GRASS; land cover; landfill management; machine learning; multispectral; OBIA; supervised classification; UAV; Control and Systems Engineering; Information Systems; Aerospace Engineering; Computer Science Applications; Artificial Intelligence
Abstract :
[en] Earth observation technologies offer non-intrusive solutions for monitoring complex and risky sites, such as landfills. In particular, unmanned aerial vehicles (UAVs) offer the ability to acquire data at very high spatial resolution, with full control of the temporality required for the desired application. The versatility of UAVs, both in terms of flight characteristics and on-board sensors, makes it possible to generate relevant geodata for a wide range of landfill monitoring ac-tivities. This study aims to propose a robust tool and to provide data acquisition guidelines for the land cover mapping of complex sites using UAV multispectral imagery. For this purpose, the transferability of a state-of-the-art object-based image analysis open-source processing chain was assessed and its sensitivity to the segmentation approach, textural and contextual information, spectral and spatial resolution was tested over the landfill site of Hallembaye (Wallonia, Belgium). This study proposes a consistent open-source processing chain for the land cover mapping using UAV data with accuracies of at least 85%. It shows that low-cost red-green-blue standard sensors are sufficient to reach such accuracies and that spatial resolution of up to 10 cm can be adopted with limited impact on the performance of the processing chain. This study also results in the creation of a new operational service for the monitoring of the active landfill sites of Wallonia.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Wyard, Coraline ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie ; Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), Liège, Belgium
Beaumont, Benjamin ; Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), Liège, Belgium
Hallot, Eric ; Université de Liège - ULiège > Département de géographie ; Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), Liège, Belgium
Language :
English
Title :
UAV-Based Landfill Land Cover Mapping: Optimizing Data Acquisition and Open-Source Processing Protocols
ISSeP - Institut Scientifique de Service Public [BE]
Funding text :
Acknowledgments: The authors acknowledge ISSeP for funding this research. They would like to thank Julien Dumont and Fabian Stassen for performing the UAV flights and data acquisition, the Hallembaye landfill site managers for their interest and for opening the site to UAV flights, and Emilie Navette for its expertise of the site. The authors greatly thank the reviewers for their relevant comments which helped to improve this manuscript.This research was conducted in the framework of the “CETEO” project (https://www.issep.be/wp-content/uploads/Projet-CETEO.pdf; accessed on 23 March 2022), which was funded by the internal Moerman fund of Institut Scientifique de Service Public (ISSeP).
Statbel, 2018. Available online: https://statbel.fgov.be/fr/themes/environnement/dechets-et-pollution/production-de-dechets (accessed on 12 December 2021).
De Rijdt, A.; Neculau, C.; Wille, E. The rawfill concept: An integrated methodology and toolbox for selecting and launching enhanced landfill mining (elfm) projects. In Proceedings of the 4th International Symposium on Enhanced Landfill Mining, Mechelen, Belgium, 5–7 February 2018.
Battsengel, G.; Geetha, S.; Jeon, J. Analysis of Technological Trends and Technological Portfolio of Unmanned Aerial Vehicle. J. Open Innov. Technol. Mark. Complex. 2020, 6, 48. https://doi.org/10.3390/joitmc6030048.
Chen, S.; Laefer, D.; Mangina, E. State of Technology Review of Civilian UAVs. Recent Pat. Eng. 2016, 10, 160–174. http://dx.doi.org/10.2174/1872212110666160712230039.
Majid, M.I.; Chen, Y.; Mahfooz, O.; Ahmed, W. UAV-Based Smart Environmental Monitoring. In Employing Recent Technologies for Improved Digital Governance; Information Science Reference: Hershey, PA, USA, 2020. https://doi.org/10.4018/978-1-7998-1851-9.ch016.
Shafiee, M.; Zhou, Z.; Mei, L.; Dinmohammadi, F.; Karama, J.; Flynn, D. Unmanned Aerial Drones for Inspection of Offshore Wind Turbines: A Mission-Critical Failure Analysis. Robotics 2021, 10, 26. https://doi.org/10.3390/robotics10010026.
