[en] Microalgae are emerging as a sustainable source of bioproducts, including food, animal feed, nutraceuticals, and biofuels. This review emphasizes the need to carefully select suitable species and highlights the importance of strain optimization to enhance the feasibility of developing algae as a sustainable resource for food and biomaterial production. It discusses microalgal bioprospecting methods, different types of cultivation systems, microalgal biomass yields, and cultivation using wastewater. The paper highlights advances in artificial intelligence that can optimize algal productivity and overcome the limitations faced in current microalgal industries. Additionally, the potential of UV mutagenesis combined with high-throughput screening is examined as a strategy for generating improved strains without introducing foreign genetic material. The necessity of a multifaceted optimization approach for enhanced productivity is acknowledged. This review provides an overview of recent developments crucial for the commercial success of microalgal production.
Precision for document type :
Review article
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Amnah Salem Jumah Mohamed Alzahmi ; Université de Liège - ULiège > TERRA Research Centre ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech ; Laboratory of Algal, Synthetic, and Systems Biology > Division of Science > New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Daakour, Sarah ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biologie cellulaire et moléculaire ; Laboratory of Algal, Synthetic, and Systems Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Nelson, David; Laboratory of Algal, Synthetic, and Systems Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Al-Khairy, Dina; Laboratory of Algal, Synthetic, and Systems Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Twizere, Jean-Claude ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases - Viral Interactomes Network ; Laboratory of Algal, Synthetic, and Systems Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Salehi-Ashtiani, Kourosh; Laboratory of Algal, Synthetic, and Systems Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Language :
English
Title :
Enhancing algal production strategies: strain selection, AI-informed cultivation, and mutagenesis
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by NYUAD Faculty Research Funds (AD060).
Abdrabu R. Sharma S. K. Khraiwesh B. Jijakli K. Nelson D. R. Alzahmi A. et al. (2016). Single-cell characterization of microalgal lipid contents with confocal raman microscopy. Essent. Single Cell Anal. 14, 363–382. 10.1007/978-3-662-49118-8_14
Abo B. O. Odey E. A. Bakayoko M. Kalakodio L. (2019). Microalgae to biofuels production: a review on cultivation, application and renewable energy. Rev. Environ. Health 34, 91–99. 10.1515/reveh-2018-005230854832
Ahmad I. Abdullah N. Koji I. Yuzir A. Muhammad S. E. (2021). “Evolution of photobioreactors: a review based on microalgal perspective,” in IOP Conference Series: Materials Science and Engineering (Bristol: IOP Publishing), e012004. 10.1088/1757-899X/1142/1/012004
Ahn J. M. Kim J. Kim K. (2023). Ensemble machine learning of gradient boosting (XGBoost, LightGBM, CatBoost) and attention-based CNN-LSTM for harmful algal blooms forecasting. Toxins 15:608. 10.3390/toxins1510060837888638
Alishah Aratboni H. Rafiei N. Garcia-Granados R. Alemzadeh A. Morones-Ramírez J. R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial. Cell Factor. 18, 1–17. 10.1186/s12934-019-1228-431638987
Ampou E. E. Ouillon S. Andrefouet S. (2018). Challenges in rendering Coral Triangle habitat richness in remotely sensed habitat maps: the case of Bunaken Island (Indonesia). Mar. Pollut. Bull. 131, 72–82. 10.1016/j.marpolbul.2017.10.02629054770
Andersen R. A. (2004). Algal Culturing Techniques. Amsterdam: Elsevier.
