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Quasiprobability has become an increas-
ingly popular notion for characterising non-
classicality in quantum information, thermo-
dynamics, and metrology. Two important dis-
tributions with non-positive quasiprobability
are the Wigner function and the Glauber-
Sudarshan function. Here we study proper-
ties of the spin Wigner function for finite-
dimensional quantum systems and draw com-
parisons with its infinite-dimensional analog,
focusing in particular on the relation to the
Glauber-Sudarshan function and the existence
of absolutely Wigner-bounded states. More
precisely, we investigate unitary orbits of
mixed spin states that are characterized by
Wigner functions lower-bounded by a speci-
fied value. To this end, we extend a charac-
terization of the set of absolutely Wigner pos-
itive states as a set of linear eigenvalue con-
straints, which together define a polytope cen-
tred on the maximally mixed state in the sim-
plex of spin-j states. The lower bound de-
termines the relative size of such absolutely
Wigner bounded (AWB) polytopes and we
study their geometric characteristics. In each
dimension a Hilbert-Schmidt ball representing
a tight purity-based sufficient condition to be
AWB is exactly determined, while another ball
representing a necessary condition to be AWB
is conjectured. Special attention is given to
the case where the polytope separates orbits
containing only positive Wigner functions from
other orbits because of the use of Wigner neg-
ativity as a witness of non-classicality. Com-
parisons are made to absolute symmetric state
separability and spin Glauber-Sudarshan posi-
tivity, with additional details given for low spin
quantum numbers.

1 Introduction
When studying many-body mixed states, the question
naturally arises as to the maximal amount of entangle-
ment that can be generated under arbitrary unitary
evolution. As state purity decreases due to interaction

with the environment, such maximal entanglement is
expected to decrease as well, with there being some
point beyond which unitary evolution alone will not
suffice to create entanglement. This has led to the
concept of absolute separability, a defining property of
certain mixed states whose isolated evolution cannot
yield any entanglement. In the case of N qubits in a
symmetric state, or equivalently a single system with
spin j = N/2, recent work, including one based on the
results presented here, has been devoted to character-
izing the non-trivial set of symmetric absolutely sep-
arable (SAS) states [1–3]. In this context, SAS state
balls centred on the maximally mixed state have been
found. Inspired by this research on entanglement, we
study here another measure of non-classicality given
by the presence of negative values of the spin Wigner
function for a finite-dimensional system.

Wigner negativity has long been an indicator of
non-classicality in quantum systems. It is a necessary
feature to observe a Bell-type violation with phase-
space observables, see, e.g., [4] and references therein.
For pure states, Hudson’s theorem identifies Wigner
negativity as both a necessary and sufficient condition
for non-Gaussianity. In the setting of quantum infor-
mation science, this connection is further reinforced
by its pivotal role in enabling quantum advantage,
particularly within the magic state injection model
of universal fault-tolerant quantum computation [5–
11]. The associated resource theories [12–15] further
demonstrate that more negativity volume may be as-
sociated with more non-classicality. Parallel to these
studies, in the field of many-body quantum dynamics
of large interacting systems, the spin Wigner function
[16] was recently used to accurately model the dynam-
ics of spin systems [17, 18]. Under certain dynamics,
dephasing for example, the evolution of a spin state
with an initially everywhere positive Wigner function
can be simulated efficiently using stochastic trajecto-
ries. This connection to the spin Wigner function, to-
gether with the growing prominence of Wigner nega-
tivity as a whole, shows that a classification of general
mixed states in relation to their Wigner negativity is
needed.

In this article, we completely characterize the de-
gree of Wigner negativity that can be obtained by a
set of states sharing a given spectrum. Analogous to

Accepted in Quantum 2024-11-26, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

30
4.

09
00

6v
3 

 [
qu

an
t-

ph
] 

 3
 D

ec
 2

02
4

https://quantum-journal.org/?s=Polytopes%20of%20Absolutely%20Wigner%20Bounded%20Spin%20States&reason=title-click


SAS states, we call a spin-j state Absolutely Wigner-
Positive (AWP) if its spin Wigner function remains
positive everywhere under the action of all unitaries
U ∈ SU(2j + 1). From the point of view of a spin-
j system composed of N = 2j spin- 1

2 objects (i.e.,
qubits), these unitary transformations are those that
correspond to the most general unitary evolution of
the N spins in the symmetric subspace, i.e., those that
connect any two states with the same spectrum in the
symmetric subspace.

A natural consequence of this effort is a deeper un-
derstanding of whether central results from the orig-
inal phase-space picture for continuous variable sys-
tems on the connection between Glauber-Sudarshan
positivity and Wigner positivity still hold in the
SU(2)-based phase-space picture of finite-dimensional
systems. Despite the strong formal relationship be-
tween the planar (infinite-dimensional) and spherical
(finite-dimensional) descriptions [19] relatively less is
known about the latter. Investigating such differences
hence forms a second objective of this work.

In order to position our work in a wider context, we
begin with a brief note on related research. Recent in-
vestigations have studied AWP states for a wide class
of Wigner functions in general d-dimensional quan-
tum systems [20–23]. In particular, the set of AWP
states with respect to a given Wigner function was
found to form a polytope within the simplex of state
spectra. It was further shown that this class of func-
tions always contains the particular one introduced by
Stratonovich [16], rediscovered by Agarwal [24, 25],
and now used in many experimental set-ups [26–29];
see [30] for a recent review. By contrast, here we focus
exclusively on this canonical Wigner function for spin-
j systems, which is the only SU(2)-covariant Wigner
function compatible with other well-known quasiprob-
ability distributions in the following senses: (i) it can
be continuously transformed into the Husimi function
or into the Glauber-Sudarshan function [31], and (ii)
the original Wigner function defined for infinite di-
mensional quantum systems is retrieved by taking the
infinite spin limit j → ∞ [32]. In addition to offering
a related but alternative derivation of the polytopes
first discovered in [20–23], here we go beyond previous
investigations in three ways. The first is that we ex-
tend the argument to include unitary orbits of Wigner
functions lower-bounded by values that are not nec-
essarily zero. These one-parameter families of poly-
topes, which we refer to as absolutely Wigner bounded
(AWB) polytopes, are of interest not only for Wigner
functions but also for other quasiprobability distribu-
tions. The second is that we go into explicit detail on
the geometric properties of these polytopes in all di-
mensions, including an analysis on their infinite-spin
limit. The third is that we compare the AWP poly-
topes with the set of SAS states, which amounts to a
comparison between Wigner negativity and entangle-
ment in the mixed state setting.

Our first result is the complete characterization of
the set of AWB spin states in all finite dimensions,
with AWP states appearing as a very special case. In
particular, the set of AWB states forms a polytope
in the simplex of density matrix spectra. The poly-
topes are delimited by (2j + 1)! hyperplanes defined
by permutations of the eigenvalues of the kernel op-
erator defining the Wigner function. Centred on the
maximally mixed state for each dimension, we also
exactly find the largest possible ball containing noth-
ing but AWB states, which amounts to the tightest
sufficient condition to be AWB based solely on the
purity of mixed states. We also obtain an expression
that we conjecture to describe the smallest ball con-
taining all AWB states, which amounts to the tight-
est necessary condition based solely on the purity of
mixed states. Numerical evidence strongly supports
this conjecture. For both criteria, we discuss their
geometric interpretation in relation to the full AWB
polytope. We then specialize to the set of AWP states
and compare them with the set of SAS states [33–35].
We emphasize that, as there is a continuous transfor-
mation relating the continuous Wigner function and
the other phase space functions, the results obtained
here are completely transferable to the Husimi and
Glauber-Sudarshan functions [3].

We then use these polytopes to draw compar-
isons between the phase space description of finite-
dimensional quantum systems with that of infinite-
dimensional ones. In particular, we proved the ex-
istence of states that are each Glauber-Sudarshan-
positive (even absolutely positive) yet Wigner-
negative. This is in stark contrast to the bosonic
setting where a positive Glauber-Sudarshan function
trivially implies a positive Wigner function due to
their well-known relationship though Gaussian convo-
lution [36, 37]. Conversely, we show that there exists a
non-trivial set of states that are each Wigner-positive
(even AWP) yet are Glauber-Sudarshan-negative.

