Altman, D.G., Bland, J.M., Measurement in Medicine: The Analysis of Method Comparison Studies. Journal of the Royal Statistical Society. Series D (the Statistician) 32 (1983), 307–317.
Burhans, W.S., Rossiter Burhans, C.A., Baumgard, L.H., Invited review: Lethal heat stress: The putative pathophysiology of a deadly disorder in dairy cattle. J. Dairy Sci. 105 (2022), 3716–3735.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation, the European conference on computer vision, pp. 801-818.
Chen, X., Ogdahl, W., Hanna, L., Dahlen, C., Riley, D., Wagner, S., Berg, E., Sun, X., Evaluation of beef cattle temperament by eye temperature using infrared thermography technology. Comput. Electron. Agric., 188, 2021, 106321.
Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions, the IEEE conference on computer vision and pattern recognition, pp. 1251-1258.
Chu, M., Li, Q., Wang, Y., Zeng, X., Si, Y., Liu, G., Fusion of udder temperature and size features for the automatic detection of dairy cow mastitis using deep learning. Comput. Electron. Agric., 212, 2023, 108131.
Collier, R.J., Laun, W.H., Rungruang, S., Zimbleman, R.B., 2012. Quantifying Heat Stress and Its Impact on Metabolism and Performance, Florida Ruminant Nutrition Symposium. University of Florida, Gainesville, FL, USA, pp. 74–83.
Cuthbertson, H., Tarr, G., González, L., Methodology for data processing and analysis techniques of infrared video thermography used to measure cattle temperature in real time. Comput. Electron. Agric., 167, 2019, 105019.
Cuthbertson, H., Tarr, G., Loudon, K., Lomax, S., White, P., McGreevy, P., Polkinghorne, R., González, L.A., Using infrared thermography on farm of origin to predict meat quality and physiological response in cattle (Bos Taurus) exposed to transport and marketing. Meat Science, 169, 2020, 108173.
Deng, J., Dong, W., Socher, R., Li, L.J., Kai, L., Li, F.-F., ImageNet: A Large-Scale Hierarchical Image Database, 2009, 248–255.
Gloster, J., Ebert, K., Gubbins, S., Bashiruddin, J., Paton, D.J., Normal variation in thermal radiated temperature in cattle: implications for foot-and-mouth disease detection. BMC Vet. Res., 7, 2011, 73.
Halachmi, I., Guarino, M., Precision livestock farming: a ‘per animal'approach using advanced monitoring technologies. Animal 10 (2016), 1482–1483.
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C., Ghostnet: More features from cheap operations. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, 1580–1589.
He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770–778.
Hoffmann, G., Schmidt, M., Ammon, C., Rose-Meierhöfer, S., Burfeind, O., Heuwieser, W., Berg, W., Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera. Vet. Res. Commun. 37 (2013), 91–99.
Jaddoa, M.A., Gonzalez, L., Cuthbertson, H., Al-Jumaily, A., Multiview Eye Localisation to Measure Cattle Body Temperature Based on Automated Thermal Image Processing and Computer Vision. 2021, Infrared Physics and Technology, 119.
Jorquera-Chavez, M., Fuentes, S., Dunshea, F.R., Warner, R.D., Poblete, T., Jongman, E.C., Modelling and Validation of Computer Vision Techniques to Assess Heart Rate, Eye Temperature, Ear-Base Temperature and Respiration Rate in Cattle. Animals, 9, 2019, 1089.
Khan, M., El Saddik, A., Alotaibi, F.S., Pham, N.T., AAD-Net: Advanced end-to-end signal processing system for human emotion detection & recognition using attention-based deep echo state network. Knowledge-Based Systems, 270, 2023, 110525.
Khan, M., Saeed, M., Saddik, A.E., Gueaieb, W., ARTriViT: Automatic Face Recognition System Using ViT-Based Siamese Neural Networks with a Triplet Loss. 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE), 2023, 1–6.
Kim, S., Hidaka, Y., Breathing Pattern Analysis in Cattle Using Infrared Thermography and Computer Vision. Animals, 11, 2021, 207.
Kütük, Z., Algan, G., Semantic segmentation for thermal images: A comparative survey. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 286–295.
Lin, J., Yang, H., Chen, D., Zeng, M., Wen, F., Yuan, L., Face parsing with roi tanh-warping. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, 5654–5663.
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation, the IEEE conference on computer vision and pattern recognition, pp. 3431-3440.