Araújo R. Vázquez Calderón F. Sánchez López J. Azevedo I. C. Bruhn A. Fluch S. et al. (2021). Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy. Front. Mar. Sci. 7:626389. 10.3389/fmars.2020.626389
Arora N. Philippidis G. P. (2021). Microalgae strain improvement strategies: random mutagenesis and adaptive laboratory evolution. Trends Plant Sci. 26, 1199–1200. 10.1016/j.tplants.2021.06.00534226108
Ben Hassen T. El Bilali H. (2022). Impacts of the Russia-Ukraine war on global food security: towards more sustainable and resilient food systems? Foods 11:2301. 10.3390/foods1115230135954068
Berges J. A. Driskill A. M. Guinn E. J. Pokrzywinski K. Quinlan J. von Korff B. et al. (2021). Role of nearshore benthic algae in the Lake Michigan silica cycle. PLoS ONE 16:e0256838. 10.1371/journal.pone.025683834437648
Bleisch R. Freitag L. Ihadjadene Y. Sprenger U. Steingröwer J. Walther T. et al. (2022). Strain development in microalgal biotechnology-random mutagenesis techniques. Life 12:961. 10.3390/life1207096135888051
Boelen P. van Dijk R. Sinninghe Damsté J. S. Rijpstra W. I. C. Buma A. G. (2013). On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Expr. 3, 1–9. 10.1186/2191-0855-3-2623673135
Cao X. Zhao J. Wang Z. Xing B. (2021). New insight into the photo-transformation mechanisms of graphene oxide under UV-A, UV-B and UV-C lights. J. Hazard. Mater. 403:123683. 10.1016/j.jhazmat.2020.12368332846254
Cao X. C. Guo M. F. Han Y. Fan Y. T. Zhu J. H. Zhu H. et al. (2021). Systematic metabolite profiling of N-acetyldopamine oligomers from Cicadae Periostracum in rats by ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J. Pharmaceut. Biomed. Anal. 192:113665. 10.1016/j.jpba.2020.11366533120311
Carino J. D. Vital P. G. (2022). Characterization of isolated UV-C-irradiated mutants of microalga Chlorella vulgaris for future biofuel application. Environ. Dev. Sustainabil. 8, 1–18. 10.1007/s10668-021-02091-835002483
Castro-Gómez P. Montero O. Fontecha J. (2017). In-depth lipidomic analysis of molecular species of triacylglycerides, diacylglycerides, glycerophospholipids, and sphingolipids of buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS. Int. J. Mol. Sci. 18:605. 10.3390/ijms1803060528287421
Chen H. H. Xue L. L. Liang M. H. Jiang J. G. (2019). Effects of triethylamine on the expression patterns of two G3PDHs and lipid accumulation in Dunaliella tertiolecta. Enzyme Microb. Technol. 127, 17–21. 10.1016/j.enzmictec.2019.04.00431088612
Chen L. Liu T. Zhang W. Chen X. Wang J. (2012). Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour. Technol. 111, 208–214. 10.1016/j.biortech.2012.02.03322401712
Chong J. W. R. Tang D. Y. Y. Leong H. Y. Khoo K. S. Show P. L. Chew K. W. (2023). Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae. Bioengineered 14:2244232. 10.1080/21655979.2023.224423237578162
Chowdury K. H. Nahar N. Deb U. K. (2020). The growth factors involved in microalgae cultivation for biofuel production: a review. Comput. Water Energy Environ. Eng. 9, 185–215. 10.4236/cweee.2020.94012
Ciani M. Lippolis A. Fava F. Rodolfi L. Niccolai A. Tredici M. R. (2021). Microbes: food for the future. Foods 10:971. 10.3390/foods10050971
Concordio-Reis P. David H. Reis M. A. M. Amorim A. Freitas F. (2023). Bioprospecting for new exopolysaccharide-producing microalgae of marine origin. Int. Microbiol. 26, 1123–1130. 10.1007/s10123-023-00367-937140807
Coşgun A. Günay M. E. Yildirim R. (2023). Machine learning for algal biofuels: a critical review and perspective for future. Green Chem. 2023:D3GC00389B. 10.1039/D3GC00389B