Finally we analyze the infinite spin limit of these
polytopes in the context of the well-known spin-to-
boson contraction [38] and its manifestation on the
level of Wigner functions [32, 39]. In particular, the
volumes of the AWP balls vanish in the limit j → ∞,
which offers strong evidence that the notion of AWP
states cannot exist in the infinite-dimensional setting.
Furthermore, the outer AWB ball for non-zero cutoff
is not found to vanish, implying that bosonic AWB
states may indeed exist.

Our paper is organized as follows. Section 2 briefly
outlines the generalized phase space picture using
the parity-operator/Stratonovich framework for the
group SU(2). Section 3 proves general results on AWB
polytopes, valid for any spin quantum number. More
precisely, Secs. 3.1–3.3 derive and characterize AWB
polytopes, Sec. 3.4 determines and conjectures, re-
spectively, the largest and smallest Hilbert-Schmidt
ball sitting inside and outside the AWB polytopes,
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and Sec. 3.5 studies the infinite spin limit. Section
4 explores low-dimensional cases in more detail and
draws comparisons to entanglement. Finally, con-
clusions are drawn and perspectives are outlined in
Sec. 5. The manuscript ends with appendices con-
taining technical developments.

2 Background
The parity-operator framework is the generalization
of Moyal quantum mechanics to physical systems
other than a collection of non-relativistic spinless par-
ticles; see [40] for a recent information-theoretic re-
view. Each type of system has a different phase space,
and the various types are classified by the system’s dy-
namical symmetry group [19]. In each case the cen-
tral object is a map, ∆, called the kernel, which takes
points in phase space to operators on Hilbert space. A
quasi-probability representation of a quantum state,
evaluated at a point in phase space, is the expec-
tation value of the phase-point operator assigned to
that point. Different kernels yield different distribu-
tions but all must obey the Stratonovich-Weyl axioms,
which ensure, among other properties, the existence
of an inverse map and that the Moyal picture is as
close as possible to classical statistical physics over
the same phase space (i.e., the Born rule as an L2

inner product).
When applied to the Heisenberg-Weyl group (i.e.,

the group of displacement operators generated by the
canonical commutation relations, [x, p] = i1) this
framework reduces to the common phase space as-
sociated with n canonical degrees of freedom, R2n,
and the phase-point operators corresponding to the
Wigner function appear as a set of displaced parity
operators [19, 41, 42]. A spin-j system on the other
hand corresponds to the group SU(2), which yields a
spherical phase space, S2. Here we list some neces-
sary results from this case; see the recent review [30]
and references therein for more information.

2.1 Wigner function of a spin state
Consider a single spin system with spin quantum
number j. Pure states live in the Hilbert space
H ≃ C2j+1, which carries an irreducible unitary rep-
resentation of SU(2), Ug for g ∈ SU(2). Mixed states
live in the space of operators, L(H), where SU(2)
acts via conjugation: UgρU†

g . This action on oper-
ator space is not irreducible and may be conveniently
decomposed into irreducible multipoles.

The SU(2) Wigner kernel of a spin-j system is

∆ : S2 → L(H)

∆(Ω) =
√

4π

2j + 1

2j∑
L=0

L∑
M=−L

Y ∗
LM (Ω)TLM ,

(1)

where Ω = (θ, ϕ) ∈ S2, YLM (Ω) are the spherical har-
monics, and TLM ≡ T

(j)
LM are the spherical tensor op-

erators associated with spin j [43]. To avoid cluttered
notation we do not label the operator ∆ with a j; the
surrounding context should be clear on which dimen-
sion/spin is being discussed. The Wigner function of
a spin state ρ is defined as

Wρ(Ω) = Tr [ρ∆(Ω)]

= 1
2j + 1 +

√
4π

2j + 1

2j∑
L=1

L∑
M=−L

ρLM YLM (Ω),

(2)
where ρLM = tr[ρ T †

LM ] are state multipoles [24]. This
function is normalized according to

2j + 1
4π

∫
S2

Wρ(Ω) dΩ = 1, (3)

and, as Eq. (2) suggests, the maximally mixed state
(MMS) ρ0 = 1/(2j + 1) is mapped to the constant
function

Wρ0(Ω) = 1
2j + 1 . (4)

Note that, using the Condon-Shortley phase conven-
tion, the Wigner function is real-valued for Hermitian
operators, and in particular for quantum states.

An important property is SU(2) covariance:

WUgρU†
g
(Ω) = Wρ(g−1 Ω), (5)

where the right hand side denotes the spatial action
of SU(2) on the sphere. As this is simply a rigid ro-
tation, analogous to an optical displacement opera-
tor rigidly translating R2n, the overall shape of any
Wigner function is unaffected (i.e., the graph of the
function is fixed up to rotation). Hence the Wigner
negative volume is defined as [40, 44]

δ(ρ) = 1
2

(∫
Γ

|Wρ(Ω)| dµ(Ω) − 1
)

, (6)

often used as a quantification of Wigner negativity
and a measure of non-classicality, is invariant un-
der SU(2) transformations. Note that the action
of a general unitary U ∈ SU(2j + 1) on a state ρ
can of course radically change its Wigner function
and thus also its negative volume. The quantity
dµ(Ω) = (2j + 1)/(4π) sin θdθdϕ is the invariant mea-
sure on the phase space.

A related consequence of SU(2) covariance is that
all phase-point operators have the same spectrum [45].
The set of kernel eigenvectors at the point Ω is the
Dicke basis quantized along the axis n pointing to Ω,
such that we have

∆(Ω) =
j∑

m=−j

∆j,m|j, m; n⟩⟨j, m; n|, (7)
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with rotationally-invariant eigenvalues

∆j,m =
2j∑

L=0

2L + 1
2j + 1 Cj,m

j,m;L,0 (8)

where CJ,M
j1,m1;j2,m2

are Clebsch-Gordan coefficients.
In particular, at the North pole (Ω = 0) the kernel
is diagonal in the standard Dicke basis and its matrix
elements are

[∆(0)]mn = ⟨j, m|∆(0)|j, n⟩ = ∆j,mδmn. (9)

The kernel is guaranteed to have unit trace at all
points and in all dimensions:

j∑
m=−j

∆j,m = 1 ∀ j, (10)

and satisfies the relationship [21]

j∑
m=−j

∆2
j,m = 2j + 1 ∀ j, (11)

for which we give a proof of in Appendix A for the
sake of consistency.

Finally, we note the following observations on the
set of kernel eigenvalues (8):

|∆j,m| > |∆j,m−1| ≠ 0,

sgn(∆j,k) = (−1)j−k
(12)

for all m ∈ {−j+1, ..., j}. That is, as m ranges from j
to −j the eigenvalues alternate in sign (starting from
a positive value at m = j) and strictly decrease in
absolute value without vanishing. Numerics support
this assumption though we are not aware of any proof;
see also [39, 44] for discussions on this point. Note this
implies that the kernel has multiplicity-free eigenval-
ues for all finite spin. This is in contrast to the Wigner
function on R2, which has a highly degenerate kernel
(i.e., it acts on an infinite-dimensional Hilbert space
but only has two eigenvalues) [42]. Only some of our
results depend on (12), and we will highlight when
this is the case.

In what follows we use the vector notation λ for the
spectrum (λ0, λ1, . . . , λ2j) of a density operator ρ, and
likewise ∆ for the spectrum (∆j,−j , ∆j,−j+1, ..., ∆j,j)
of the kernel ∆. We also alternate between the
double-subscript notation ∆j,m, which refers directly
to Eq. (8), and the single-subscript notation ∆i where
i ∈ {0, ..., 2j}, which denotes a vector component,
similar to λi.

3 Polytopes of absolutely Wigner
bounded states
We present in this section our first result. We
prove there exists a polytope containing all absolutely

Wigner bounded (AWB) states with respect to a given
lower bound, and fully characterize it. When this
bound is zero we refer to such states as absolutely
Wigner positive (AWP). We also determine a neces-
sary and sufficient condition for a state to be inside
the AWB polytope based on a majorization criterion.
These results offer a strong characterization of the
classicality of mixed spin states.

