Poster (Scientific congresses and symposiums)
UAS LiDAR height, density, and intensity parameters and multispectral reflectance in artificial neural networks (ANN) for winter wheat biomass estimations over a growing season
Bates, Jordan; Jonard, François; Bajracharya, R. et al.
2023AGU Fall Meeting
Editorial reviewed
 

Files


Full Text
Bates AGU2023_LiDAR Biomass.pdf
Author postprint (2.06 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Disciplines :
Environmental sciences & ecology
Earth sciences & physical geography
Author, co-author :
Bates, Jordan ;  Université de Liège - ULiège > Département de géographie > Earth Observation and Ecosystem Modelling (EOSystM Lab)
Jonard, François  ;  Université de Liège - ULiège > Département de géographie ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département de géographie > Earth Observation and Ecosystem Modelling (EOSystM Lab)
Bajracharya, R.
Vereecken, Harry;  FZJ - Forschungszentrum Jülich [DE]
Montzka, Carsten;  FZJ - Forschungszentrum Jülich [DE]
Language :
English
Title :
UAS LiDAR height, density, and intensity parameters and multispectral reflectance in artificial neural networks (ANN) for winter wheat biomass estimations over a growing season
Publication date :
2023
Event name :
AGU Fall Meeting
Event place :
San Francisco, United States - California
Event date :
December 11-15, 2023
Audience :
International
Peer reviewed :
Editorial reviewed
Available on ORBi :
since 22 April 2024

Statistics


Number of views
18 (3 by ULiège)
Number of downloads
9 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi