A modelling study to dissect the potential role of voltage-gated ion channels in activity-dependent conduction velocity changes as identified in small fiber neuropathy patients.
Maxion, Anna; Kutafina, Ekaterina; Dohrn, Maike Fet al.
2023 • In Frontiers in Computational Neuroscience, 17, p. 1265958
C-fiber axon; in-silico model; microneurography; neuron; neuropathic pain; simulation; voltage-gated ion channels; Activity-dependent; Conduction velocity; In-silico models; Ion channel; Membrane potentials; Voltage gated ion channels; Neuroscience (miscellaneous); Cellular and Molecular Neuroscience
Abstract :
[en] [en] OBJECTIVE: Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients.
APPROACH: We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential.
MAIN RESULTS: Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect.
SIGNIFICANCE: Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Maxion, Anna; Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
Kutafina, Ekaterina; Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
Dohrn, Maike F; Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
Sacré, Pierre ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Robotique intelligente
Lampert, Angelika; Institute of Neurophysiology, Uniklinik RWTH Aachen University Aachen, Aachen, Germany
Tigerholm, Jenny; Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
Namer, Barbara; Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany ; Institute of Neurophysiology, RWTH Aachen University, Aachen, Germany ; Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
Language :
English
Title :
A modelling study to dissect the potential role of voltage-gated ion channels in activity-dependent conduction velocity changes as identified in small fiber neuropathy patients.
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. AM ans AL are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 368482240/GRK2416. JT is supported by the Center for Neuroplasticity and Pain is supported by the Danish National Research Foundation (DNRF121). BN is supported by a grant from the Interdisciplinary Center for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, DFG NA 9707/1. This work was funded by the Deutsche Forschungsgemeinschaft German Research Foundation LA 2740/3–1, 363055819/GRK2415 Mechanobiology of 3D epithelial tissues (ME3T). AL, BN and MD are supported by a grant from the Interdisciplinary Center for Clinical Research within the Faculty of Medicine at the RWTH Aachen University (IZKF TN1-1/IA 532001, IZKF TN1-1IA 532002, IZKF TN1-6/IA 532006, and IZKF TN1-9/IA 532009).
Bennett D. L. Clark A. J. Huang J. Waxman S. G. Dib-Hajj S. D. (2019). The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 99, 1079–1151. doi: 10.1152/physrev.00052.2017
Bernal L. Roza C. (2018). Hyperpolarization-activated channels shape temporal patterns of ectopic spontaneous discharge in C-nociceptors after peripheral nerve injury. Eur. J. Pain 22, 1377–1387. doi: 10.1002/ejp.1226, PMID: 29635758
Brouwer B. A. Merkies I. S. J. Gerrits M. M. Waxman S. G. Hoeijmakers J. G. J. Faber C. G. (2014). Painful neuropathies: the emerging role of sodium channelopathies. J. Peripher. Nerv. Syst. 19, 53–65. doi: 10.1111/jns5.12071, PMID: 25250524
Burke D. Kiernan M. C. Bostock H. (2001). Excitability of human axons. Clin. Neurophysiol. 112, 1575–1585. doi: 10.1016/S1388-2457(01)00595-8
Busserolles J. Tsantoulas C. Eschalier A. López García J. A. (2016). Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. Pain 157, S7–S14. doi: 10.1097/j.pain.0000000000000368
Chan A. C. Y. Wilder-Smith E. P. (2016). Small fiber neuropathy: getting bigger! Muscle Nerve 53, 671–682. doi: 10.1002/mus.25082
Chaplan S. R. Guo H.-Q. Lee D. H. Luo L. Liu C. Kuei C. et al. (2003). Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J. Neurosci. 23, 1169–1178. doi: 10.1523/JNEUROSCI.23-04-01169.2003
Colloca L. Ludman T. Bouhassira D. Baron R. Dickenson A. H. Yarnitsky D. et al. (2017). Neuropathic pain. Nat. Rev. Dis. Primer 3, 1–19. doi: 10.1038/nrdp.2017.2, PMID: 28205574
Cox J. J. Reimann F. Nicholas A. K. Thornton G. Roberts E. Springell K. et al. (2006). An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898. doi: 10.1038/nature05413, PMID: 17167479