We start with the following definition of AWB
states:

Definition 1. A spin-j state ρ is absolutely Wigner
bounded (AWB) with respect to Wmin if the Wigner
function of each state unitarily connected to ρ is lower
bounded by Wmin. That is, if

WUρU†(Ω) ≥ Wmin
∀ Ω ∈ S2

∀ U ∈ SU(2j + 1).
(13)

When Wmin = 0 we refer to such states as absolutely
Wigner positive (AWP). Hence, an AWP state has
only non-negative Wigner function states in its uni-
tary orbit.

3.1 Full set of AWB states
The following proposition is an extension and alter-
native derivation of a result on absolute positivity ob-
tained in [21, 22]. It gives a complete characterization
of the set of states whose unitary orbit contains only
states whose Wigner function is larger than a speci-
fied constant value, and is valid for any spin quantum
number j.

Proposition 1. Let ∆↑ denote the vector of kernel
eigenvalues sorted into increasing order, and let

Wmin ∈ [∆↑
0, 1

2j+1 ]. (14)

Then a spin state ρ has in its unitary orbit only states
whose Wigner function satisfies W (Ω) ≥ Wmin ∀ Ω
iff its decreasingly ordered eigenvalues λ↓ satisfy the
following inequality

2j∑
i=0

λ↓
i ∆↑

i ≥ Wmin. (15)

Remark. While not necessary for the proof
to hold, note that according to Eq. (12)
the sorted kernel eigenspectrum becomes
∆↑ = (∆j,j−1, ∆j,j−3, ..., ∆j,−j , ..., ∆j,j−2, ∆j,j)
and so Wmin ∈ [∆j,j−1, 1

2j+1 ]. The upper bound
comes from Eq. (3), which implies that any Wigner
function with Wmin > 1/(2j + 1) would not be nor-
malized. Furthermore, for Wmin = 0, this proposition
provides a characterisation of the set of AWP states,
as previously found in a more abstract and general
setting in [21, 22].
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Proof. Consider a general spin state ρ. We are first
looking for a necessary condition for any element
UρU† of the unitary orbit of ρ to have a Wigner func-
tion W (Ω) ≥ Wmin at any point Ω ∈ S2. Since the
unitary transformation applied to ρ may correspond,
in a particular case, to an SU(2) rotation, the value of
the Wigner function of ρ at any point Ω corresponds
to the value of the Wigner function at Ω = 0 of an
element in its unitary orbit (the rotated version of ρ).
But since we are considering the full unitary orbit,
i.e., all possible U ’s, we can set the Wigner function
argument to Ω = 0 via the following reasoning. The
state ρ can always be diagonalized by a unitary ma-
trix M , i.e., MρM† = Λ with Λ = diag(λ0, ..., λ2j)
a diagonal positive semi-definite matrix. The Wigner
function at Ω = 0 of UρU† is then given by

WUρU†(0) = Tr
[
UρU†∆(0)

]
= Tr

[
UM†ΛMU†∆(0)

]
.

By defining the unitary matrix V = UM† and calcu-
lating the trace in the Dicke basis, we obtain (where
we drop the Wigner function argument in the follow-
ing)

WUρU† = Tr
[
V ΛV †∆(0)

]
=

2j∑
p,q,k,l=0

VpqλqδqkV ∗
lk∆lδlp

=
2j∑

q,p=0
λq |Vqp|2 ∆p.

The positive numbers |Vqp|2 in the previous equation
define the entries of a unistochastic (hence also doubly
stochastic) matrix of dimension (2j + 1) × (2j + 1)
which we denote by X,

Xqp = |Vqp|2 . (16)

By the Birkhoff-von Neumann theorem, we know that
X can be expressed as a convex combination of per-
mutation matrices Pk,

X =
Np∑

k=1
ckPk, (17)

where Np = (2j + 1)! is the total number of permu-
tations πk ∈ S2j+1 with S2j+1 the symmetric group
over 2j + 1 symbols,

ck ≥ 0 ∀ k and
Np∑

k=1
ck = 1. (18)

Consequently, we have

WUρU† =
2j∑

p,q=0
λpXpq∆q

=
Np∑

k=1
ck

2j∑
p,q=0

λp [Pk]pq ∆q

=
Np∑

k=1
ck

2j∑
p=0

λp∆πk(p)

For a state ρ whose eigenspectrum λ satisfies the Np

inequalities

2j∑
p=0

λp∆π(p) ≥ Wmin ∀ π ∈ S2j+1 (19)

we then have

WUρU† =
Np∑

k=1
ck

2j∑
p=0

λp∆πk(p) ≥ Wmin

for any unitary U and we conclude.
Conversely, a state has in its unitary orbits only

states whose Wigner function satisfies W (Ω) ≥
Wmin ∀ Ω if

WUρU† =
Np∑

k=1
ck

2j∑
p=0

λp∆πk(p) ≥ Wmin ∀ U. (20)

In particular, the unitary matrix U can correspond to
any permutation matrix P , so that we have

WP ρP † =
2j∑

p=0
λp∆π(p) ≥ Wmin ∀ π (21)

and we conclude that the state satisfies (19).
In fact, it is enough to consider the ordered eigen-

values λ↓ so that a state is AWB iff it verifies the most
stringent inequality (21) amongst all possible permu-
tations

λ↓ ·∆↑ =
2j∑

p=0
λ↓

p∆↑
p ≥ Wmin (22)

with the ordered eigenvalues of the kernel ∆↑.

The proof provided for Proposition 1 can in fact be
reproduced for any quasiprobability distribution W
defined on the spherical phase space S2 as the expec-
tation value of a specific kernel operator ∆̃(Ω) in a
quantum state ρ; that is, via Wρ(Ω) = Tr

[
ρ∆̃(Ω)

]
,

see also Refs. [21, 22] for other generalizations. A
polytope in the simplex of states will describe the
absolute positivity of each quasiprobability distri-
bution and its vertices will be determined by the
eigenspectrum of the defining kernel. A family of
such (normalized) distributions is obtained from the
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s-parametrized Stratonovich-Weyl kernel (see, e.g.,
Refs. [24, 31, 46])

∆(s)(Ω) =
√

4π

2j + 1
∑
L,M

(
Cjj

jj,L0

)−s

Y ∗
LM (Ω)TLM

(23)
with s ∈ [−1, 1]. For s = 0, it reduces to the Wigner
kernel given in Eq. (1).

As negative values of the Wigner function are gener-
ally considered to indicate non-classicality, the value
Wmin = 0 plays a special role. Nevertheless, since
Proposition 1 holds for any Wmin ∈ [min{∆i}, 1

2j+1 ]
the corresponding sets of states also form polytopes,
which become larger as Wmin becomes more negative,
culminating in the entire simplex when Wmin is the
smallest kernel eigenvalue min{∆i} (which according
to Eq. (12) is ∆j.j−1). There is thus a continuous
transition between the one-point polytope, which rep-
resents the maximally mixed state, and the polytope
containing the whole simplex. As discussed later, Fig.
4 in Sec. 3.4 shows a special example of this family
for spin-1.

Quasiprobability distributions other than the
Wigner function, such as the Husimi Q function de-
rived from the s-ordered Stratonovich-Weyl kernel
(23) for s = −1, are positive by construction, imply-
ing that the polytope for Qmin = 0 contains the entire
simplex of state spectra. In this case it becomes espe-
cially interesting to consider lower bounds Qmin > 0
and study the properties of the associated polytopes.

3.2 AWP polytopes
Since the conditions for being AWP depend only on
the eigenspectrum λ of a state, it is sufficient in the
following to focus on diagonal states in the Dicke
basis. The condition (15) for Wmin = 0 defines a
polytope of AWP states in the simplex of mixed spin
states. Indeed, we start by noting that the equalities

2j∑
i=0

λi∆π(i) = 0 (24)

define, for all possible permutations π, (2j + 1)! hy-
perplanes in R2j . Together they delimit a particular
polytope that contains all absolutely Wigner positive
states. The AWP polytopes for j = 1 and j = 3/2
are respectively represented in Figs. 1 and 2 in a
barycentric coordinate system (see Appendix B for
a reminder).

