

UAS LIDAR Height, Density, and Intensity Parameters and Multispectral Reflectance in Artificial Neural Networks (ANN) for Winter Wheat Biomass Estimations Over a Growing Season

Jordan Bates¹, François Jonard^{1,2}, Rajina Bajracharya¹, Harry Vereecken¹, Carsten Montzka¹ 1. Institute of Bio- and Geosciences (IBG-3) Forschungszentrum Jülich

2. Earth Observation and Ecosystem Modelling Laboratory, SPHERES Research Unit, Université de Liège

Introduction

- Use of UAS multispectral sensors when estimating biomass or other agricultural metrics, although good at indicating plant health, are victim to saturation effects providing less insight on the spatial variability.
- LiDAR provides information on the plant structure throughout the vertical extent of the canopy and is not impacted by issues of omission from shadowing.

Study Area & Experimental Design

Derived UAS Data Products

Winter wheat experiment PhenoRob central (CKA experiment site, Germany) consisting of 12 plots and 72 subplots.

• This study looks into combining different products from these sensors to find the best estimation of biomass for winter wheat throughout a growing season.

UAS Data Collection

Destructive measurements 10 different taken from flight subplots each campaign

Methods

Artificial Neural Network

- All derived UAS sensor products in different combinations plugged into artificial neural networks for best predictors of biomass.
- LiDAR:
 - canopy height model (CHM)
 - Signal Intensity
 - Multi-layer gap fraction (5 x 20cm layers)
- Multispectral bands:
 - \circ red
 - red-edge
 - near infrared (NIR)

Results

																7	05.19.2021	05.31.2021	
NIR -	1	0.53	-0.08	-0.23	0.48	0.5	0.42	0.41	0.4	-0.01	0.23	- 1	RMSE = 3.06 t/ha R2 = 0.63	Date 15	RMSE = 2.94 t/ha R2 = 0.69	Date	DM (t/ha)		DM (t/ha
		0.55	0.00	0.20	0.40	0.5	0.42	0.41	0.4	0.01		y, Int		• 05 19 2021 g		• 04.19.2021	- 10		- 10
Red.edge -	0.53	1	0.67	-0.5	0.85	0.65	0.81	0.83	0.69	-0.45	0.7	- 0.8 HO		• 05.31.2021	· · · · ·	• 05.31.2021	- 5		- 5
Red -	-0.08	0.67	1	-0.46	0.61	0.35	0.57	0.6	0.53	-0.36	0.6	- 0.6 ¹ SA	• • 🌱 🚬	07.05.2021 07.27.2021	••*	00.14.2021 07.05.2021 07.07.07.2021			- 0 5
NIR_LIDAR -	-0.23	-0.5	-0.46	1	-0.75	-0.31	-0.48	-0.66	-0.75	-0.04	-0.59	- 0.4	. *	• 08.05.2021	. *	• 08.05.2021			
CHM -	0.48	0.85	0.61	-0.75	1	0.62	0.82	0.92	0.9	-0.23	0.85	- 0.2		0-/	×	290			

07.27

Related Work

- Bates, J. S., Montzka, C., Schmidt, M., & Jonard, F. (2021). Estimating Canopy Density Parameters TimeSeries for Winter (1)Wheat Using UAS Mounted LiDAR. Remote Sensing, 13(4), 710.
- Bates, J., Jonard, F., Bajracharya, R., Vereecken, H., and Montzka, C.: Machine Learning with UAS LiDAR for Winter Wheat (2) Biomass Estimations, AGILE GIScience Ser., 3, 23.
- Montzka, C.; Donat, M.; Raj, R.; Welter, P.; Bates, J.S. Sensitivity of LiDAR Parameters to Aboveground Biomass in Winter (3) Spelt. Drones 2023, 7, 121.

Contact Information: j.bates@fz-Juelich.de