
Citation: Wyard, C.; Beaumont, B.;

Grippa, T.; Hallot, E. UAV-Based

Landfill Land Cover Mapping:

Optimizing Data Acquisition and

Open-Source Processing Protocols.

Drones 2022, 6, 123. https://doi.org/

10.3390/drones6050123

Academic Editors: Dionissios

Kalivas, Christos Chalkias, Thomas

Alexandridis, Konstantinos X. Soulis

and Emmanouil Psomiadis

Received: 23 March 2022

Accepted: 5 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

UAV-Based Landfill Land Cover Mapping: Optimizing Data
Acquisition and Open-Source Processing Protocols
Coraline Wyard 1,* , Benjamin Beaumont 1 , Taïs Grippa 2 and Eric Hallot 1

1 Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), 4000 Liège, Belgium;
b.beaumont@issep.be (B.B.); e.hallot@issep.be (E.H.)

2 ANAGEO, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; tais.grippa@ulb.be
* Correspondence: c.wyard@issep.be; Tel.: +32-4-229-83-15

Abstract: Earth observation technologies offer non-intrusive solutions for monitoring complex and
risky sites, such as landfills. In particular, unmanned aerial vehicles (UAVs) offer the ability to acquire
data at very high spatial resolution, with full control of the temporality required for the desired
application. The versatility of UAVs, both in terms of flight characteristics and on-board sensors,
makes it possible to generate relevant geodata for a wide range of landfill monitoring activities. This
study aims to propose a robust tool and to provide data acquisition guidelines for the land cover
mapping of complex sites using UAV multispectral imagery. For this purpose, the transferability
of a state-of-the-art object-based image analysis open-source processing chain was assessed and its
sensitivity to the segmentation approach, textural and contextual information, spectral and spatial
resolution was tested over the landfill site of Hallembaye (Wallonia, Belgium). This study proposes a
consistent open-source processing chain for the land cover mapping using UAV data with accuracies
of at least 85%. It shows that low-cost red-green-blue standard sensors are sufficient to reach such
accuracies and that spatial resolution of up to 10 cm can be adopted with limited impact on the
performance of the processing chain. This study also results in the creation of a new operational
service for the monitoring of the active landfill sites of Wallonia.

Keywords: landfill management; land cover; UAV; multispectral; GRASS; machine learning; OBIA;
supervised classification

1. Introduction

The volume of waste produced by human activity, and in particular by the construction
and industrial sectors, is constantly increasing, with a volume exceeding 67 million tons
of waste per year in Belgium [1]. The management, treatment, and recycling of these
different types of waste is therefore a challenge for health, the environment, and the
economy. Although the number of waste recycling channels is increasing, notably due
to the prospects offered by enhanced landfill mining [2], the burial of waste in landfills
is historically the primary solution and continues to be so for a series of specific wastes,
which cannot be directly recycled or are considered hazardous. To reduce environmental
impact, secure routine operation, and monitor compliance with imposed standards, landfill
managers are subject to various obligations: control pollution levels (soil, air, and water,
including biogas emission and odor nuisance, limit leachate leakage and diffuse pollution
of waste due to light fractions spreading by wind, etc.), avoid mechanical instabilities
(maximum slope angles), and control the landfill completion rate and the volumes of waste
buried. For all these controls, ground survey solutions exist but are hampered by the
complexity, danger, and size of the areas to be monitored.

Earth observation (EO), from satellite to Unmanned Aerial Vehicles (UAVs), is a
proven technology for many of these control activities. The last decade has seen UAV
technology adopt one of the most dynamic growth patterns in the aerospace sector [3]. The
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increasing payload and autonomy capabilities of UAVs contribute to the diversification
of business applications, technology, and operations research. The miniaturization of
EO sensors and the optimization and automation of data processing chains reinforce this
observation. UAVs can be equipped with a growing range of single-band, multispectral or
hyperspectral sensors operating in the visible, infrared, or microwave spectrums [4]. The
cost benefits of UAVs for fine-scale environmental monitoring as an alternate to satellite or
airborne platform systems is established as they are more flexible, mission specific, and
versatile [5]. This is particularly true when the research focuses on a concise area (<1 km2)
with a need for ultra-high resolution (sub-decimeter resolution) and/or with full control
of the flight conditions (weather, cloud-free, revisit time, or acquisition properties such
as viewing angle, height, path, etc.). In addition, offering the possibility of non-intrusive
data collection, UAVs are particularly appropriate for the monitoring of complex sites
with a high degree of risk (ground operation, dangerous terrain, etc.). Such case studies
include the monitoring of engineering structures [6], construction sites [7], brownfields [8],
quarries [9], agriculture fields [10], and forestry plots [11]. By verifying all these criteria,
active landfills are particularly relevant study sites.