If we now restrict our attention to ordered eigen-
values λ↓, we get a minimal polytope; see Fig. 3 for
the case of j = 1. The full polytope is reconstructed
by taking all possible permutations of the barycentric
coordinates of the vertices of the minimal polytope.
These vertices can be found as follows. In general
we need 2j + 1 independent conditions on the vector
(λ↓

0, λ↓
1, . . . , λ↓

2j) to uniquely define (the unitary orbit

Figure 1: AWP polytope for j = 1 displayed in the barycen-
tric coordinate system. The AWP polytope is the area shaded
in dark red with the blue dashed lines marking the hyper-
planes defined by Eq. (24). The circle is the surface of the
AWP ball (see Section 3.4). The orange points represent all
the permutations of the spectrum (64). The gray triangle
corresponds to the full simplex of spin-1 states with spec-
trum λ = (λ0, λ1, λ2).

of) a state ρ. One of them is given by the normaliza-
tion condition

∑2j
i=0 λ↓

i = 1. The others correspond
to the fact that a vertex of the AWP polytope is the
intersection of 2j hyperplanes each specified by an
equation of the form (24). One of them is

2j∑
i=0

λ↓
i ∆↑

i = 0. (25)

Let us focus on the remaining 2j − 1. For simplicity,
consider a transposition π = (p, q) with p < q. This
is the permutation whose only non-trivial action is
π(p) = q and π(q) = p. The condition (24) for this
transposition becomes

λ↓
p∆↑

q + λ↓
q∆↑

p +
2j∑

i=0
i̸=p,q

λ↓
i ∆↑

i = 0

⇔ λ↓
p(∆↑

q − ∆↑
p) + λ↓

q(∆↑
p − ∆↑

q) = 0, (26)

where the second line comes from applying the con-
straint (25). As all of the kernel eigenvalues are dif-
ferent by assumption (12), Eq. (26) is satisfied iff
λ↓

p = λ↓
q . And because the eigenvalues are ordered

this also implies λ↓
k = λ↓

p for all k between p and q.
The only forbidden transposition is (0, 2j) because it
would give the maximally mixed state (MMS). Hence
a given transposition (p, q) will correspond to a set of
q − p conditions λl = λl+1 for l = p, . . . , q − 1. There-
fore, as any permutation is a composition of trans-
positions, the 2j − 1 conditions that follow from (24)
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Figure 2: The AWP polytope for j = 3/2 in the barycen-
tric coordinate system (top). The grey rods (shown in the
enlarged polytope at the bottom) are the edges of the AWP
polytope and the blue sphere is its largest inner ball, with
radius rAWP

in = 1/(2
√

15).

Figure 3: AWP minimal polytope for j = 1 in the barycentric
coordinate system. The structure is similar to Fig. 1 but we
only draw the part where the eigenvalues of the state are
ordered in descending value. The dark point corresponds to
the maximally mixed state (MMS). The inner and outer AWP
balls radii, rAWP

in and rAWP
out , are shown.

reduce to a set of 2j − 1 nearest-neighbour eigenvalue
equalities taken from

E =
(

λ↓
0 = λ↓

1, λ↓
1 = λ↓

2, ..., λ↓
2j−1 = λ↓

2j

)
. (27)

Since we need 2j − 1 conditions, we can draw 2j − 1
equalities from E in order to obtain a vertex. This
method gives

( 2j
2j−1

)
= 2j different draws and so we

get 2j vertices for the minimal polytope. Geometri-
cally, Eq. (27) can also be seen as the set of non-trivial
hyperplanes defining the minimal polytope, and the( 2j

2j−1
)

= 2j draws correspond to the different inter-
sections of the hyperplane (25) with the 1-dimensional
faces (i.e., edges) of the minimal polytope; see Fig. 3
for an example. The full set of hyperplanes defin-
ing the minimal polytope is (27) supplemented with
λ↓

2j = 0 and the normalization condition.
As explained previously, all other vertices of the

full polytope are obtained by permuting the coor-
dinates of the vertices of the minimal polytope. In
Appendix C, we give the barycentric coordinates of
the vertices of the minimal polytope up to j = 2.
The entirety of the preceding discussion of the AWP
polytope vertices naturally extends to the AWB poly-
tope vertices for which we must replace 0 by Wmin in
the right-hand side of the equality (24). However,
for negative values of Wmin, the polytope may ex-
tend beyond the simplex and some vertices will have
negative-valued components, resulting in unphysical
states.

A peculiar characteristic of the AWP polytope is
that each point on its surface has a state in its orbit
satisfying W (0) = 0. Indeed, for an eigenspectrum
λ that satisfies (24) for a given permutation π, the
diagonal state ρ in the Dicke basis with ρii = λπ−1(i)
satisfies

W (0) =
2j∑

i=0
λi∆i = 0 (28)

and is in the unitary orbit of λ. Following the same
reasoning, in the interior of the AWP polytope, there
is no state with a zero-valued Wigner function.

3.3 Majorization condition
Here we find a condition equivalent to (15) for a state
to be AWB based on its majorization by a mixture of
the vertices of the minimal polytope.

Definition 2. For two vectors u and v of the same
length n, we say that u majorizes v, denoted u ≻ v,
iff

l∑
k=1

u↓
k ≥

l∑
k=1

v↓
k (29)

for l < n, with
∑n

k=1 uk =
∑n

k=1 vk and u↓ denot-
ing the vector u with components sorted in decreasing
order.
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Proposition 2. A state ρ is AWB iff its eigenvalues
λ are majorized by a convex combination of the or-
dered vertices {λ↓

vk
} of the corresponding AWB poly-

tope, i.e., ∃ c ∈ R2j
+ such that

λ ≺
2j∑

k=1
ckλ

↓
vk

(30)

with
∑2j

k=1 ck = 1.

Proof. If λ is AWB then it can be expressed as a
mixture of the vertices of the AWB polytope

λ =
∑

k

ckλvk
(31)

and the majorization (30) follows.
Conversely, it is known from the Schur-Horn theo-

rem that x ≻ y iff y is in the convex hull of the vec-
tors obtained by permuting the elements of x (i.e., the
permutahedron generated by x). Hence, if λ respects
(30), it can be expressed as a convex combination of
the vertices of the AWB polytope and is therefore in-
side it.

3.4 Balls of absolutely Wigner bounded states
In Sec. 3.2, we have fully characterized AWB poly-
topes for all finite dimensions. Taking advantage of
their geometry, we present here the sufficient condi-
tion for states to belong to the AWB set, based on
their purity alone. Similarly, we also conjecture a nec-
essary condition for states to be AWB. All the math-
ematical developments are presented in Appendix D.

Proposition 3. Denoting by r(ρ) the Hilbert-Schmidt
distance between a state ρ and the MMS,

r(ρ) = ∥ρ − ρ0∥HS =
√

Tr
[
(ρ − ρ0)2

]
, (32)

the radius of the largest inner ball of the AWB poly-
tope associated with a Wmin value such that the ball
is contained within the state simplex is

rWmin
in = 1 − (2j + 1)Wmin

2
√

j(2j + 1)(j + 1)
. (33)

Proof. See Appendix D (Subsec. D.1).

First, let’s discuss this result for positive values of
Wmin. The inner radius (33) vanishes for Wmin =
1/(2j + 1), corresponding to the fact that only the
MMS state has a Wigner function with this minimal
(and constant) value. The radius then increases as
Wmin decreases. At Wmin = 0, it reduces to the radius
of the largest ball of AWP states,

rAWP
in = 1

2
√

j(2j + 1)(j + 1)
. (34)

Figure 4: AWB polytope in the barycentric coordinate system
for j = 1 and Wmin = 1

3 + 2
3

√
2
(√

5 − 3
)

≈ −0.387 as
given by Eq. (35). The structure is similar to Fig. 1 but the
polytope occupies a larger portion of the state space. We
omit the part of the polytope that is outside the simplex.

Expressed as a function of dimension d = 2j + 1 and
re-scaled to generalized Bloch length, this result was
also recently found in the context of SU(d)-covariant
Wigner functions (i.e., as the phase space manifold
changes dramatically with each Hilbert space dimen-
sion, rather than always being the sphere) [23]. Al-
though our bound is tight for all j in the SU(2) setting
(i.e., there always exist orbits infinitesimally farther
away that contain Wigner-negative states), it is un-
known if this bound remains tight for such SU(d)-
covariant Wigner functions for d > 2.

