Encapsulation; Green process; Liposome; One-step process; Production; Quality by design; Sterility assurance level; Sterilization; Supercritical carbon dioxide; Liposomes; Carbon Dioxide; Carbon Dioxide/chemistry; Drug Delivery Systems; Liposomes/chemistry
Abstract :
[en] Liposomes are very interesting drug delivery systems for pharmaceutical and therapeutic purposes. However, liposome sterilization as well as their industrial manufacturing remain challenging. Supercritical carbon dioxide is an innovative technology that can potentially overcome these limitations. The aim of this study was to optimize a one-step process for producing and sterilizing liposomes using supercritical CO2. For this purpose, a design of experiment was conducted. The analysis of the experimental design showed that the temperature is the most influential parameter to achieve the sterility assurance level (SAL) required for liposomes (≤10-6). Optimal conditions (80 °C, 240 bar, 30 min) were identified to obtain the fixed critical quality attributes of liposomes. The conditions for preparing and sterilizing empty liposomes of various compositions, as well as liposomes containing the poorly water-soluble drug budesonide, were validated. The results indicate that the liposomes have appropriate physicochemical characteristics for drug delivery, with a size of 200 nm or less and a PdI of 0.35 or less. Additionally, all liposome formulations demonstrated the required SAL and sterility at concentrations of 5 and 45 mM, with high encapsulation efficiency.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Penoy, Noémie ✱; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Delma, Kouka Luc ✱; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Homkar, Nirmayi; Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
Karim Sakira, Abdoul; Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale des Sciences de La Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03 Ouagadougou, Burkina Faso
Egrek, Sabrina ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Sacheli, Rosalie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
Sacre, Pierre-Yves ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Grignard, Bruno ; Université de Liège - ULiège > Département de chimie (sciences) > Centre d'études et de recherches sur les macromolécules (CERM)
Hayette, Marie-Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie et microbiologie
Somé, Touridomon Issa; Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale des Sciences de La Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03 Ouagadougou, Burkina Faso
Semdé, Rasmané ; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
Evrard, Brigitte ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Piel, Géraldine ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
The authors would like to acknowledge the Professors Michel Frederich and Joëlle Leclercq for their precious material and technical support, the laboratory of Microbiology for the material and technical support and the FEDER funds (PHARE project) as well as the Academy of Research and Higher Education – Committee for Development Cooperation (ARES-CCD) for their financial assistance.
Assadpour, E., Rezaei, A., Das, S.S., Krishna Rao, B.V., Singh, S.K., Kharazmi, M.S., et al. Cannabidiol-loaded nanocarriers and their therapeutic applications. Pharmaceuticals 16 (2023), 1–26, 10.3390/ph16040487.
Bernhardt, A., Wehrl, M., Paul, B., Hochmuth, T., Schumacher, M., Schütz, K., Gelinsky, M., Zeugolis, D., Improved sterilization of sensitive biomaterials with supercritical carbon dioxide at low temperature. PLoS. One, 10(6), 2015, e0129205, 10.1371/JOURNAL.PONE.0129205.
Bigazzi, W., Penoy, N., Evrard, B., Piel, G., Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem. Eng. J, 383, 2020, 123106, 10.1016/j.cej.2019.123106.
Bridson, R.H., Santos, R.C.D., Al-Duri, B., McAllister, S.M., Robertson, J., Alpar, H.O., The preparation of liposomes using compressed carbon dioxide: strategies, important considerations and comparison with conventional techniques. J. Pharm. Pharmacol 58 (2006), 775–785, 10.1211/jpp.58.6.0008.
Crommelin, D.J.A., van Hoogevest, P., Storm, G., The role of liposomes in clinical nanomedicine development. What now? Now what?. J. Control. Release 318 (2020), 256–263, 10.1016/j.jconrel.2019.12.023.
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M., Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharm, 10(2), 2018, 57, 10.3390/PHARMACEUTICS10020057.
Dang, H., Hasan Weiwei Meng, M., Zhao, H., Iqbal, J., Dai, R., Deng, Y., et al. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies n.d. J. Nanopart. Res, 16, 2014, 2347, 10.1007/s11051-014-2347-9.
Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., Akbarzadeh, A., Application of liposomes in medicine and drug delivery. Artif. Cells,. Nanomedicine. Biotechnol 44 (2016), 381–391, 10.3109/21691401.2014.953633.
Delma, K.L., Lechanteur, A., Evrard, B., Semdé, R., Piel, G., Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives. Int. J. Pharm, 597, 2021, 120271, 10.1016/j.ijpharm.2021.120271.
Delma, K.L., Penoy, N., Grignard, B., Semdé, R., Evrard, B., Piel, G., Effects of supercritical carbon dioxide under conditions potentially conducive to sterilization on physicochemical characteristics of a liposome formulation containing apigenin. J. Supercrit. Fluids, 179, 2022, 105418, 10.1016/J.SUPFLU.2021.105418.
Delma, K.L., Penoy, N., Sakira, A.K., Egrek, S., Sacheli, R., Grignard, B., Hayette, M.-P., Issa Somé, T., Evrard, B., Semdé, R., Piel, G., Use of supercritical CO2 for the sterilization of liposomes: Study of the influence of sterilization conditions on the chemical and physical stability of phospholipids and liposomes. Eur. J. Pharm. Biopharm 183 (2023), 112–118.
Dymek, M., Sikora, E., Liposomes as biocompatible and smart delivery systems – the current state. Adv. Colloid. Interface. Sci, 309, 2022, 102757, 10.1016/J.CIS.2022.102757.
Eloy, J.O., Claro de Souza, M., Petrilli, R., Barcellos, J.P.A., Lee, R.J., Marchetti, J.M., Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids. Surfaces. B. Biointerfaces 123 (2014), 345–363, 10.1016/j.colsurfb.2014.09.029.
Galante, R., Rediguieri, C.F., Kikuchi, I.S., Vasquez, P.A.S., Colaço, R., Serro, A.P., Pinto, T.J.A., Santos, H.A., About the sterilization of chitosan hydrogel nanoparticles. PLoS. One, 11(12), 2016, e0168862, 10.1371/JOURNAL.PONE.0168862.
Grit, M., Crommelin, D.J.A., Chemical stability of liposomes: implications for their physical stability. Chem. Phys. Lipids 64 (1993), 3–18.
Guimarães, D., Cavaco-Paulo, A., Nogueira, E., Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm, 601, 2021, 120571, 10.1016/J.IJPHARM.2021.120571.
Hasan, M., Iqbal, J., Awan, U., Xin, N., Dang, H., Waryani, B., et al. LX Loaded Nanoliposomes Synthesis, Characterization and Cellular Uptake Studies in H 2 O 2 Stressed SH-SY5Y Cells. J. Nanosci. Nanotechnol 14 (2014), 4066–4071, 10.1166/jnn.2014.8201.
Hasan, M., Zafar, A., Yousaf, M., Gulzar, H., Mehmood, K., Hassan, S.G., Saeed, A., Yousaf, A., Mazher, A., Rongji, D., Mahmood, N., Synthesis of Loureirin B-Loaded Nanoliposomes for Pharmacokinetics in Rat Plasma. ACS. Omega 4:4 (2019), 6914–6922.
Karn, P.R., Cho, W., Hwang, S.J., Liposomal drug products and recent advances in the synthesis of supercritical fluid-mediated liposomes. Nanomedicine 8 (2013), 1529–1548, 10.2217/nnm.13.131.
Lechanteur, A., Furst, T., Evrard, B., Delvenne, P., Hubert, P., Piel, G., Development of anti-E6 pegylated lipoplexes for mucosal application in the context of cervical preneoplastic lesions. Int. J. Pharm 483 (2015), 268–277, 10.1016/J.IJPHARM.2015.02.041.
Liu, P., Chen, G., Zhang, J., A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules, 27, 2022, 1372, 10.3390/molecules27041372.
Lv, F., Hasan, M., Dang, H., Hassan, S.G., Meng, W., Deng, Y., Dai, R., Optimized Luteolin Loaded Solid Lipid Nanoparticle Under Stress Condition for Enhanced Bioavailability in Rat Plasma. J. Nanosci. Nanotechnol 16:9 (2016), 9443–9449.
Maja, L., Željko, K., Mateja, P., Sustainable technologies for liposome preparation. J. Supercrit. Fluids, 165, 2020, 104984, 10.1016/J.SUPFLU.2020.104984.
Mihailova, L., Tchekalarova, J., Shalabalija, D., Geskovski, N., Stoilkovska Gjorgievska, V., Stefkov, G., Krasteva, P., Simonoska Crcarevska, M., Glavas Dodov, M., Lipid nano-carriers loaded with Cannabis sativa extract for epilepsy treatment – in vitro characterization and in vivo efficacy studies. J. Pharm. Sci 111:12 (2022), 3384–3396.
Penoy, N., Grignard, B., Evrard, B., Piel, G., A supercritical fluid technology for liposome production and comparison with the film hydration method. Int. J. Pharm, 592, 2021, 120093, 10.1016/J.IJPHARM.2020.120093.
Penoy, N., Delma, K.L., Tonakpon, H.A., Grignard, B., Evrard, B., Piel, G., An innovative one step green supercritical CO2 process for the production of liposomes co-encapsulating both a hydrophobic and a hydrophilic compound for pulmonary administration. Int. J. Pharm, 627, 2022, 122212, 10.1016/J.IJPHARM.2022.122212.
