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The real base expansions of real numbers were introduced by Rényi [8]. Given a real
base β > 1, a representation of a real number x ∈ [0, 1) is an infinite sequence (an)n∈N of
non-negative integer digits such that x =

∑∞
n=0

an
βn+1 . Choosing at each step the largest

possible digit an so that the partial sum
∑n

k=0
ak
βk+1 does not exceed x, we obtain one

particular β-representation of x called the β-expansion of x and denoted by dβ(x). Rényi
observed that the digits of the β-expansion of x can also obtained by iterating the so-called
β-transformation Tβ : [0, 1)→ [0, 1), x 7→ βx− bβxc, where b·c denotes the floor function.
More precisely, the computation of the n-th digit is given by the formula an = bβTnβ (x)c.
Then Rényi showed, among other things, that the map Tβ defines an ergodic dynamical
system. The dynamical properties of the β-expansions were extensively studied since the
seminal work of Rényi.

In particular, the β-shift Sβ received a lot of attention. This set is defined as the
topological closure (with respect to the product topology on infinite words) of the set
{dβ(x) : x ∈ [0, 1)}. It is shift invariant and it defines a dynamical system that is measure
theoretically isomorphic to the dynamical system built on Tβ . Parry provided a combina-
torial characterization of elements in the β-shift [7] involving one particular infinite word
d∗β(1), which is nowadays called the quasi-greedy β-expansion of 1 and which is defined as
the limit of the sequences dβ(x) as x tends to 1−, that is, d∗β(1) = limx→1− dβ(x). Ito
and Takahashi then showed that the β-shift Sβ is of finite type (which property they call
markovian) if and only if d∗β(1) is purely periodic [6]. Further, Bertrand-Mathis showed
that the β-shift Sβ is sofic if and only it d∗β(1) is ultimately periodic [1]. From these results,
we see the importance of the particular infinite word d∗β(1) in the study of β-expansions
of Rényi. Nowadays, real bases β such that d∗β(1) is ultimately periodic are called Parry
numbers.

In [9], Schmidt studied the set Per(β) of ultimately periodic points of the β-transfor-
mation Tβ . In particular, his results imply that all Pisot numbers, i.e., algebraic integers
β > 1 whose Galois conjugates (that is, the roots of the minimal polynomial of β) distinct
from β all have modulus less than 1, are Parry numbers. The aim of the present paper is
to understand the set of real numbers x ∈ [0, 1) having an ultimately periodic alternate
base expansion.

Alternate expansions of real numbers are a generalization of Rényi β-expansions [2]. We
give here the necessary background in order to state the generalization of Schmidt’s result
that we seek. An alternate base β = (β0, . . . , βp−1) is a p-tuple of real bases, that is, βi > 1
for every i ∈ [[0, p− 1]] (throughout this text, an interval of integers {i, . . . , j} with i ≤ j is
denoted [[i, j]]). A β-representation of a real number x is an infinite sequence a = (an)n∈N
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of integers such that

(0.1) x =
∞∑
m=0

p−1∑
i=0

amp+i
(β0 · · ·βp−1)mβ0 · · ·βi

.

We use the convention that for all n ∈ N, βn = βn mod p and

β(n) = (βn, . . . , βn+p−1).

For x ∈ [0, 1), a distinguished β-representation (εn)n∈N, called the β-expansion of x,
is obtained from the greedy algorithm: set r0 = x and, for n ∈ N, εn = bβnrnc and
rn+1 = βnrn − εn. The β-expansion of x is denoted dβ(x). The n-th digit εn belongs
to [[0, dβne − 1]]. The number rn is called the n-th remainder computed by the greedy
algorithm. Note that the remainders all belong to [0, 1).

We let Per(β) denote the set of real numbers in [0, 1) having an ultimately periodic
greedy β-expansion, that is,

(0.2) Per(β) = {x ∈ [0, 1) : dβ(x) is ultimately periodic}.

As in the real base case, the digits of the β-expansion may also be obtained by iterat-
ing a well-chosen transformation Tβ [3]. The set Per(β) may then be seen, up to some
technicalities, as the set of ultimately periodic points of this map Tβ.

We obtain the following result generalizing Schmidt’s theorems [9, Theorems 2.4 and
3.1]. Recall that a Salem number is an algebraic integer β > 1 whose Galois conjugates
distinct from β all have modulus less than or equal to 1, with equality for at least one of
them.

Theorem 1. Let β = (β0, . . . , βp−1) be an alternate base and set β =
∏p−1
i=0 βi.

(1) If Q ∩ [0, 1) ⊆
⋂p−1
i=0 Per(β(i)) then β0, . . . , βp−1 ∈ Q(β) and β is either a Pisot

number or a Salem number.
(2) If β is a Pisot number and β0, . . . , βp−1 ∈ Q(β) then Per(β) = Q(β) ∩ [0, 1).

Our proof of Theorem 1 is based on algebraic tools such as the alternate base spectrum
defined in [4] as a generalization of the β-spectrum originally introduced by Erdős, Joó and
Komornik [5]. In the reduced case of one real base, we obtain a proof that is much shorter
than Schmidt’s original one from [9].

We call β a Parry alternate base if d∗
β(i)(1) is eventually periodic for every i ∈ [[0, p− 1]].

As a direct consequence of Theorem 1, we reobtain the above-mentioned result from [4]
generalizing the fact that all Pisot numbers are Parry numbers.

Corollary 2. Let β = (β0, . . . , βp−1) be an alternate base and set β =
∏p−1
i=0 βi. If β is a

Pisot number and β0, . . . , βp−1 ∈ Q(β) then β is a Parry alternate base.

As a second corollary, we obtain the following property of Pisot numbers. This result
seems to be new; at least we were not able to find a reference for it.

Corollary 3. If β is a Pisot number then β ∈ Q(βp) for all p ∈ N≥1.

We also prove the following theorem generalizing [9, Theorem 2.5]. This result is a
refinement of the item (1) of Theorem 1.

Theorem 4. Let β = (β0, . . . , βp−1) be an alternate base such that β0, . . . , βp−1 ∈ Q(β)

and set β =
∏p−1
i=0 βi. If β is an algebraic integer that is neither a Pisot number nor a

Salem number then Per(β) ∩Q is nowhere dense in [0, 1).
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