Tkáč, M.; Mésároš, P. Utilizing drone technology in the civil engineering. Sel. Sci. Pap. J. Civ. Eng. 2019, 14, 27–37. https://doi.org/10.1515/sspjce-2019-0003.
Štroner, M.; Urban, R.; Seidl, J.; Reindl, T.; Brouček, J. Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing Strategies without GCPs. Remote Sens. 2021, 13, 1336. https://doi.org/10.3390/rs13071336.
Nagendran, S.; Mohamad, I.; Mohd, A. Application of UAV photogrammetry for quarry monitoring. War. Geologi. 2020, 46. https://doi.org/10.7186/wg462202006.
Kim, J.; Kim, S.; Ju, C.; Son, H.I. Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications. IEEE Access 2019, 7, 105100–105115, https://doi.org/.1109/ACCESS.2019.2932119.
Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Env. Monit Assess 2016, 188, 146. https://doi.org/10.1007/s10661-015-4996-2.
Sliuzar, N.; Filkin, T.; Huber-Humer, M.; Ritzkowski, M. Drone technology in municipal solid waste management and land-filling: A comprehensive review. Waste Manag. 2022, 139, 1–16. https://doi.org/10.1016/j.wasman.2021.12.006.
Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, B. Mapping marine litter using UAS on a beach-dune: A multidisciplinary ap-proach. Sci. Total Environ. 2022, 706, 135742. https://doi.org/10.1016/j.scitotenv.2019.135742.
Bak, S.H.; Hwang, D.H.; Kim, H.M.; Yoon, H.J. Detection and monitoring of beach litter using uav image and deep neural network, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W8, 55–58. https://doi.org/10.5194/isprs-archives-XLII-3-W8-55-2019.
Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic marine debris assessment with unmanned aerial vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Sci. Total Environ. 2019, 693, 133581. https://doi..org/10.1016/j.scitotenv.2019.133581.
Wyard, C.; Beaumont, B.; Grippa, T.; Georganos, S.; Hallot, E. UAVs for fine-scale Open-Source Landfill Mapping,” In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. http://dx.doi.org/10.1109/IGARSS47720.2021.9553815.
Xia, W.; Jiang, Y.; Chen, X.; Zhao, R. Application of machine learning algorithms in municipal solid waste management: A mini review. Waste Manag. Res. 2021, 40, 609–624. https://doi.org/10.1177/0734242x211033716.
Abu Qdais, H.; Shatnawi, N. Assessing and predicting landfill surface temperature using remote sensing and an artificial neural network. Int. J. Remote Sens. 2019, 40, 9556–9571. https://doi.org/10.1080/01431161.2019.1633703.
Horning, N.; Fleishman, E.; Ersts, P.J.; Fogarty, F.A.; Wohlfeil Zillig, M. Mapping of land cover with open-source software and ultra-high-resolution imagery acquired with unmanned aerial vehicles. Remote Sens. Ecol. Conserv. 2020, 6, 487–497. https://doi.org/10.1002/rse2.144.
Sibaruddin, H.I.; Shafri, H.Z.M.; Pradhan, B.; Haron, N.A. Comparison of pixel-based and object-based image classification techniques in extracting information from UAV imagery data. IOP Conf. Ser.: Earth Environ. Sci. 2018, 169, 012098. https://doi.org/10.1088/1755-1315/169/1/012098.
De Giglio, M.; Greggio, N.; Goffo, F.; Merloni, N.; Dubbini, M.; Barbarella, M. Comparison of pixel-and object-based classification methods of unmanned aerial vehicle data applied to coastal dune vegetation communities: Casal borsetti case study. Remote Sens. 2019, 11, 1416. https://doi.org/10.3390/rs11121416.
Grippa, T.; Lennert, M.; Beaumont, B.; Vanhuysse, S.; Stephenne, N.; Wolff, E. An open-source semi-automated processing chain for urban object-based classification. Remote Sens. 2017, 9, 358. http://dx.doi.org/10.3390/rs9040358.