At the critical value1

Wmin = ∆j,j − (2j + 1)
∆j,j(2j + 1) − 1 < 0, (35)

the spectrum (64) acquires a first zero eigenvalue,
λ∗

2j = 0. This corresponds to the situation where λ∗

is simultaneously on the ball surface, on a face of the
polytope, and on an edge of the simplex; see the or-
ange dots in Fig. 4. For more negative values of Wmin,
Eq. (64) no longer represents a physical state because
λ∗

2j becomes negative. In this situation, in order to
determine the radius of larger balls that contain only
AWB states, additional constraints must be imposed
in the optimisation procedure reflecting the fact that
some elements of the spectrum of ρ are zero. Since the
possible number of zero eigenvalues depends on j, we
will not go further in this development. However, in
the end, when there is only one non-zero eigenvalue
left (equal to 1, in which case the states are pure),
the most negative Wmin corresponds to the smallest
kernel eigenvalue ∆j.j−1 (according to the conjecture

1In the limit j → ∞, as ∆j,j → 2 [32], Eq. (35) tends to
−1/2. This is discussed in more detail in the next section.
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(12)), and the radius is the distance r =
√

2j/(2j + 1)
from pure states to the MMS.

Finally, it should be noted that any state resulting
from the permutation of the elements of λ∗ is also
on the surface of the AWB inner ball and verify a
similar equality to (24) for any permutation π. Thus,
considering all permutations of the elements of λ∗ we
can find all states located where the AWB polytope
is tangent to the AWB inner ball, as shown in Fig. 1
for j = 1 and Wmin = 0.

Proposition 3 leads to a sufficient condition for be-
ing AWB, that is, r ≤ rWmin

in . A necessary condition
can be obtained on the basis of the smallest outer
ball containing the AWB polytope. We formulate the
following conjecture for its radius.

Conjecture 1. The radius of the smallest outer ball
of the AWB polytope associated with a Wmin value is

rWmin
out =

√
2j

2j + 1

∣∣∣∣ Wmin(2j + 1) − 1
∆j,j−1(2j + 1) − 1

∣∣∣∣ , (36)

where Wmin ∈ [∆j,j−1, 1
2j+1 ].

A detailed argument leading to this conjecture,
which interestingly involves the W state of many-
body entanglement [47], is presented in Appendix D
(Subsec. D.2). Numerics strongly support the conjec-
ture.

3.5 Infinite spin limit
An important structural relation between spin and
bosonic systems is the well-known contraction from
the former to the latter in the limit of infinite spin [38].
Under this contraction, the following identifications
between operators can be made as j → ∞:

Ĵz → N̂ , Ĵ+ → â, Ĵ− → â†, (37)

where N̂ = â†â is the number operator and â†(â) is
the creation (annihilation) operator. For states, the
Dicke basis |j, m⟩ contracts to the Fock basis |n⟩ via

|j, j − n⟩ → |n⟩. (38)

In particular, the collective spin-up state |j, j⟩ be-
comes the bosonic vacuum |0⟩. Such a contraction
allows one to study and compare the nature of the two
different types of physical systems. Furthermore, the
spherical Wigner function used here (2) is perfectly
compatible with this contraction in the sense that it
tends towards the original, planar Wigner function
[32, 39]. Here we argue that our results may be lever-
aged through this contraction to make novel state-
ments about Wigner negativity in the original Wigner
function of general mixed states.

While the description of the AWB polytopes be-
comes increasingly complicated as dimension in-
creases, the two Hilbert-Schmidt balls are well-
behaved. In the infinite-spin limit, the inner ball van-
ishes for all cutoffs Wmin but the outer ball does not.

Hence for any cutoff Wmin ∈ [−2, 0] there exists a
ball in the infinite-dimensional Hilbert space centred
on the zero operator, seen as the maximally mixed
state2, that may contain AWB states. From (36) we
see that the radius of this ball is |Wmin|/2 because
∆j,j−1 → −2 in the contraction [32]. In the particu-
lar case of Wmin = 0, the outer bosonic ball vanishes.
This implies that bosonic AWP states cannot exist.

On the other hand, if Wmin < 0, then there ex-
ists a bosonic ball (i.e., some subset of Hilbert space)
such that any state outside of it is guaranteed to have
a Wigner function that can be forced to dip below
Wmin under some appropriate unitary action. This is
an interesting result on how state mixedness relates
to Wigner negativity in the bosonic case, which is no-
tably complicated [48–51]. The vanishing of the inner
ball does not imply the lack of bosonic AWB states,
it just implies there is no sufficient condition based
only on purity. Interesting further work could be to
prove the existence (or lack thereof) of bosonic AWB
states.

4 Comparison between Wigner and
Glauber-Sudarshan positivity
Another common quasi-probability distribution stud-
ied in the context of single spins is the Glauber-
Sudarshan function, defined through the equality

ρ = 2j + 1
4π

∫
Pρ(Ω) |Ω⟩⟨Ω| dΩ. (39)

The Glauber-Sudarshan function is not unique be-
cause it is possible to add high-order spherical har-
monics to it (those with L > 2j) while maintain-
ing equality (39)3. Negative values of all possible
Glauber-Sudarshan functions representing the same
state can be interpreted as the presence of entangle-
ment within the multi-qubit realization of the system
[34]. In other words, a general state ρ of a single spin-j
system admits a positive Glauber-Sudarshan function
if and only if the many-body realization is separable
(necessarily over symmetric states). This follows from
the definition (39) of the Glauber-Sudarshan function
as the expansion coefficients of a state ρ in the spin
coherent state projector basis, and the fact that spin

2Of course strictly speaking the zero operator is not a quan-
tum state but it can be seen as the limit of a sequence of
thermal states with increasing temperature. It can also be
seen as the limit of finite-dimensional maximally mixed states,
limd→∞ 1d/d. Either way, in the limit it remains an element of
the Hilbert space of operators and so we may consider distances
from it.

3A similar freedom exists in the definition of the Wigner
function, and has been exploited in [17] to eliminate the neg-
ativity of the Wigner function of a qubit. Here, however, we
define a unique Wigner function (2) by requiring that it tends
to the Wigner function for continuous variables systems when
j → ∞.
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coherent states are the only pure product states avail-
able when the qubits are indistinguishable.

States that admit a positive Glauber-Sudarshan
function after any global unitary transformation are
called absolutely classical spin states [35] or symmetric
absolutely separable (SAS) states [2]. In this section
we focus entirely on the case of Wmin = 0 because
negative values of the Wigner function are generally
used as a witness of non-classicality and compare the
AWP polytopes to the known results on SAS states.
In the context of single spins, the set of SAS states is
only completely characterized for spin-1/2 and spin-
1. We also show that the Wigner negative volume (6)
of a positive Glauber-Sudarshan function is upper-
bounded by the Wigner negative volume of a spin
coherent state, see Subsec. 4.5.

4.1 Spin-1/2
In the familiar case of a single qubit state ρ, the spec-
trum (λ, 1−λ) is characterized by one number λ. The
kernel eigenvalues, Eq. (8), are

∆0 = 1
2(1 −

√
3), ∆1 = 1

2(1 +
√

3) = 1 − ∆0. (40)

Letting λ ≥ 1
2 denote the larger of the two eigenvalues,

the strong ordered form (22) becomes

λ0∆0 + λ1∆1 = λ∆0 + (1 − λ)(1 − ∆0)
= λ(2∆0 − 1) + 1 − ∆0.

(41)

Thus the AWP polytope is described, in the 1-
dimensional projection to the λ axis, as

1
2 ≤ λ ≤ 1 − ∆0

1 − 2∆0
= 1

2 + 1
2
√

3
. (42)

This may be equivalently expressed either in terms of
purity γ or Bloch length |n| =

√
2γ − 1,

1
2 ≤ γ ≤ 2

3 and |n| ≤ 1√
3

. (43)

Additionally, the distance to the maximally mixed
state via Eq. (32) is r ≤ 1/

√
6, which matches with

the smallest ball of AWP states derived earlier, Eq.
(33). In the case of spin-1/2 this radius coincides with
the largest ball containing nothing but AWP states.

