Paper published in a book (Scientific congresses and symposiums)
On periodic alternate base expansions
Charlier, Emilie; Cisternino, Célia; Kreczman, Savinien
2022In Actes des 18èmes Journées Montoises d'Informatique Théorique
Peer reviewed
 

Files


Full Text
JM2022-CharlierCisterninoKreczman.pdf
Author postprint (348.72 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Alternate bases; periodic expansions
Abstract :
[en] For an alternate base B=(β_0,...,β_{p-1}), we show that if all rational numbers in the unit interval [0, 1) have periodic expansions with respect to all shifts of B, then the bases β_0,...,β_{p-1} all belong to the extension field Q(β) where β is the product β_0 · · · β_{p−1} and moreover, this product β must be either a Pisot number or a Salem number. We also prove the stronger statement that if the bases β_0, ..., β_{p−1} belong to Q(β) but the product β is neither a Pisot number nor a Salem number then the set of rationals having an ultimately periodic β-expansion is nowhere dense in [0, 1). Moreover, in the case where the product β is a Pisot number and the bases β_0, ..., β_{p−1} all belong to Q(β), we prove that the set of points in [0, 1) having an ultimately periodic β-expansion is precisely the set Q(β) ∩ [0, 1).
Disciplines :
Mathematics
Author, co-author :
Charlier, Emilie  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Cisternino, Célia ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Kreczman, Savinien  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
On periodic alternate base expansions
Publication date :
2022
Event name :
Journées montoises d'informatique théorique
Event place :
Prague, Czechia
Event date :
du 5 septembre 2022 au 9 septembre 2022
Audience :
International
Main work title :
Actes des 18èmes Journées Montoises d'Informatique Théorique
Publisher :
Czech Technical University in Prague, Prague, Czechia
Peer reviewed :
Peer reviewed
Available on ORBi :
since 01 May 2024

Statistics


Number of views
12 (2 by ULiège)
Number of downloads
10 (0 by ULiège)

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi