[en] A finite strain phenomenological model is developed to simulate the shape memory behavior of semi-crystalline polymers under thermo-mechanical loading. The polymer is considered to be a composite of crystalline and amorphous phases with constant volume fractions. While the amorphous phase is stable, the crystalline phase is considered to change phase with temperature. Therefore, the crystalline phase is considered further to be composed of two phases, whose volume fractions are controlled by a temperature and strain dependent function: the melted phase which is soft, and the crystallized phase which is stiff.
A pressure dependent viscoelasto-plastic behavior is considered for the constitutive model of the different phases. In addition to pressure dependent plasticity, additional deformation measures are applied to the crystalline phase to model temporary (imperfect shape fixity) and permanent (imperfect shape recovery) deformations in a thermo-mechanical loading cycle. Formulating a compressible plastic flow during the phase changes yields the possibility to capture both one-way and two-way shape memory effects. As a consequence, the load-dependent and anisotropic thermal expansion observed experimentally in semi-crystalline polymers during phase change is naturally captured.
The model is validated within a test campaign performed on nano-composite having a semi-crystalline polymer as a base material. It is shown that the model gives close results with the tests and it is able to capture the shape fixity and shape recovery behaviors of the polymer, for both one-way and two-way shape memory effects.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège A&M - Aérospatiale et Mécanique - ULiège Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Vanderbemden, Philippe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Capteurs et systèmes de mesures électriques
Jérôme, Christine ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie des macromolécules et des matériaux organiques (CERM)
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A thermo-mechanical, viscoelasto-plastic model for semi-crystalline polymers exhibiting one-way and two-way shape memory effects under phase change
Actions de recherche concertées 2017-Synthesis, Characterization, and Multiscale Model of Smart Composite Materials (S3CM3)
Funders :
Académie universitaire Wallonie-Europe
Funding number :
17/21-07
Funding text :
This research was funded through the “Actions de recherche concertées 2017-Synthesis, Characterization, and Multiscale Model of Smart Composite Materials (S3CM3) 17/21-07 ”, financed by the “Direction Générale de l’Enseignement non obligatoire de la Recherche scientifique, Direction de la Recherche scientifique, Communauté Française de Belgique et octroyées par l’Académie Universitaire Wallonie-Europe”.
NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Solids and Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Solids and Structures (2024) 112814, DOI: 10.1016/j.ijsolstr.2024.112814
Boatti, E., Scalet, G., Auricchio, F., A three-dimensional finite-strain phenomenological model for shape-memory polymers: Formulation, numerical simulations, and comparison with experimental data. Int. J. Plast. 83 (2016), 153–177, 10.1016/j.ijplas.2016.04.008 URL https://www.sciencedirect.com/science/article/pii/S0749641916300572.
Buckley, P., McKinley, G., Wilson, T., Small, W., Benett, W., Bearinger, J., McElfresh, M., Maitland, D., Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans. Biomed. Eng. 53 (2006), 2075–2083, 10.1109/TBME.2006.877113 URL https://pubmed.ncbi.nlm.nih.gov/17019872/.
Choy, C.L., Chen, F.C., Young, K., Negative thermal expansion in oriented crystalline polymers. J. Polym. Sci.: Polym. Phys. Ed. 19:2 (1981), 335–352, 10.1002/pol.1981.180190213 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1981.180190213.
Chung, T., Romo-Uribe, A., Mather, P.T., Two-way reversible shape memory in a semicrystalline network. Macromolecules 41:1 (2008), 184–192, 10.1021/ma071517z arXiv:10.1021/ma071517z.
Defize, T., Riva, R., Jérôme, C., Alexandre, M., Multifunctional poly(ϵ-caprolactone)-forming networks by diels–alder cycloaddition: Effect of the adduct on the shape-memory properties. Macromol. Chem. Phys. 213 (2012), 187–197.
Diani, J., Gilormini, P., Frédy, C., Rousseau, I., Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int. J. Solids Struct. 49:5 (2012), 793–799, 10.1016/j.ijsolstr.2011.11.019 URL https://www.sciencedirect.com/science/article/pii/S002076831100401X.
Gülaşik, H., Houbben, M., Sànchez, C.P., Calleja Vázquez, J.M., Vanderbemden, P., Jérôme, C., Noels, L., Data of A Thermo-Mechanical, Viscoelasto-Plastic Model for Semi-Crystalline Polymers Exhibiting One-Way and Two-Way Shape Memory Effects Under Phase Change. 2023, Zenodo, 10.5281/zenodo.10822690.