Regarding absolute Glauber-Sudarshan-positivity,
all qubit states are SAS. This is a consequence of the
qubit pure states being equivalent to spin-1/2 coher-
ent states. Thus AWP qubit states are a strict subset
of SAS qubit states.

Furthermore, due to the invariance of negativity
under rigid rotation, for a single qubit there is no
distinction between a state being positive (in either
the Wigner or P sense) and being absolutely posi-
tive. This means that any state with Bloch radius
|n| ∈ (1/

√
3, 1] has a positive P function but a nega-

tive Wigner function. This is perhaps the simplest

Figure 5: Maximal PT negativity over each unitary orbit in
the j = 1 simplex of state spectra. The dashed blue line
and red circle are respectively the AWP polytope and ball.
The camel curve shows the boundary at which the negativity
along the unitary orbit becomes non-zero.

example of the fact that, unlike the planar phase
space associated with optical systems, in spin systems
Glauber-Sudarshan positivity does not imply Wigner
positivity.

4.2 Spin-1
For qutrits the set of AWP states and the set of SAS
states are both more complicated, with neither being
a strict subset of the other. For SAS states we need
the following result in [2]: the maximal value of the
negativity, in the sense of the PPT criterion, in the
unitary orbit of a two-qubit symmetric (or equivalently
a spin-1) state ρ with spectrum λ0 ≥ λ1 ≥ λ2 is

max
[
0,
√

λ2
0 + (λ1 − λ2)2 − λ1 − λ2

]
. (44)

In Fig. 5, we plot the resulting maximal negativ-
ity in the j = 1 simplex with the AWP polytope.
There are clearly regions of spectra that satisfy ei-
ther, both, or neither of the AWP and SAS condi-
tions. Thus already for spin-1 there exist states with
a positive P function and a negative W function and
vice-versa. For j = 1 specifically, it was also shown
in [2] that the largest ball of SAS states has a radius
rP

in = 1/(2
√

6) ≈ 0.20412, which is the same value as
the radius rAWP

in = 1/(2
√

6). Hence, for j = 1, the
largest ball of AWP states coincides with the largest
ball of SAS states as we can see in Fig. 5.

We now illustrate the procedure described in Ap-
pendix D.2 and compute the vertex states and their
radii for the case of spin-1. The two diagonal states
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associated to the vertices of the minimal polytope for
j = 1 (see Fig. 3) are

ρv1 = ω1|1, −1⟩⟨1, −1|

+ 1 − ω1

2 (|1, 0⟩⟨1, 0| + |1, 1⟩⟨1, 1|), (45)

ρv2 = ω2(|1, −1⟩⟨1, −1| + |1, 0⟩⟨1, 0|)
+ (1 − 2ω2)|1, 1⟩⟨1, 1| (46)

where the parameters ω1 and ω2 are found by solving
the AWP criterion (25):

ω1 = ∆1,−1 + ∆1,1

∆1,−1 + ∆1,1 − 2∆1,0
= 1

15(5 +
√

10),

ω2 = ∆1,1

2∆1,1 − ∆1,0 − ∆1,−1
= 1

6

(
2 +

√
7 − 3

√
5
)

.

(47)

The two Hilbert-Schmidt radii (32) of the vertex
states are then

rv1 = rAWP
out = 1√

15
≈ 0.2582,

rv2 =
√

1
6

(
7 − 3

√
5
)

≈ 0.2205.

(48)

As conjectured, we see that rv1 = rW
out for spin-1.

4.3 Spin-3/2
For spin-3/2, a numerical optimization (see Ref. [2]
for more information) yielded the maximum negativ-
ity (in the sense of the negativity of the partial trans-
pose of the state) in the unitary orbit of the states

Figure 6: Maximal PT negativity over each unitary orbit on
the face of the minimal j = 3/2 AWP polytope. The camel
curve shows the boundary at which the negativity along the
unitary orbit becomes non-zero. The notation of the vertices
corresponds to the eigenspectra given in Table 1.

located on a face of the polytope. The results are dis-
played in Fig. 6 where, similar to the spin-1 case, we
observe both SAS and entangled states on the face of
the minimal AWP polytope. A notable difference is
that, for j = 3/2, the largest ball containing only SAS
states has a radius rP

in = 1/(2
√

19) [2] which is strictly
smaller than rAWP

in = 1/(2
√

15). Therefore, the SAS
states on the face of the polytope are necessarily out-
side this ball.

4.4 Spin-j > 3/2

In Fig. 7, we compare the radius of the AWP ball (33)
with the lower bound on the radius of the ball of SAS
states [35]

rP ≡

[
(4j + 1)

(4j
2j

)
− (j + 1)

]−1/2

√
4j + 2

≤ rP
in. (49)

This plot suggests that the balls of AWP states can
be much larger than the balls of SAS states. This
is confirmed by our numerical observations that sam-
pling the hypersurface of the polytope for j = 2, 5/2
and 3 always yields states that have negative partial
transpose in their unitary orbit. We also plot in Fig. 7
the conjectured radius rAWP

out of the minimal ball con-
taining all AWP states.

Notably, the scalings of rAWP
out and rAWP

in with j are
different. The scaling rAWP

in ∝ j−3/2 follows directly
from Eq. (33). The scaling rAWP

out ∝ j−1 can be ex-
plained by noting that the infinite-spin limit of the
SU(2) Wigner kernel is the Heisenberg-Weyl Wigner
kernel, which only has the two eigenvalues ±2; see
Sec. 3.5 and Refs. [32, 39]. Hence for sufficiently large
j we may approximate ∆j,j−1 ≈ −2. The Laurent se-
ries of Eq. (36) with this approximation and Wmin = 0
has leading term 1/(4j), exactly matching the results
shown in Fig. 7.

4.5 Bound on Wigner negative volume

Here we include a related but independent result on
the negative volume of spin states. The spin-1 case
showed us that there are SAS states outside the AWP
polytope, i.e., with a Wigner function admitting neg-
ative values. Here, we show quite generally that the
Wigner negative volume (6) of states with an every-
where positive Gluaber-Sudarshan function (in par-
ticular SAS states), denoted hereafter by ρP⩾0, is up-
per bounded by the Wigner negative volume of spin
coherent states. Indeed, such states can always be
represented as a mixture of coherent states

ρP⩾0 =
∑

i

wi |αi⟩ ⟨αi| (50)
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Figure 7: Comparison of the radii of the outer AWP ball (dark
blue) and the inner AWP ball (blue) and the lower bound on
the SAS ball radius (orange). For j ≥ 10, we found excellent
fits with rAWP

out,fit = 0.25 × j−1 and rAWP
in,fit = 0.336 × j−1.5.

These are explained in the text.

with wi ⩾ 0 and
∑

i wi = 1. Their Wigner negative
volume can then be upper bounded as follows

δ(ρP⩾0) = 1
2

∫
Γ

∣∣WρP⩾0(Ω)
∣∣ dµ(Ω) − 1

2

= 1
2

∫
Γ

∣∣∣∣∣∑
i

wiW|αi⟩(Ω)

∣∣∣∣∣ dµ(Ω) − 1
2

⩽
∑

i

wi︸ ︷︷ ︸
=1

(
1
2

∫
Γ

∣∣W|αi⟩(Ω)
∣∣ dµ(Ω)

)
︸ ︷︷ ︸

=δ(|α⟩)+ 1
2

−1
2

= δ (|α⟩)

(51)

where δ (|α⟩) is the Wigner negative volume of a spin
coherent state. Since it has been observed that such
volume decreases with j [44], the same is true for
states with positive Glauber-Sudarshan function.

5 Conclusion
Given the ever-rising importance of spin quasiproba-
bility distributions in fields like quantum information
science, quantum many-body dynamics [17, 18, 52],
and quantum thermodynamics [53], we have stud-
ied in this work the properties of the spin Wigner
function of finite-dimensional quantum systems, in
particular the non-classicality of the unitary orbits
of mixed spin-j states, highlighting important differ-
ences with infinite-dimensional systems with contin-
uous variables. Our results shed new and interest-
ing light on the positivity of the Wigner function in
spin-j systems, focusing on its relation with purity
and entanglement. Our first result is Proposition 1,
which gives a complete characterization for any spin
quantum number j of the set of absolutely Wigner

bounded (AWB) states in the form of a polytope cen-
tred on the maximally mixed state in the simplex
of mixed spin states. This amounts to an extension
and alternative derivation of results from [21, 22] in
the setting of quantum spin. We have studied the
properties of the vertices of this polytope for differ-
ent spin quantum numbers, as well as its largest inner
and smallest outer Hilbert-Schmidt balls. In partic-
ular, we have shown that the radii of the inner and
outer balls scale differently as a function of j (see
Eqs. (33) and (36) as well as Fig. 7). We have pro-
vided an equivalent condition for a state to be AWB
based on majorization theory (Proposition 2). We
have compared our results on the positivity of the
Wigner function with those on the positivity of the
spherical Glauber-Sudarshan function, the latter of
which can be equivalently used as a classicality cri-
terion for spin states or a separability criterion for
symmetric multiqubit states. The spin-1 and spin-
3/2 cases, for which analytical results are known, were
closely examined and important differences were high-
lighted, such as the existence of Wigner-negative ab-
solutely separable states, and, conversely, the exis-
tence of entangled absolutely Wigner-positive states.
This novel fact represents a key distinction from the
infinite-dimensional setting where a positive Glauber-
Sudarshan function trivially implies a positive Wigner
function [36, 37]. The infinite-spin limit of these poly-
topes and their Hilbert-Schmidt balls have been an-
alyzed, and it was concluded that absolute Wigner-
positivity cannot exist in infinite dimensions. In-
terestingly however, our techniques cannot rule out
the existence of absolutely Wigner-bounded states for
non-zero cutoffs in the bosonic setting because the
outer Hilbert-Schmidt ball, which represents a neces-
sary AWB condition, does not vanish in the infinite-
spin limit. Future work is needed to investigate the
possible existence of such states.

There are several other directions for future work.
A notable observation drawn from our numerics is
that the set of SAS states appears to shrink relative to
the set of AWP states as j increases, which in turn oc-
cupies a progressively smaller volume of the simplex.
Further research is needed to explore this behaviour,
using, e.g., the group-theoretic results of [54]. A re-
lated direction could be to explore the ratio of the
volume of the AWB polytopes to the volume of the
full simplex; this would basically be a global indica-
tor of classicality like those introduced and studied in
Refs. [20, 22, 23] particularised to spin systems.

Another perspective, as briefly mentioned in Sec.
3, is to apply the techniques presented here to other
distinguished quasiprobability distributions. For ex-
ample, preliminary results suggest that the absolutely
Husimi bounded (AHB) polytopes have the same ge-
ometry as the simplex, but are simply reduced in size
by a factor depending on Qmin ∈ [0, 1

2j+1 ]. Future
work could explore this further and investigate its con-
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sequences for the geometric measure of entanglement
of mixed multiqubit symmetric states. Another idea
is to study how these polytopes change with respect
to the spherical s-ordering parameter (see Eq. (23)).

Finally, it would be intriguing to connect the lower
bound on the Wigner function in the unitary orbit
to the accuracy achievable in simulating the general
unitary (or even dissipative) many-body quantum dy-
namics of spin systems efficiently using stochastic tra-
jectories [17, 18, 52]. Indeed, it could be expected
that states with a positive lower bound would be more
accurately simulated by these trajectories where the
Wigner function is used as an actual probability dis-
tribution obeying a certain Fokker-Planck equation.
Additionally, this bound could be linked to potential
quantum advantages in applications such as param-
eter estimation, where the presence of negative val-
ues in quasiprobability distributions might enhance
the precision of quantum sensing protocols. However,
these questions go beyond the scope of this work and
merit further study.
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A Proof of relation (11)
We show here that the eigenvalues ∆m ≡ ∆j,m of the
Wigner kernel (1) verify

j∑
m=−j

∆2
m = 2j + 1. (52)

Using the expression (8) we get

j∑
m=−j

∆2
m =

j∑
m=−j

2j∑
L,L′=0

(2L + 1)(2L′ + 1)
(2j + 1)2

× Cj,m
j,m;L,0Cj,m

j,m;L′,0

(53)

The Clebsh-Gordan coefficients satisfy the following
relations [43]

Cc,γ
a,α;b,β = (−1)a−α

√
2c + 1
2b + 1Cb,−β

a,α;c,−γ (54)

Figure 8: Barycentric and cartesian coordinate systems of
spin state spectra for j = 1. The simplex in this case is an
equilateral triangle, shown here in gray. The red dot cor-
responds to a given spectrum and its projections onto the
barycentric and Cartesian coordinate system are indicated by
the red and green dashed lines respectively.

j∑
α,β=−j

Cc,γ
a,α;b,βCc′,γ′

a,α;b,β = δcc′δγγ′ . (55)

Hence, by splitting the sum over m in two∑
m

Cj,m
j,m;L,0Cj,m

j,m;L′,0 =
∑

m1,m2

Cj,m2
j,m1;L,0Cj,m2

j,m1;L′,0

(56)
and using (54) and (55), we get from (53)

j∑
m=−j

∆2
m = 1

2j + 1

2j∑
L=0

2L + 1︸ ︷︷ ︸
=(2j+1)2

= 2j + 1

(57)

B Barycentric coordinates
A mixed spin-j state necessarily has eigenvalues λi

that are positive and add up to one:

λi ≥ 0,

2j∑
i=0

λi = 1. (58)

This means that every state ρ has its eigenvalue spec-
trum in the probability simplex of dimension 2j. For
example, for j = 1, this simplex is a triangle shown
in grey in Fig. 8. In geometric terms, the spectrum
(λ0, λ1, λ2) defines the barycentric coordinates of a
point λ in the simplex, as it can be considered as the
centre of mass of a system of 2j masses placed on the
vertices of the triangle.

Let’s explain how to go from the barycentric coordi-
nate system to the Cartesian coordinate system span-
ning the simplex. If we denote by {r(i) : i = 0, . . . , 2j}
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the set of 2j +1 vertices of the simplex, the Cartesian
coordinates of a point λ are given by

xk =
2j∑

i=0
λi r

(i)
k (59)

where r
(i)
k is the k-th Cartesian coordinate of the

i-th vertex of the simplex. For j = 1, the sim-
plex is an equilateral triangle with vertices having
Cartesian coordinates r1 = (0, 0), r2 = (1, 0) and
r3 = (1/2,

√
3/2). For j = 3/2, it is a regular tetra-

hedron with vertices having Cartesian coordinates
r1 = (0, 0, 0), r2 = (1, 0, 0), r3 = (1/2,

√
3/2, 0) and

r4 = (1/2, (2
√

3)−1,
√

2/3).

C AWP polytope vertices for j ≤ 2
We give in Table 1 for j ≤ 2 the spin state spec-
tra associated with the vertices of the minimal AWP
polytope as they can be determined as explained in
Sec. 3.2.

j Vertices in barycentric coordinates
1/2 λv1 ≈ (0.789, 0.211)
1 λv1 ≈ (0.423, 0.423, 0.153)

λv2 ≈ (0.544, 0.228, 0.228)
3/2 λv1 ≈ (0.294, 0.294, 0.294, 0.119)

λv2 ≈ (0.33, 0.33, 0.170, 0.170)
λv3 ≈ (0.4, 0.2, 0.2, 0.2)

2 λv1 ≈ (0.313, 0.172, 0.172, 0.172, 0.172)
λv2 ≈ (0.266, 0.266, 0.156, 0.156, 0.156)

λv3 ≈ (0.24, 0.24, 0.24, 0.14, 0.14)
λv4 ≈ (0.226, 0.226, 0.226, 0.226, 0.097)

Table 1: Barycentric coordinates (corresponding to the eigen-
spectrum of a mixed spin state) of the vertices of the minimal
polytope of AWP states.

D Inner and outer AWB balls
D.1 Largest ball containing only AWB states
Let us first consider the radius rWmin

in of the largest
ball centered on the MMS contained in the polytope
of AWB states and find a state ρ∗ that is both on the
surface of this ball and on a face of the polytope. De-
noting by r(ρ) the Hilbert-Schmidt distance between
a state ρ and the MMS,

r(ρ) = ∥ρ − ρ0∥HS =
√

Tr
[
(ρ − ρ0)2

]
, (60)

we have that all quantum states with r(ρ) ≤ rWmin
in

are AWB. This distance is equivalent to the Euclidean

distance in the simplex between the spectra λ and λ0
of ρ and the MMS respectively, i.e.,

r(ρ) =

√√√√( 2j∑
i=0

λ2
i

)
− 1

2j + 1 = ∥λ − λ0∥.