Costa J. A. V. Freitas B. C. B. Santos T. D. Mitchell B. G. Morais M. G. (2019). Open pond systems for microalgal culture. Biofuels Algae 3, 199–223. 10.1016/B978-0-444-64192-2.00009-3
Darienko T. Gustavs L. Eggert A. Wolf W. Proeschold T. (2015). Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE 10:e0127838. 10.1371/journal.pone.012783826080086
Darwesh O. M. Mahmoud R. H. Abdo S. M. Marrez D. A. (2022). Isolation of Haematococcus lacustris as source of novel anti-multi-antibiotic resistant microbes agents; fractionation and identification of bioactive compounds. Biotechnol. Rep. 35:e00753. 10.1016/j.btre.2022.e0075335864885
Dasan Y. K. Lam M. K. Yusup S. Lim J. W. Show P. L. Tan I. S. et al. (2020). Cultivation of Chlorella vulgaris using sequential-flow bubble column photobioreactor: a stress-inducing strategy for lipid accumulation and carbon dioxide fixation. J. CO2 Util. 41:101226. 10.1016/j.jcou.2020.101226
Deniset-Besseau A. Coat R. Moutel B. Rebois R. Mathurin J. Grizeau D. et al. (2021). Revealing lipid body formation and its subcellular reorganization in oleaginous microalgae using correlative optical microscopy and infrared nanospectroscopy. Appl. Spectrosc. 75, 1538–1547. 10.1177/0003702821105065934608808
Diaz C. J. Douglas K. J. Kang K. Kolarik A. L. Malinovski R. Torres-Tiji Y. et al. (2023). Developing algae as a sustainable food source. Front. Nutr. 9:3147. 10.3389/fnut.2022.102984136742010
Elagoz A. M. Ambrosino L. Lauritano C. (2020). De novo transcriptome of the diatom Cylindrotheca closterium identifies genes involved in the metabolism of anti-inflammatory compounds. Sci. Rep. 10:4138. 10.1038/s41598-020-61007-032139778
Elkiran G. Nourani V. Abba S. (2019). Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J. Hydrol. 577:123962. 10.1016/j.jhydrol.2019.123962
Fathy W. A. Techen N. Elsayed K. Essawy E. Tawfik E. Abdelhameed M. S. et al. (2023). Insights into random mutagenesis techniques to enhance biomolecule production in microalgae: implications for economically viable bioprocesses. Int. Aquat. Res. 15, 85–102. 10.22034/IAR.2023.1982761.1419
Fu W. Nelson D. R. Mystikou A. Daakour S. Salehi-Ashtiani K. (2019). Advances in microalgal research and engineering development. Curr. Opin. Biotechnol. 59, 157–164. 10.1016/j.copbio.2019.05.01331252302
Gong Y. Wang Q. Wei L. Liang W. Wang L. Lv N. et al. (2023). Genome-wide adenine N6-methylation map unveils epigenomic regulation of lipid accumulation in Nannochloropsis. Plant Commun. 2023:100773. 10.1016/j.xplc.2023.10077338007614
Ha C.-E. Bhagavan N. (2022). Essentials of Medical Biochemistry. Amsterdam: Elsevier.
Hadi S. I. Santana H. Brunale P. P. Gomes T. G. Oliveira M. D. Matthiensen A. et al. (2016). DNA barcoding green microalgae isolated from neotropical inland waters. PLoS ONE 11:e0149284. 10.1371/journal.pone.014928426900844
Häubner N. Schumann R. Karsten U. (2006). Aeroterrestrial microalgae growing in biofilms on facades-response to temperature and water stress. Microbial. Ecol. 51, 285–293. 10.1007/s00248-006-9016-116596441
Helmy M. Elhalis H. Liu Y. Chow Y. Selvarajoo K. (2023). Perspective: multiomics and machine learning help unleash the alternative food potential of microalgae. Adv. Nutr. 14, 1–11. 10.1016/j.advnut.2022.11.00236811582
Huesemann M. Dale T. Chavis A. Crowe B. Twary S. Barry A. et al. (2017). Simulation of outdoor pond cultures using indoor LED-lighted and temperature-controlled raceway ponds and Phenometrics photobioreactors. Algal Res. 21, 178–190. 10.1016/j.algal.2016.11.016
IGB (2023). Algae Cultivation. Available online at: https://www.igb.fraunhofer.de/en/about-us/spotlight/machine-learning-for-algae-cultivation.html (accessed October 17, 2023).
Jaiswal K. K. Chowdhury C. R. Yadav D. Verma R. Dutta S. Jaiswal K. S. et al. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 7:100118. 10.1016/j.nexus.2022.100118
Jareonsin S. Pumas C. (2021). Advantages of heterotrophic microalgae as a host for phytochemicals production. Front. Bioeng. Biotechnol. 9:628597. 10.3389/fbioe.2021.62859733644020
Khan M. I. Shin J. H. Kim J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial. Cell Factor. 17, 1–21. 10.1186/s12934-018-0879-x29506528
Khoo K. S. Ahmad I. Chew K. W. Iwamoto K. Bhatnagar A. Show P. L. (2023). Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: a review. Progr. Energy Combust. Sci. 96:101071. 10.1016/j.pecs.2023.101071
Kim S. Kim M. Chang Y. K. Kim D. (2023). Lipid production under a nutrient-sufficient condition outperforms starvation conditions due to a natural polarization of lipid content in algal biofilm. Fuel 339:126902. 10.1016/j.fuel.2022.126902
Kumar D. Agrawal S. Sahoo D. (2023). Assessment of the intrinsic bioremediation capacity of a complexly contaminated Yamuna River of India: a algae-specific approach. Int. J. Phytoremed. 2, 1–15. 10.1080/15226514.2023.220086237088802
Kumar G. Shekh A. Jakhu S. Sharma Y. Kapoor R. Sharma T. R. (2020). Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front. Bioeng. Biotechnol. 8:914. 10.3389/fbioe.2020.0091433014997
Kurniawan R. Nurkolis F. Taslim N. A. Subali D. Surya R. Gunawan W. B. et al. (2023). Carotenoids composition of green algae Caulerpa racemosa and their antidiabetic, anti-obesity, antioxidant, and anti-inflammatory properties. Molecules 28:3267. 10.3390/molecules2807326737050034
Lacour T. Robert E. Lavaud J. (2023). Sustained xanthophyll pigments-related photoprotective NPQ is involved in photoinhibition in the haptophyte Tisochrysis lutea. Sci. Rep. 13:14694. 10.1038/s41598-023-40298-z37679420
Lananan F. Jusoh A. Lam S. S. Endut A. (2013). Effect of conway medium and f/2 medium on the growth of six genera of South China Sea marine microalgae. Bioresour. Technol. 141, 75–82. 10.1016/j.biortech.2013.03.00623562179
Lee B.-J. Zhou Y. Lee J. S. Shin B. K. Seo J.-A. Lee D. et al. (2018). Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis. PLoS ONE 13:e0196315. 10.1371/journal.pone.019631529689113
Leitner P. D. Jakschitz T. Gstir R. Stuppner S. Perkams S. Kruus M. et al. (2022). Anti-inflammatory extract from soil algae Chromochloris zofingiensis targeting TNFR/NF-κB signaling at different levels. Cells 11:1407. 10.3390/cells1109140735563717
Leong W. H. Kiatkittipong K. Kiatkittipong W. Cheng Y. W. Lam M. K. Shamsuddin R. et al. (2020). Comparative performances of microalgal-bacterial co-cultivation to bioremediate synthetic and municipal wastewaters whilst producing biodiesel sustainably. Processes 8:1427. 10.3390/pr8111427
Leong W. H. Kiatkittipong W. Lam M. K. Khoo K. S. Show P. L. Mohamad M. et al. (2022). Dual nutrient heterogeneity modes in a continuous flow photobioreactor for optimum nitrogen assimilation to produce microalgal biodiesel. Renew. Energy 184, 443–451. 10.1016/j.renene.2021.11.117
Leong W. H. Lim J. W. Lam M. K. Lam S. M. Sin J. C. Samson A. (2021). Novel sequential flow baffled microalgal-bacterial photobioreactor for enhancing nitrogen assimilation into microalgal biomass whilst bioremediating nutrient-rich wastewater simultaneously. J. Hazard. Mater. 409:124455. 10.1016/j.jhazmat.2020.12445533168319
Lin-Lan Z. Jing-Han W. Hong-Ying H. (2018). Differences between attached and suspended microalgal cells in ssPBR from the perspective of physiological properties. J. Photochem. Photobiol. B 181, 164–169. 10.1016/j.jphotobiol.2018.03.01429571071
Liu P. Y. Li G. Lin C. B. Wu J. J. Jiang S. Huang F. H. et al. (2022). Modulating DHA-producing Schizochytrium sp. toward astaxanthin biosynthesis via a seamless genome editing system. ACS Synth. Biol 11, 4171–4183. 10.1021/acssynbio.2c0049036454215
