys 36, 62-75 (1995).
A. Mandilara, E. Karpov, and N. J. Cerf. “Gaussianity bounds for quantum mixed states with a positive Wigner function”. J. Phys. Conf. Ser 254, 012011 (2010).
J. Huber, P. Kirton, and P. Rabl. “Phase-space methods for simulating the dissipative many-body dynamics of collective spin systems”. SciPost Phys. 10, 045 (2021).
S. Gherardini and G. De Chiara. “Quasiprobabilities in quantum thermodynamics and many-body systems”. PRX Quantum 5, 030201 (2024).
A. B. Klimov and S. M. Chumakov. “Quasiprobability distributions for the simplest dynamical groups”. J. Opt. Soc. Am. 17, 2315 (2000).
Blender Online Community. “Blender - a 3D modelling and rendering package”. Blender Foundation. Stichting Blender Foundation, Amsterdam. (2018). url: http://www.blender.org.
S. Danisch and J. Krumbiegel. “Makie.jl: Flexible high-performance data visualization for Julia”. J. Open Source Softw. 6, 3349 (2021).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.