De Col R. Messlinger K. Carr R. W. (2008). Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J. Physiol. 586, 1089–1103. doi: 10.1113/jphysiol.2007.145383, PMID: 18096592
De Col R. Messlinger K. Carr R. W. (2012). Repetitive activity slows axonal conduction velocity and concomitantly increases mechanical activation threshold in single axons of the rat cranial dura. J. Physiol. 590, 725–736. doi: 10.1113/jphysiol.2011.220624, PMID: 22144575
Doan T. N. Stephans K. Ramirez A. N. Glazebrook P. A. Andresen M. C. Kunze D. L. (2004). Differential distribution and function of hyperpolarization-activated channels in sensory neurons and mechanosensitive fibers. J. Neurosci. 24, 3335–3343. doi: 10.1523/JNEUROSCI.5156-03.2004, PMID: 15056713
Fertleman C. R. Baker M. D. Parker K. A. Moffatt S. Elmslie F. V. Abrahamsen B. et al. (2006). SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774. doi: 10.1016/j.neuron.2006.10.006
Goldberg Y. P. MacFarlane J. MacDonald M. L. Thompson J. Dube M.-P. Mattice M. et al. (2007). Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet. 71, 311–319. doi: 10.1111/j.1399-0004.2007.00790.x, PMID: 17470132
Goodwin G. McMahon S. B. (2021). The physiological function of different voltage-gated sodium channels in pain. Nat. Rev. Neurosci. 22, 263–274. doi: 10.1038/s41583-021-00444-w, PMID: 33782571
Habib A. M. Wood J. N. Cox J. J. (2015). Sodium channels and pain. Handb. Exp. Pharmacol. 227, 39–56. doi: 10.1007/978-3-662-46450-2_3
Hines M. L. Carnevale N. T. (1997). The NEURON simulation environment. Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179
Hines M. Davison A. Muller E. (2009). NEURON and Python. Front. Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009, PMID: 19198661
Huang J. Han C. Estacion M. Vasylyev D. Hoeijmakers J. G. J. Gerrits M. M. et al. (2014). Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain J. Neurol. 137, 1627–1642. doi: 10.1093/brain/awu079
Huang J. Yang Y. Zhao P. Gerrits M. M. Hoeijmakers J. G. J. Bekelaar K. et al. (2013). Small-Fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J. Neurosci. 33, 14087–14097. doi: 10.1523/JNEUROSCI.2710-13.2013, PMID: 23986244
Jiang Y.-Q. Sun Q. Tu H.-Y. Wan Y. (2008). Characteristics of HCN channels and their participation in neuropathic pain. Neurochem. Res. 33, 1979–1989. doi: 10.1007/s11064-008-9717-6, PMID: 18461446
Kim J. H. Sizov I. Dobretsov M. von Gersdorff H. (2007). Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the alpha3 Na(+)/K(+)-ATPase. Nat. Neurosci. 10, 196–205. doi: 10.1038/nn1839, PMID: 17220883
Kist A. Sagafos D. Rush A. Neacsu C. Eberhardt E. Schmidt R. et al. (2016). SCN10A mutation in a patient with erythromelalgia enhances C-Fiber activity dependent slowing. PLoS One 11:e0161789. doi: 10.1371/journal.pone.0161789, PMID: 27598514
Kleggetveit I. P. Namer B. Schmidt R. Helås T. Rückel M. Ørstavik K. et al. (2012). High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 153, 2040–2047. doi: 10.1016/j.pain.2012.05.017, PMID: 22986070
Körner J. Lampert A. (2020). “5.09 - Sodium Channels☆” in The Senses: A Comprehensive Reference (Second Edition). (Ed.) Fritzsch, B. (Oxford: Elsevier), 120–141.
Krishnan A. V. Kiernan M. C. (2005). Altered nerve excitability properties in established diabetic neuropathy. Brain 128, 1178–1187. doi: 10.1093/brain/awh476
Krishnan A. V. Lin C. S.-Y. Kiernan M. C. (2008). Activity-dependent excitability changes suggest Na+/K+ pump dysfunction in diabetic neuropathy. Brain 131, 1209–1216. doi: 10.1093/brain/awn052
Lee S. Hoeijmakers J. G. J. Faber C. G. Merkies I. S. J. Lauria G. Waxman S. G. (2020). The small fiber neuropathy NaV1.7 I228M mutation: impaired neurite integrity via bioenergetic and mitotoxic mechanisms, and protection by dexpramipexole. APSselect 123, 645–657. doi: 10.1152/jn.00360.2019@apsselect.2020.7.issue-2
Luo L. Chang L. Brown S. M. Ao H. Lee D. H. Higuera E. S. et al. (2007). Role of peripheral hyperpolarization-activated cyclic nucleotide-modulated channel pacemaker channels in acute and chronic pain models in the rat. Neuroscience 144, 1477–1485. doi: 10.1016/j.neuroscience.2006.10.048, PMID: 17196750
Maxion A. (2023). Digital-C-Fiber/NEURON-C-fiber.