Liu S. Zhao Y. Liu L. Ao X. Ma L. Wu M. et al. (2015). Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Appl. Biochem. Biotechnol. 175, 3507–3518. 10.1007/s12010-015-1521-625724975
Long B. Fischer B. Zeng Y. Amerigian Z. Li Q. Bryant H. et al. (2022). Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nat. Commun. 13:541. 10.1038/s41467-021-27665-y35087023
Lopez A. Rico M. Santana-Casiano J. M. Gonzalez A. G. Gonzalez-Davila M. (2015). Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ. Sci. Pollut. Res. Int. 22, 14820–14828. 10.1007/s11356-015-4717-y25989863
Lue L.-F. Walker D. G. Beh S. T. Beach T. G. (2022). Isolation of human microglia from neuropathologically diagnosed cases in the single-cell era. Alzheimer's Dis. 3, 43–62. 10.1007/978-1-0716-2655-9_336399264
Manabe Y. Takagi-Hayashi S. Mohri S. Sugawara T. (2023). Intestinal absorption and anti-inflammatory effects of siphonein, a siphonaxanthin fatty acid ester from green algae. J. Nutrit. Sci. Vitaminol. 69, 62–70. 10.3177/jnsv.69.6236858542
Mancini A. Imperlini E. Nigro E. Montagnese C. Daniele A. Orrù S. et al. (2015). Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules 20, 17339–17361. 10.3390/molecules20091733926393565
Martínez-Ruiz M. Molina-Vázquez A. Santiesteban-Romero B. Reyes-Pardo H. Villaseñor-Zepeda K. R. Meléndez-Sánchez E. R.. (2022). Micro-algae assisted green bioremediation of water pollutants rich leachate and source products recovery. Environ. Pollut. 306:119422. 10.1016/j.envpol.2022.11942235533958
Milledge J. J. Heaven S. (2013). A review of the harvesting of micro-algae for biofuel production. Rev. Environ. Sci. Bio/Technol. 12, 165–178. 10.1007/s11157-012-9301-z
Mohamadnia S. Tavakoli O. Faramarzi M. A. (2022). Production of fucoxanthin from the microalga Tisochrysis lutea in the bubble column photobioreactor applying mass transfer coefficient. J. Biotechnol. 348, 47–54. 10.1016/j.jbiotec.2022.03.00935331727
Moore D. (2021). Saving the planet with appropriate biotechnology: 4. coccolithophore cultivation and deployment/Salvando el planeta con biotecnología apropiada: 4. Cultivo de cocolitóforos e implementación. Mex. J. Biotechnol. 6, 129–155. 10.29267/mxjb.2021.6.1.129
Morales M. Collet P. Lardon L. Hélias A. Steyer J.-P. Bernard O. (2019). Life-cycle assessment of microalgal-based biofuel. Biofuels Algae 2, 507–550. 10.1016/B978-0-444-64192-2.00020-2
Nelson D. R. Chaiboonchoe A. Fu W. Hazzouri K. M. Huang Z. Jaiswal A. et al. (2019). Potential for heightened sulfur-metabolic capacity in coastal subtropical microalgae. Iscience 11, 450–465. 10.1016/j.isci.2018.12.03530684492
Nelson D. R. Khraiwesh B. Fu W. Alseekh S. Jaiswal A. Chaiboonchoe A. et al. (2017). The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization. Elife 6:e25783. 10.7554/eLife.2578328623667
Nelson D. R. Mengistu S. Ranum P. Celio G. Mashek M. Mashek D. et al. (2013). New lipid-producing, cold-tolerant yellow-green alga isolated from the Rocky Mountains of Colorado. Biotechnol. Prog. 29, 853–861. 10.1002/btpr.175523754623
Noguchi R. Ahamed T. Rani D. S. Sakurai K. Nasution M. A. Wibawa D. S. et al. (2019). Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond. Biosyst. Eng. 177, 122–129. 10.1016/j.biosystemseng.2018.10.002
Nourani V. Elkiran G. Abba S. (2018). Wastewater treatment plant performance analysis using artificial intelligence-an ensemble approach. Water Sci. Technol. 78, 2064–2076. 10.2166/wst.2018.47730629534
Nwoba E. G. Parlevliet D. A. Laird D. W. Alameh K. Moheimani N. R. (2019). Light management technologies for increasing algal photobioreactor efficiency. Algal Res. 39:101433. 10.1016/j.algal.2019.101433