In order to find the radius rWmin
in (see Fig. 3 for

Wmin = 0) of the largest inner ball of the AWB poly-
tope, we need to find the spectra on the hyperplanes
of the AWB polytope with the minimum distance to
the MMS. Mathematically, this translates in the fol-
lowing constrained minimization problem

min
λ

∥λ−λ0∥2 subject to


∑2j

i=0 λi = 1

λ ·∆ = Wmin

(61)

where ∆ = (∆0, ∆1, ..., , ∆2j). For this purpose, we
use the method of Lagrange multipliers with the La-
grangian

L = ∥λ−λ0∥2 +µ1 (λ ·∆ − Wmin)+µ2

(
1 −

2j∑
i=0

λi

)

where µ1, µ2 are two Lagrange multipliers to be de-
termined. The stationary points λ∗ of the Lagrangian
must satisfy the following condition

∂L

∂λ

∣∣∣
λ=λ∗

= 0 ⇔ 2λ∗ + µ1∆ − µ21 = 0 (62)

with 1 = (1, 1, ..., 1) of length 2j + 1. By summing
over the components of (62) and using Eq. (10), we
readily get

µ2 = µ1 + 2
2j + 1 . (63)

Then, by taking the scalar product of (62) with ∆
and using Eqs. (11) and (63), we obtain

µ1 = 1 − (2j + 1)Wmin

2j(j + 1) and µ2 = (2j + 1) − Wmin

2j(j + 1) .

Finally, by substituting the above values for µ1 and
µ2 in Eq. (62) and solving for the stationary point λ∗,
we get

λ∗ = [(2j + 1) − Wmin]1 − [1 − (2j + 1)Wmin]∆
4j(j + 1)

(64)
from which the inner ball radius follows as

rWmin
in = r(ρ∗) = 1 − (2j + 1)Wmin

2
√

j(2j + 1)(j + 1)

with ρ∗ a state with eigenspectrum (64).

D.2 Smallest ball containing all AWB states
We give here the reasoning and evidence for a con-
jecture on the radius rWmin

out of the smallest outer ball
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of the polytope containing all AWB states. With the
set of AWB states forming a convex polytope, rWmin

out
must be the radius associated with the outermost ver-
tex. Hence the problem is equivalent to finding this
particular vertex within the minimal polytope. For
convenience let us call the matrix associated to any
of the vertices a vertex state. Note, however, that for
certain small values of Wmin the polytopes may in-
clude trace-1 Hermitian matrices that are not positive
semi-definite — see Eq. (35) and Fig. 4. This gener-
alization however does not affect the analysis for this
subsection.

In principle, the outermost vertex can always be
determined on a case-by-case basis via the following
procedure. Recall from Sec. 3.2 that an AWB ver-
tex state with ordered spectrum λ↓ is specified by
2j + 1 linear constraints on the eigenvalues. The first
is normalization, the second is the AWB vertex cri-
terion (i.e., Eq. (25) with some Wmin), and the re-
maining 2j − 1 constraints come from a (2j − 1)-sized
sample from the (2j)-sized set of nearest-neighbour
constraints (27). Thus the 2j states sitting on the
2j distinct vertices match up with the

( 2j
2j−1

)
= 2j

choices of bi-partitioning the ordered eigenvalues into
a “left” set, ωn, of size n and a “right” set, σn, of size
2j + 1 − n, each of which contain eigenvalues of equal
value ωn and σn respectively such that ωn > σn. The
full eigenspectrum is the concatenation λ↓

vn
= ωn◦σn,

and normalization becomes

nωn + (2j + 1 − n)σn = 1, n ∈ {1, ..., 2j}. (65)

As we are temporarily allowing the ordered spectrum
λ↓ to have negative components, Eq. (65) should be
interpreted only as requiring the vertices to lie in the
affine span generated by the state simplex (i.e., not
necessarily within the simplex). Inserting λ↓

vn
and

(65) into the AWB vertex criterion the weights ωn

can be solved as a function of the kernel eigenvalues
and Wmin:

ωn =
∑2j

i=n ∆↑
i − (2j + 1 − n)Wmin

n
∑2j

i=n ∆↑
i − (2j + 1 − n)

∑n−1
i=0 ∆↑

i

= τn − (2j + 1 − n)Wmin

(2j + 1)τn − (2j + 1 − n) (66)

where in the second line we used the unit-trace prop-
erty (10) of the kernel and

τn =
2j∑

i=n

∆↑
i =

2j−n∑
i=0

∆↓
i (67)

is the sum over the largest 2j+1−n kernel eigenvalues.
The purity γvn

and distance rvn
of the n-th vertex is

then given by

γvn
= nω2

n + (2j + 1 − n)σ2
n (68)

rvn
=
√

γvn
− 1

2j + 1 , (69)

which are functions of only the kernel eigenvalues and
Wmin. Note that purity, being defined as the sum of
squares of the eigenvalues, remains a faithful notion
of distance to the MMS even when such spectra are
allowed to go negative. After computing each of these
numbers, rWmin

out would correspond to the largest one,
and the set of states satisfying this condition would be
the intersection of the associated ball with the state
simplex. In Sec. 4.2 we present details of this proce-
dure for j = 1 and Wmin = 0.

Despite this somewhat involved procedure, we nu-
merically find it is always the case that the first
vertex, v1, remains within the state simplex for all
Wmin ∈ [∆↑

0, 1
2j+1 ] and, relatedly, that

rWmin
out = rv1 . (70)

We conjecture this to be true in all finite dimensions.
Part of the difficulty in proving this in general comes
from the non-trivial nature of the kernel eigenvalues
(8) and from further numerical evidence suggesting
that no vertex state ever majorizes any other vertex
state.

Furthermore, with the most negative kernel eigen-
value (12) being ∆↑

0 = ∆j,j−1, the vertex state ρv1

takes the special form

ω1|j, j − 1⟩⟨j, j − 1| + 1 − ω1

2j

∑
m ̸=j−1

|j, m⟩⟨j, m| (71)

where

ω1 =
∑

m ̸=j−1 ∆j,m − 2jWmin∑
m ̸=j−1 ∆j,m − 2j∆j,j−1

= 1 − ∆j,j−1 − 2jWmin

1 − (2j + 1)∆j,j−1
. (72)

The minimal outer radius rWmin
out is then conjectured

to be

rWmin
out =

√
γv1 − 1

2j + 1

=

√
ω2

1 + 2j

(
1 − ω1

2j

)2
− 1

2j + 1

=

√
2j

2j + 1

∣∣∣∣ Wmin(2j + 1) − 1
∆j,j−1(2j + 1) − 1

∣∣∣∣ . (73)

The radius (73) can be seen as a scaled factor of√
2j/(2j + 1), the distance from any pure state to

the maximally mixed state. When the highest cutoff
is set, Wmin = 1/(2j + 1), this outer radius vanishes
as the only state that can satisfy the cutoff is the
maximally mixed state, which has zero distance to it-
self. When the lowest cutoff is set, Wmin = ∆j,j−1,
the scaling factor in (73) becomes unity and the outer
radius reduces to the distance to pure states, which re-
flects the fact that now the entire simplex (and hence
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all mixed states) is contained within the AWB poly-
tope.

An operational interpretation of this radius is avail-
able by noting that the multiqubit realization of the
|j, j − 1⟩ state, which has the most pointwise-negative
Wigner function allowable (occurring at the North
pole), is in fact the W state introduced in the con-
text of LOCC entanglement classification [47]. And
since the maximally mixed state has uniform eigen-
values, Eq. (71) may be interpreted as the end re-
sult of mixing the W state with the maximally mixed
state until the Wigner function at the North pole hits
Wmin. The distance between the resulting state and
the maximally mixed state is exactly our conjectured
rWmin
out . In particular, when the Wigner function van-

ishes at the North pole, the radius reduces to a tight,
purity-based, necessary condition to be AWP.
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