Lowe, G., Sutherland, M., Waas, J., Schaefer, A., Cox, N., Stewart, M., Infrared Thermography-A Non-Invasive Method of Measuring Respiration Rate in Calves. Animals, 9, 2019.
Lowe, G., McCane, B., Sutherland, M., Waas, J., Schaefer, A., Cox, N., Stewart, M., Automated Collection and Analysis of Infrared Thermograms for Measuring Eye and Cheek Temperatures in Calves. Animals, 10, 2020, 292.
Ma, S., Yao, Q., Masuda, T., Higaki, S., Yoshioka, K., Arai, S., Takamatsu, S., Itoh, T., Development of Noncontact Body Temperature Monitoring and Prediction System for Livestock Cattle. IEEE Sensors Journal 21 (2021), 9367–9376.
Montanholi, Y.R., Swanson, K.C., Schenkel, F.S., McBride, B.W., Caldwell, T.R., Miller, S.P., On the determination of residual feed intake and associations of infrared thermography with efficiency and ultrasound traits in beef bulls. Livestock Science 125 (2009), 22–30.
Montanholi, Y.R., Lim, M., Macdonald, A., Smith, B.A., Goldhawk, C., Schwartzkopf-Genswein, K., Miller, S.P., Technological, environmental and biological factors: referent variance values for infrared imaging of the bovine. Journal of Animal Science and Biotechnology, 6, 2015, 27.
Muniz, P.R., Magalhães, R.d.S., Cani, S.P.N., Donadel, C.B., 2015. Non-contact measurement of angle of view between the inspected surface and the thermal imager. Infrared Physics & Technology 72, 77-83.
NRC, 1971. A Guide to Environmental Research on Animals. National Academy Press, Washington, DC, USA, p. 374.
Pacheco, V.M., Sousa, R.V., Sardinha, E.J.S., Rodrigues, A.V.S., Brown-Brandl, T.M., Martello, L.S., Deep learning-based model classifies thermal conditions in dairy cows using infrared thermography. Biosys. Eng. 221 (2022), 154–163.
Peng, D., Chen, S., Li, G., Chen, J., Wang, J., Gu, X., Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes. Int. J. Biometeorol. 63 (2019), 327–336.
Ronneberger, O., Fischer, P., Brox, T., U-Net: Convolutional Networks for Biomedical Image Segmentation. Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015, Springer International Publishing, Cham, 234–241.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510-4520.
Schaefer, A.L., Cook, N.J., Bench, C., Chabot, J.B., Colyn, J., Liu, T., Okine, E.K., Stewart, M., Webster, J.R., The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res. Vet. Sci. 93 (2012), 928–935.
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Uddin, J., Phillips, C.J.C., Auboeuf, M., McNeill, D.M., Relationships between body temperatures and behaviours in lactating dairy cows. Appl. Anim. Behav. Sci., 241, 2021, 105359.
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q., 2020. ECA-Net: Efficient channel attention for deep convolutional neural networks, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11534-11542.
Wang, X., Hu, F., Yang, R., Wang, K., An Infrared Temperature Correction Method for the Skin Temperature of Pigs in Infrared Images. Agriculture, 13, 2023, 520.
Wang, Y., Kang, X., Chu, M., Liu, G., Deep learning-based automatic dairy cow ocular surface temperature detection from thermal images. Comput. Electron. Agric., 202, 2022, 107429.
Wang, Y., Kang, X., He, Z., Feng, Y., Liu, G., Accurate detection of dairy cow mastitis with deep learning technology: a new and comprehensive detection method based on infrared thermal images. Animal, 16, 2022, 100646.
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P., SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 34 (2021), 12077–12090.
Yan, G., Shi, Z., Li, H., Critical Temperature-Humidity Index Thresholds Based on Surface Temperature for Lactating Dairy Cows in a Temperate Climate. Agriculture, 11, 2021, 970.
Zhang, X., Kang, X., Feng, N., Liu, G., Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Comput. Electron. Agric., 178, 2020, 105754.
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881-2890.
Zheng, Z., Hu, Y., Guo, T., Qiao, Y., He, Y., Zhang, Y., Huang, Y., AGHRNet: An attention ghost-HRNet for confirmation of catch-and-shake locations in jujube fruits vibration harvesting. Comput. Electron. Agric., 210, 2023, 107921.
Zou, K., Chen, X., Wang, Y., Zhang, C., Zhang, F., A modified U-Net with a specific data argumentation method for semantic segmentation of weed images in the field. Comput. Electron. Agric., 187, 2021, 106242.