Okumura N. Kusakabe A. Hirano H. Inoue R. Okazaki Y. Nakano S. et al. (2015). Density-gradient centrifugation enables the purification of cultured corneal endothelial cells for cell therapy by eliminating senescent cells. Sci. Rep. 5:15005. 10.1038/srep1500526443440
Otálora P. Guzmán J. Acién F. Berenguel M. Reul A. (2023). An artificial intelligence approach for identification of microalgae cultures. N. Biotechnol. 77, 58–67. 10.1016/j.nbt.2023.07.00337467926
Pathy A. Meher S. P. B. (2020). Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods. Algal Res. 50:102006. 10.1016/j.algal.2020.102006
Pereira H. Schulze P. S. Schüler L. M. Santos T. Barreira L. Varela J. (2018). Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Res. 30, 113–120. 10.1016/j.algal.2017.12.013
Peter A. P. Chew K. W. Pandey A. Lau S. Y. Rajendran S. Ting H. Y. et al. (2023). Artificial intelligence model for monitoring biomass growth in semi-batch Chlorella vulgaris cultivation. Fuel 333:126438. 10.1016/j.fuel.2022.126438
Pradhan B. Ki J. S. (2022). Phytoplankton toxins and their potential therapeutic applications: a journey toward the quest for potent pharmaceuticals. Mari. Drugs 20:271. 10.3390/md2004027135447944
Qi F. Wu D. Mu R. Zhang S. Xu X. (2018). Characterization of a microalgal UV mutant for CO2 biofixation and biomass production. Biomed. Res. Int. 2018:4375170. 10.1155/2018/437517030671452
Qin S. Wang K. Gao F. Ge B. Cui H. Li W. (2023). Biotechnologies for bulk production of microalgal biomass: from mass cultivation to dried biomass acquisition. Biotechnol. Biofuels Bioproduct. 16:131. 10.1186/s13068-023-02382-437644516
Rachmayati R. Agustriana E. Rahman D. Y. (2020). UV mutagenesis as a strategy to enhance growth and lipid productivity of Chlorella sp. 042. J. Trop. Biodivers. Biotechnol. 5:218. 10.22146/jtbb.56862
Rafa N. Ahmed S. F. Badruddin I. A. Mofijur M. Kamangar S. (2021). Strategies to produce cost-effective third-generation biofuel from microalgae. Front. Energy Res. 9:749968. 10.3389/fenrg.2021.749968
Rahman D. Rachmayati R. Widyaningrum D. Susilaningsih D. (2020). “Enhancement of lipid production of Chlorella sp. 042 by mutagenesis,” in IOP Conference Series: Earth and Environmental Science (Bristol: IOP Publishing), e012021. 10.1088/1755-1315/439/1/012021
Rahman K. M. (2020). Food and high value products from microalgae: market opportunities and challenges. Microalgae Biotechnol. Food Health High Value Prod. 1, 3–27. 10.1007/978-981-15-0169-2_1
Russell C. Rodriguez C. Yaseen M. (2022). Microalgae for lipid production: cultivation, extraction & detection. Algal Res. 66:102765. 10.1016/j.algal.2022.102765
Satya A. D. M. Cheah W. Y. Yazdi S. K. Cheng Y.-S. Khoo K. S. Vo D.-V. N. et al. (2023). Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy. Environ. Res. 218:114948. 10.1016/j.envres.2022.11494836455634
Scalfi-Happ C. Udart M. Hauser C. Rück A. (2011). Investigation of lipid bodies in a colon carcinoma cell line by confocal Raman microscopy. Med. Laser Appl. 26, 152–157. 10.1016/j.mla.2011.08.002
Sharma S. K. Nelson D. R. Abdrabu R. Khraiwesh B. Jijakli K. Arnoux M. et al. (2015). An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnol. Biofuels 8, 1–14. 10.1186/s13068-015-0349-126442756
Shekh A. Sharma A. Schenk P. M. Kumar G. Mudliar S. (2022). Microalgae cultivation: photobioreactors, CO2 utilization, and value-added products of industrial importance. J. Chem. Technol. Biotechnol. 97, 1064–1085. 10.1002/jctb.6902
Sibanda T. Buys E. M. (2017). Resuscitation and growth kinetics of sub-lethally injured Listeria monocytogenes strains following fluorescence activated cell sorting (FACS). Food Res. Int. 100, 150–158. 10.1016/j.foodres.2017.08.02028888435
Sivaramakrishnan R. Incharoensakdi A. (2017). Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment. Bioresour. Technol. 235, 366–370. 10.1016/j.biortech.2017.03.10228384589