Georganos, S.; Brousse, O.; Dujardin, S.; Linard, C.; Casey, D.; Milliones, M.; Parmentier, B.; Van Lipzig, N.P.; Demuzere, M.; Grippa, T.; et al. Modelling and mapping the intra-urban spatial distribution of Plasmodium falciparum parasite rate using very-high-resolution satellite derived indicators. Int. J. Health Geogr. 2020, 19, 38. https://doi.org/10.1186/s12942-020-00232-2.
Beaumont, B.; Grippa, T.; Lennert, M.; Vanhuysse, S.; Stephenne, B.; Wolff, E. Toward an operational framework for fine-scale urban land-cover mapping in Wallonia using submeter remote sensing and ancillary vector data. J. Appl. Remote Sens. 2017, 11, 036011. http://dx.doi.org/10.1117/1.JRS.11.036011.
Bassine, C.; Radoux, J.; Beaumont, B.; Grippa, T.; Lennert, M.; Champagne, C.; De Vroey, M.; Martinet, A.; Bouchez, O.; Def-fense, B.; et al. First 1-M resolution land cover map labeling the overlap in the 3rd dimension: The 2018 map of Wallonia. Data 2020, 5, 117. http://dx.doi.org/10.3390/data5040117.
Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wachendorf, M. Mapping Invasive Lupinus polyphyllus Lindl. in Semi-natural Grasslands Using Object-Based Image Analysis of UAV-borne Images. PFG 2020, 88, 391–406. https://doi.org/10.1007/s41064-020-00121-0.
Souffer, I.; Sghiouar, M.; Sebari, I.; Zefri, Y.; Hajji, H.; Aniba, G. Automatic Extraction of Photovoltaic Panels from UAV Imagery with Object-Based Image Analysis and Machine Learning. In WITS 2020. Lecture Notes in Electrical Engineering; Bennani, S.; Lakhrissi, Y.; Khaissidi, G.; Mansouri, A.; Khamlichi, Y., Eds.; Springer: Singapore, 2022; Volume 745. https://doi.org/10.1007/978-981-33-6893-4_64.
Kwak, G.H.; Park, N.W. Impact of texture information on crop classification with machine learning and UAV images. Appl. Sci. 2019, 9, 643. https://doi.org/10.3390/app9040643.
DJI® Mavic 2 Enterprise specs. Available online: https://www.dji.com/mavic-2-enterprise/specs (accessed on 23 March 2022).
RedEdge MX Dual Camera Imaging System by MicaSence. Available online: https://micasense.com/dual-camera-system/(accessed on 23 March 2022).
Zenmuse X5 Specs. Available online: https://www.dji.com/be/zenmuse-x5/info#specs (accessed on 23 March 2022).
PIX4D. Available online: https://www.pix4d.com/(accessed on 23 March 2022).
DJI GS PRO. Available online: https://www.dji.com/be/ground-station-pro (accessed on 23 March 2022).
GRX1 GNSS Receiver. Available online: https://eu.sokkia.com/sokkia-care-products/grx1-gnss-receiver (accessed on 23 March 2022)
Portail Walcors. Available online: https://gnss.wallonie.be/walcors.html (accessed on 23 March 2022).
Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GISci-ence Remote Sens. 2018, 55(2), pp. 221–242. https://doi.org/10.1080/15481603.2017.1408892.
Momsen, E.; Metz, M.; GRASS Development Team. Addon i.segment. In Geographic Resources Analysis Support System (GRASS) Software, Version 7.8; Open Source Geospatial Foundation: Chicago, IL, USA, 2020.
Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. https://doi.org/10.1109/TSMC.1973.4309314.
Haralick, R. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. https://doi.org/10.1109/PROC.1979.11328.
Lennert, M.; GRASS Development Team. Addon v.class.mlR. In Geographic Resources Analysis Support System (GRASS) Software, Version 7.8; Open Source Geospatial Foundation: Chicago, IL, USA, 2020.
Li, M.; Ma, L.; Blaschke, T.; Cheng, L.; Tiede, D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 87–98. https://doi.org/10.1016/j.jag.2016.01.011.
Crommelinck, S.; Bennett, R.; Gerke, M.; Koeva, M.N.; Yang, M.Y.; Vosselman, G. SLIC superpixels for object delineation from UAV data. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences: International Conference on Unmanned Aerial Vehicles in Geomatics (UAV-G 2017), Bonn, Germany, 4–7 September 2017; Volume 4. http://dx.doi.org/10.5194/isprs-annals-IV-2-W3-9-2017.
Kishorjit Singh, N.; Johny Singh, N.; Kanan Kumar, W. Image classification using SLIC superpixel and FAAGKFCM image segmentation. IET Image Processing 2020, 14, 487–494. https://doi.org/10.1049/iet-ipr.2019.0255.
Hsu, C.Y.; Ding, J.J. Efficient image segmentation algorithm using SLIC superpixels and boundary-focused region merging. In Proceedings of the 2013 9th International Conference on Information, Communications & Signal Processing, Tainan, Taiwan, 10–13 December 2013; pp. 1–5. https://doi.org/10.1109/ICICS.2013.6782861.
Wu, H.; Wu, Y.; Zhang, S.; Li. P.; Wen, Z. Cartoon image segmentation based on improved SLIC superpixels and adaptive region propagation merging. In Proceedings of the 2016 IEEE International Conference on Signal and Image Processing (ICSIP), Beijing, China, 13–15 August 2016; pp. 277–281. https://doi.org/10.1109/SIPROCESS.2016.7888267.
Zhang, S.; You, Z.; Wu, X. Plant disease leaf image segmentation based on superpixel clustering and EM algorithm. Neural Comput. Appl. 2019, 31, 1225–1232. https://doi.org/10.1007/s00521-017-3067-8.
Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated Training Sample Extraction for Global Land Cover Mapping. Remote Sens. 2014, 6, 3965–3987. https://doi.org/10.3390/rs6053965.
Lu, Q.; Ma, Y.; Xia, G-S. Active learning for training sample selection in remote sensing image classification using spatial information. Remote Sens. Lett. 2017, 8, 1210–1219. https://doi.org/10.1080/2150704X.2017.1375610.
Natesan, S.; Armenakis, C.; Benari, G.; Lee, R. Use of UAV-borne spectrometer for land cover classification. Drones 2018, 2, 16. https://doi.org/10.3390/drones2020016.
Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2016, 9, 1110. https://doi.org/10.3390/rs9111110.
Filkin, T.; Sliusar, N.; Ritzkowski, M.; Huber-Humer, M. Unmanned Aerial Vehicles for Operational Monitoring of Landfills. Drones 2021, 5, 125. https://doi.org/10.3390/drones5040125.
Kalantar, B.; Mansor, S.B.; Sameen, M.I.; Pradhan, B.; Shafri, H.Z.M. Drone-based land-cover mapping using a fuzzy unordered rule induction algorithm integrated into object-based image analysis. Int. J. Remote Sens. 2017, 38, 2535–2556. http://dx.doi.org/10.1080/01431161.2016.1277043.
Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalve, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. https://doi.org/10.1016/j.jag.2021.102456.
Çayir, A.; Yenidoğan, I.; Dağ, H. Feature extraction based on deep learning for some traditional machine learning methods. In Proceedings of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia, 20–23 September 2018; pp. 494–497. https://doi.org/10.1109/UBMK.2018.8566383.
Karim, Z.; van Zyl, T. Deep Learning and Transfer Learning applied to Sentinel-1 DInSAR and Sentinel-2 optical satellite imagery for change detection. In Proceedings of the 2020 International SAUPEC/RobMech/PRASA Conference, South Africa, South Africa, 29–31 January 2020; pp. 1–7. https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041139.
Incekara, A.; Delen, A.; Seker, D.; Goksel, C. Investigating the utility potential of low-cost unmanned aerial vehicles in the temporal monitoring of a landfill. ISPRS Int. J. Geo-Inf. 2019, 8, 22. https://doi.org/10.3390/ijgi8010022.