Perrut, M., Sterilization and virus inactivation by supercritical fluids (a review). J. Supercrit. Fluids 66 (2012), 359–371, 10.1016/J.SUPFLU.2011.07.007.
Rao, L., Zhao, F., Wang, Y., Chen, F., Hu, X., Liao, X., Investigating the inactivation mechanism of Bacillus subtilis spores by high pressure CO2. Front. Microbiol, 7, 2016, 1411, 10.3389/FMICB.2016.01411/BIBTEX.
Reverchon, E., Della Porta, G., Adami, R., Medical device sterilization using supercritical CO2 based mixtures. Recent. Patents. Chem. Eng 3:2 (2010), 142–148.
Ribeiro, N., Soares, G.C., Santos‐Rosales, V., Concheiro, A., Alvarez‐Lorenzo, C., García‐González, C.A., Oliveira, A.L., A new era for sterilization based on supercritical CO2 technology. J. Biomed. Mater. Res. B. Appl. Biomater 108:2 (2020), 399–428.
Saetern, A.M., Skar, M., Braaten, A., Brandl, M., Camptothecin-catalyzed phospholipid hydrolysis in liposomes. Int. J. Pharm 288 (2005), 73–80, 10.1016/j.ijpharm.2004.09.010.
Santos-Rosales, V., Magariños, B., Alvarez-Lorenzo, C., García-González, C.A., Combined sterilization and fabrication of drug-loaded scaffolds using supercritical CO2 technology. Int. J. Pharm, 612, 2022, 121362, 10.1016/J.IJPHARM.2021.121362.
Setlow, B., Korza, G., Blatt, K.M.S., Fey, J.P., Setlow, P., Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid. J. Appl. Microbiol 120 (2016), 57–69, 10.1111/JAM.12995.
Shah, V.M., Nguyen, D.X., Patel, P., Cote, B., Al-Fatease, A., Pham, Y., Huynh, M.G., Woo, Y., Alani, A.WG., Liposomes produced by microfluidics and extrusion: A comparison for scale-up purposes. Nanomedicine. Nanotechnology,. Biol. Med 18 (2019), 146–156.
Shieh, E., Paszczynski, A., Wai, C.M., Lang, Q., Crawford, R.L., Sterilization of Bacillus pumilus spores using supercritical fluid carbon dioxide containing various modifier solutions. J. Microbiol. Methods 76 (2009), 247–252, 10.1016/J.MIMET.2008.11.005.
Soares, G.C., Learmonth, D.A., Vallejo, M.C., Davila, S.P., González, P., Sousa, R.A., Oliveira, A.L., Supercritical CO2 technology: The next standard sterilization technique?. Mater. Sci. Eng. C. Mater. Biol. Appl 99 (2019), 520–540.
Spilimbergo, S., Bertucco, A., Lauro, F.M., Bertoloni, G., Inactivation of Bacillus subtilis spores by supercritical CO2 treatment. Innov. Food. Sci. Emerg. Technol 4 (2003), 161–165, 10.1016/S1466-8564(02)00089-9.
Toh, M.R., Chiu, G.N.C., Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian. J. Pharm. Sci 8 (2013), 88–95, 10.1016/J.AJPS.2013.07.011.
Ullmann, K., Leneweit, G., Nirschl, H., How to achieve high encapsulation efficiencies for macromolecular and sensitive apis in liposomes. Pharmaceutics, 13(5), 2021, 691.
Wagner, A., Vorauer-Uhl, K., Liposome technology for industrial purposes. J. Drug. Deliv:1–9. 2011 (2011), 1–9.
Zani, F., Veneziani, C., Bazzoni, E., Maggi, L., Caponetti, G., Bettini, R., Sterilization of corticosteroids for ocular and pulmonary delivery with supercritical carbon dioxide. Int. J. Pharm 450 (2013), 218–224, 10.1016/J.IJPHARM.2013.04.055.
Zhang, J., Dalal, N., Gleason, C., Matthews, M.A., Waller, L.N., Fox, K.F., Fox, A., Drews, M.J., LaBerge, M., An, Y.H., On the mechanisms of deactivation of Bacillus atrophaeus spores using supercritical carbon dioxide. J. Supercrit. Fluids 38:2 (2006), 268–273.
Zhang, J., Dalal, N., Matthews, M.A., Waller, L.N., Saunders, C., Fox, K.F., Fox, A., Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis. J. Microbiol. Methods 70:3 (2007), 442–451.
Zuidam, N.J., Gouw, H.K.M.E., Barenholz, Y., Crommelin, D.J.A., Physical (in) stability of liposomes upon chemical hydrolysis: the role of lysophospholipids and fatty acids. Biochim. Biophys. Acta. –. Biomembr 1240:1 (1995), 101–110.