Sivaramakrishnan R. Incharoensakdi A. (2023). UV mutagenesis followed by hydrogen peroxide treatment ameliorates lipid production and omega-3 fatty acids levels in Chlorella sp. Algal Res. 74:103195. 10.1016/j.algal.2023.103195
Skeffington A. W. Scheffel A. (2018). Exploiting algal mineralization for nanotechnology: bringing coccoliths to the fore. Curr. Opin. Biotechnol. 49, 57–63. 10.1016/j.copbio.2017.07.01328822276
Slocombe S. P. Huete-Ortega M. Kapoore R. V. Okurowska K. Mair A. Day J. G. et al. (2021). Enabling large-scale production of algal oil in continuous output mode. Iscience 24:102743. 10.1016/j.isci.2021.10274334278255
Sonmez M. E. Altinsoy B. Ozturk B. Y. Gumus N. E. Eczacioglu N. (2023). Deep learning-based classification of microalgae using light and scanning electron microscopy images. Micron 172:103506. 10.1016/j.micron.2023.10350637406585
Sundaram T. Rajendran S. Gnanasekaran L. Rachmadona N. Jiang J.-J. Khoo K. S. et al. (2023). Bioengineering strategies of microalgae biomass for biofuel production: recent advancement and insight. Bioengineered 14:2252228. 10.1080/21655979.2023.225222837661811
Sydney T. Marshall-Thompson J.-A. Kapoore R. V. Vaidyanathan S. Pandhal J. Fairclough J. P. A. (2018). The effect of high-intensity ultraviolet light to elicit microalgal cell lysis and enhance lipid extraction. Metabolites 8:65. 10.3390/metabo804006530326577
Tan J. S. Lee S. Y. Chew K. W. Lam M. K. Lim J. W. Ho S.-H. et al. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11, 116–129. 10.1080/21655979.2020.171162631909681
Thakur A. Konde A. (2021). Fundamentals of neural networks. Int. J. Res. Appl. Sci. Eng. Technol. 9, 407–426. 10.22214/ijraset.2021.37362
Tornabene L. Valdez S. Erdmann M. Pezold F. (2015). Support for a “Center of Origin” in the Coral Triangle: cryptic diversity, recent speciation, and local endemism in a diverse lineage of reef fishes (Gobiidae: Eviota). Mol. Phylogenet. Evol. 82, 200–210. 10.1016/j.ympev.2014.09.01225300452
Trovão M. Schüler L. M. Machado A. Bombo G. Navalho S. Barros A. et al. (2022). Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. Mar. Drugs 20:440. 10.3390/md2007044035877733
Udayan A. Pandey A. K. Sirohi R. Sreekumar N. Sang B.-I. Sim S. J. et al. (2023). Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem. Rev. 22, 833–860. 10.1007/s11101-021-09784-y35095355
Udayan A. Sirohi R. Sreekumar N. Sang B.-I. Sim S. J. (2022). Mass cultivation and harvesting of microalgal biomass: current trends and future perspectives. Bioresour. Technol. 344:126406. 10.1016/j.biortech.2021.12640634826565
Uzlasir T. Selli S. Kelebek H. (2023). Effect of salt stress on the phenolic compounds, antioxidant capacity, microbial load, and in vitro bioaccessibility of two microalgae species (Phaeodactylum tricornutum and Spirulina platensis). Foods 12:3185. 10.3390/foods1217318537685119
Varela Villarreal J. Burgués C. Rösch C. (2020). Acceptability of genetically engineered algae biofuels in Europe: opinions of experts and stakeholders. Biotechnol. Biofuels 13, 1–21. 10.1186/s13068-020-01730-y32489422
Vigeolas H. Duby F. Kaymak E. Niessen G. Motte P. Franck F. et al. (2012). Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J. Biotechnol. 162, 3–12. 10.1016/j.jbiotec.2012.03.01722480533
Villanova V. Spetea C. (2021). Mixotrophy in diatoms: molecular mechanism and industrial potential. Physiol. Plant. 173, 603–611. 10.1111/ppl.1347134076276
Wan Afifudeen C. L. Teh K. Y. Cha T. S. (2022). Bioprospecting of microalgae metabolites against cytokine storm syndrome during COVID-19. Mol. Biol. Rep. 49, 1475–1490. 10.1007/s11033-021-06903-y34751914
Wang L. Zhang B. (2022). “Cultivation of microalgae on agricultural wastewater for recycling energy, water, and fertilizer nutrients,” in Integrated Wastewater Management and Valorization Using Algal Cultures (Amsterdam: Elsevier), 235–264.