Guo, X., Liu, L., Zhou, B., Liu, Y., Leng, J., Constitutive model for shape memory polymer based on the viscoelasticity and phase transition theories. J. Intell. Mater. Syst. Struct. 27:3 (2016), 314–323, 10.1177/1045389X15571380 arXiv:10.1177/1045389X15571380.
Houbben, M., Sànchez, C.P., Vanderbemden, P., Noels, L., Jérôme, C., MWCNTs filled PCL covalent adaptable networks: Towards reprocessable, self-healing and fast electrically-triggered shape-memory composites. Polymer, 278, 2023, 125992, 10.1016/j.polymer.2023.125992 URL https://www.sciencedirect.com/science/article/pii/S0032386123003221.
Jones, D., MacKerron, D., Norval, S., Effect of crystal texture on the anisotropy of thermal expansion in polyethylene naphthalate: Measurements and modelling. Plastics Rubber Compos. 42:2 (2013), 66–74, 10.1179/1743289812Y.0000000034 arXiv:10.1179/1743289812Y.0000000034.
Lee, J.H., Hinchet, R., Kim, S.K., Kim, S., Kim, S.-W., Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 8 (2015), 3605–3613, 10.1039/C5EE02711J.
Lendlein, A., Jiang, H., Jünger, O., Langer, R., Light-induced shape-memory polymers. Nature 434 (2005), 879–882, 10.1038/nature03496.
Nguyen, T.D., Jerry Qi, H., Castro, F., Long, K.N., A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation. J. Mech. Phys. Solids 56:9 (2008), 2792–2814, 10.1016/j.jmps.2008.04.007 URL https://www.sciencedirect.com/science/article/pii/S0022509608000951.
Nguyen, V.-D., Lani, F., Pardoen, T., Morelle, X., Noels, L., A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int. J. Solids Struct. 96 (2016), 192–216, 10.1016/j.ijsolstr.2016.06.008 URL https://www.sciencedirect.com/science/article/pii/S0020768316301238.
Niyonzima, I., Jiao, Y., Fish, J., Modeling and simulation of nonlinear electro-thermo-mechanical continua with application to shape memory polymeric medical devices. Comput. Methods Appl. Mech. Engrg. 350 (2019), 511–534, 10.1016/j.cma.2019.03.003 URL https://www.sciencedirect.com/science/article/pii/S004578251930129X.
Pereira Sanchez, C.A., Houbben, M., Fagnard, J.-F., Harmeling, P., Jérôme, C., Noels, L., Vanderbemden, P., Experimental characterization of the thermo-electro-mechanical properties of a shape memory composite during electric activation. Smart Mater. Struct., 31, 2022, 095029, 10.1088/1361-665x/ac8297 URL https://iopscience.iop.org/article/10.1088/1361-665X/ac8297.
Pereira Sanchez, C.A., Houbben, M., Fagnard, J.-F., Laurent, P., Jérôme, C., Noels, L., Vanderbemden, P., Resistive heating of a shape memory composite: Analytical, numerical and experimental study. Smart Mater. Struct., 31(2), 2021, 025003, 10.1088/1361-665X/ac3ebd.
Volk, B.L., Lagoudas, D.C., Maitland, D.J., Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer. Smart Mater. Struct., 20(9), 2011, 094004, 10.1088/0964-1726/20/9/094004.
Xu, W., Li, G., Constitutive modeling of shape memory polymer based self-healing syntactic foam. Int. J. Solids Struct. 47:9 (2010), 1306–1316, 10.1016/j.ijsolstr.2010.01.015 URL https://www.sciencedirect.com/science/article/pii/S0020768310000260.
Yang, Q., Li, G., Temperature and rate dependent thermomechanical modeling of shape memory polymers with physics based phase evolution law. Int. J. Plast. 80 (2016), 168–186, 10.1016/j.ijplas.2015.09.005 URL https://www.sciencedirect.com/science/article/pii/S0749641915001588.
Yang, Z., Peng, H., Wang, W., Liu, T., Crystallization behavior of poly(ecaprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116:5 (2010), 2658–2667, 10.1002/app.31787 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/app.31787.