Namer B. Barta B. Ørstavik K. Schmidt R. Carr R. Schmelz M. et al. (2009). Microneurographic assessment of C-fibre function in aged healthy subjects. J. Physiol. 587, 419–428. doi: 10.1113/jphysiol.2008.162941, PMID: 19064617
Namer B. Ørstavik K. Schmidt R. Kleggetveit I.-P. Weidner C. Mørk C. et al. (2015). Specific changes in conduction velocity recovery cycles of single nociceptors in a patient with erythromelalgia with the I848T gain-of-function mutation of Nav1.7. Pain 156, 1637–1646. doi: 10.1097/j.pain.0000000000000229, PMID: 25993546
Ochoa J. L. Campero M. Serra J. Bostock H. (2005). Hyperexcitable polymodal and insensitive nociceptors in painful human neuropathy. Muscle Nerve 32, 459–472. doi: 10.1002/mus.20367, PMID: 15973653
Pareyson D. Piscosquito G. Moroni I. Salsano E. Zeviani M. (2013). Peripheral neuropathy in mitochondrial disorders. Lancet Neurol. 12, 1011–1024. doi: 10.1016/S1474-4422(13)70158-3
Pelot N. A. Catherall D. C. Thio B. J. Titus N. D. Liang E. D. Henriquez C. S. et al. (2021). Excitation properties of computational models of unmyelinated peripheral axons. J. Neurophysiol. 125, 86–104. doi: 10.1152/jn.00315.2020
Petersson M. E. Obreja O. Lampert A. Carr R. W. Schmelz M. Fransén E. (2014). Differential axonal conduction patterns of mechano-sensitive and mechano-insensitive nociceptors – a combined experimental and modelling study. PLoS One 9:e103556. doi: 10.1371/journal.pone.0103556, PMID: 25136824
Petroianu G. A. Aloum L. Adem A. (2023). Neuropathic pain: mechanisms and therapeutic strategies. Front. Cell Dev. Biol. 11:1072629. doi: 10.3389/fcell.2023.1072629
Prato V. Taberner F. J. Hockley J. R. F. Callejo G. Arcourt A. Tazir B. et al. (2017). Functional and molecular characterization of mechanoinsensitive “silent” nociceptors. Cell Rep. 21, 3102–3115. doi: 10.1016/j.celrep.2017.11.066, PMID: 29241539
Rasmussen P. V. Sindrup S. H. Jensen T. S. Bach F. W. (2004). Symptoms and signs in patients with suspected neuropathic pain. Pain 110, 461–469. doi: 10.1016/j.pain.2004.04.034
Roth F. C. Hu H. (2020). An axon-specific expression of HCN channels catalyzes fast action potential signaling in GABAergic interneurons. Nat. Commun. 11:2248. doi: 10.1038/s41467-020-15791-y, PMID: 32382046
Schmelz M. Forster C. Schmidt R. Ringkamp M. Handwerker H. O. Torebjörk H. E. (1995). Delayed responses to electrical stimuli reflect C-fiber responsiveness in human microneurography. Exp. Brain Res. 104, 331–336. doi: 10.1007/BF00242018, PMID: 7672025
Schmidt R. Schmelz M. Forster C. Ringkamp M. Torebjörk E. Handwerker H. (1995). Novel classes of responsive and unresponsive C nociceptors in human skin. J. Neurosci. 15, 333–341. doi: 10.1523/JNEUROSCI.15-01-00333.1995, PMID: 7823139
Sène D. (2018). Small fiber neuropathy: diagnosis, causes, and treatment. Joint Bone Spine 85, 553–559. doi: 10.1016/j.jbspin.2017.11.002
Serra J. Solà R. Aleu J. Quiles C. Navarro X. Bostock H. (2011). Double and triple spikes in C-nociceptors in neuropathic pain states: an additional peripheral mechanism of hyperalgesia. Pain 152, 343–353. doi: 10.1016/j.pain.2010.10.039, PMID: 21130572
Strand N. Wie C. Peck J. Maita M. Singh N. Dumbroff J. et al. (2022). Small fiber neuropathy. Curr. Pain Headache Rep. 26, 429–438. doi: 10.1007/s11916-022-01044-8
Tigerholm J. Petersson M. E. Obreja O. Eberhardt E. Namer B. Weidner C. et al. (2015). C-Fiber recovery cycle Supernormality depends on ion concentration and Ion Channel permeability. Biophys. J. 108, 1057–1071. doi: 10.1016/j.bpj.2014.12.034, PMID: 25762318
Tigerholm J. Petersson M. E. Obreja O. Lampert A. Carr R. Schmelz M. et al. (2014). Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors. J. Neurophysiol. 111, 1721–1735. doi: 10.1152/jn.00777.2012, PMID: 24371290
Torebjörk H. E. Hallin R. G. (1974). Identification of afferent C units in intact human skin nerves. Brain Res. 67, 387–403. doi: 10.1016/0006-8993(74)90489-2
Tsantoulas C. Laínez S. Wong S. Mehta I. Vilar B. McNaughton P. A. (2017). Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Sci. Transl. Med. 9:eaam6072. doi: 10.1126/scitranslmed.aam6072
Tsantoulas C. McMahon S. B. (2014). Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci. 37, 146–158. doi: 10.1016/j.tins.2013.12.002, PMID: 24461875
Weidner C. Schmelz M. Schmidt R. Hansson B. Handwerker H. O. Torebjörk H. E. (1999). Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin. J. Neurosci. 19, 10184–10190. doi: 10.1523/JNEUROSCI.19-22-10184.1999, PMID: 10559426
Young G. T. Emery E. C. Mooney E. R. Tsantoulas C. McNaughton P. A. (2014). Inflammatory and neuropathic pain are rapidly suppressed by peripheral block of hyperpolarisation-activated cyclic nucleotide-gated ion channels. Pain 155, 1708–1719. doi: 10.1016/j.pain.2014.05.021, PMID: 24861581
Zhang Y. Bucher D. Nadim F. (2017). Ionic mechanisms underlying history-dependence of conduction delay in an unmyelinated axon. elife 6:e25382. doi: 10.7554/eLife.25382