Wang L. R. Zhang Z. X. Nong F. T. Li J. Huang P. W. Ma W. et al. (2022). Engineering the xylose metabolism in Schizochytrium sp. to improve the utilization of lignocellulose. Biotechnol. Biofuels Bioprod. 15:114. 10.1186/s13068-022-02215-w36289497
Wang S. B. Chen F. Sommerfeld M. Hu Q. (2005). Isolation and proteomic analysis [corrected] of cell wall-deficient Haematococcus pluvialis mutants. Proteomics 5, 4839–4851. 10.1002/pmic.20040009216281177
Williams S. L. Ambo-Rappe R. Sur C. Abbott J. M. Limbong S. R. (2017). Species richness accelerates marine ecosystem restoration in the Coral Triangle. Proc. Natl. Acad. Sci. U. S. A. 114, 11986–11991. 10.1073/pnas.170796211429078320
Wu Z. Chen G. Chong S. Mak N. Chen F. Jiang Y. (2010). Ultraviolet-B radiation improves astaxanthin accumulation in green microalga Haematococcus pluvialis. Biotechnol. Lett. 32, 1911–1914. 10.1007/s10529-010-0371-020697930
Xie Y. Khoo K. S. Chew K. W. Devadas V. V. Phang S. J. Lim H. R. et al. (2022). Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresour. Technol. 363:127830. 10.1016/j.biortech.2022.12783036029982
Yang N. Zhang Q. Chen J. Wu S. Chen R. Yao L. et al. (2023). Study on bioactive compounds of microalgae as antioxidants in a bibliometric analysis and visualization perspective. Front. Plant Sci. 14:1144326. 10.3389/fpls.2023.114432637056511
Yi Z. Su Y. Xu M. Bergmann A. Ingthorsson S. Rolfsson O. et al. (2018). Chemical mutagenesis and fluorescence-based high-throughput screening for enhanced accumulation of carotenoids in a model marine diatom Phaeodactylum tricornutum. Mar. Drugs 16:272. 10.3390/md1608027230081564
Yu K. L. Show P. L. Ong H. C. Ling T. C. Chen W.-H. Salleh M. A. M. (2018). Biochar production from microalgae cultivation through pyrolysis as a sustainable carbon sequestration and biorefinery approach. Clean Technol. Environ. Pol. 20, 2047–2055. 10.1007/s10098-018-1521-7
Zhang L. Hu T. Yao S. Hu C. Xing H. Liu K. et al. (2023). Enhancement of astaxanthin production, recovery, and bio-accessibility in Haematococcus pluvialis through taurine-mediated inhibition of secondary cell wall formation under high light conditions. Bioresour. Technol. 389:129802. 10.1016/j.biortech.2023.12980237783237
Zhang R. Wu H. Su Y. Qiu L. Ni H. Xu K.-M. et al. (2021). In-situ high-precision surface topographic and Raman mapping by divided-aperture differential confocal Raman microscopy. Appl. Surf. Sci. 546:149061. 10.1016/j.apsusc.2021.149061
Zhao D. Cheah W. Y. Lai S. H. Ng E. P. Khoo K. S. Show P. L. et al. (2023). Symbiosis of microalgae and bacteria consortium for heavy metal remediation in wastewater. J. Environ. Chem. Eng. 2023:109943. 10.1016/j.jece.2023.109943
Zhao Q. Huang H. (2021). “Microalgae cultivation,” in Advances in Bioenergy (Amsterdam: Elsevier), 37–115.
Zhou L. Duan X. Li K. Hill D. R. A. Martin G. J. O. Suleria H. A. R. (2023). Extraction and characterization of bioactive compounds from diverse marine microalgae and their potential antioxidant activities. Chem. Biodivers. 2023:e202300602. 10.1002/cbdv.20230060237798811
Zou S. Fei C. Wang C. Gao Z. Bao Y. He M. et al. (2016). How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae). Sci. Rep. 6:36822. 10.1038/srep3682227827440