In their review about the use of drone technology in municipal solid waste manage-
ment and landfilling, Sliuzar et al. [12] noted that the most mature field of application of
drones on waste disposal sites is the analysis of its spatial properties. The photogrammetric
pre-processing algorithms are efficient and allow for obtaining qualitatively comparable
results to ground-based approaches (global navigation satellite system (GNSS) solutions)
with a non-negligible saving of resources and reduction in risks. The second most studied
field of application is the field of thermal and gas surveys to detect surface emissions or
leaks in the biogas collection network. Despite suitable hardware design, this task remains
difficult because of the spatial and temporal variability of emissions and the high dynamics
of the air environment. Sliuzar et al. [12] highlighted that in addition to the effective spatial
characterization of landfills by UAV data, the overall management of the site and the
reduction in environmental impacts would benefit from new developments aiming at the
automatic-type recognition of land cover (LC) features. The authors noted that machine
learning (ML) and waste recognition algorithms are improving at a rapid pace [13], with
new promising application from deep learning (DL) algorithms [14,15]. The review listed
only one paper applying ML specifically to landfills for LC features extraction [16], but
noted that the technological evolution of these techniques should lead to more publications
in the near future.

Regarding the use of ML and DL techniques in the specific fields of waste management,
Xia et al. [17] demonstrated their use and their relevance at all stages, from the generation
of municipal solid waste to their recycling or landfilling. This review noted the growth of
ML and DL publications in recent years with the prevalence of artificial neural networks
(ANNs), DL such as convolutional neural networks (CNNs), support vector machine (SVM),
support vector regression (SVR), and random forest (RF) methods. The authors listed only
one publication applying ML to EO data: ANNs applied to thermal data for assessing
and predicting landfill surface temperature [18]. This highlights once again the novelty of
the use of EO data, including UAV, for the monitoring of landfill and specifically for LC
features extraction.

Extracting automatically wall-to-wall LC maps from ultra-high-resolution data is
indeed challenging [19]. Active landfills’ LC is usually very fragmented and LC change
can be highly dynamic. It continuously evolves because of new deposits, earthworks, natu-
ral growth of vegetation, and rehabilitation activities. As such, automated classification
methods are needed. When dealing with very high-resolution data, numerous studies
conclude that object-based image analysis (OBIA) supervised classification is the most
suited technique for LC mapping compared with pixel-based approaches [20,21]. OBIA
approaches have the advantages of considering shape and texture properties in addition to
spectral properties. Wyard et al. [16] successfully transposed the OBIA processing chain
developed by Grippa et al. [22] to UAV data for the automatic LC classification of the



Drones 2022, 6, 123 3 of 23

Hallembaye landfill site (Wallonia, Belgium) reaching an overall accuracy (OA) of 80.5%.
This open-source processing chain includes tools for unsupervised segmentation, its opti-
mization, and multiple ML classification algorithms. Its original design is for city-scale to
regional LC mapping using very high-resolution satellite data [22,23]. Beaumont et al. [24]
and Bassine et al. [25] applied it to the classification of aerial orthophotos combined with
normalized digital surface models (nDSMs). To our knowledge, this processing chain has
only been applied twice to UAV data in addition to the work of Wyard et al. [16]. Wijesingha
et al. [26] performed a binary classification of the invasive plant species Lupinus polyphyllus
within grasslands from a red-green-blue (RGB) camera; Souffer et al. [27] classified visible
and thermal UAV imagery for the automatic extraction of photovoltaic panels, obtaining
an F-factor of 98.7%.

As a continuation of the work of Wyard et al. [16], this study has two objectives. Given
the complexity of landfills and the high revisit rate desired in such application, the first
objective is to provide guidelines on the necessary UAV flight characteristics (spatial and
spectral resolution) required for the automatic multi-class LC mapping of such site. The
second objective is to provide a robust and optimized open-source OBIA processing chain
as automated as possible for the production of LC maps using UAVs data. The robustness
of the processing chain presented in Wyard et al. [16] was first assessed by applying it to
new datasets acquired over the same landfill site (Hallembaye, Belgium). The sensitivity
of the results to segmentation approach, textural information, spectral resolution, spatial
resolution, and contextual information were then assessed. It was indeed suggested that
a better spectral resolution can improve class discrimination and that the segmentation
approach as well as contextual information can also help to refine the results [16]. It was
demonstrated that textural information has a significant positive impact on UAV image
classification results [28]. In addition, the spatial resolution on the ground is crucial because
it affects the objects that can be discriminated depending on their size, the UAV flight
height and speed, and thus directly the area that can be covered and the amount of data
to process.

Section 2 describes the characteristics of the Hallembaye landfills as well as the UAVs
datasets acquired on this site. The description of the OBIA LC processing chain can also
be found in Section 2. Section 3 starts by a presentation of the results for six series of
experiments: robustness, sensitivity to segmentation approach, sensitivity to textural infor-
mation, sensitivity to spectral resolution, sensitivity to spatial resolution, and sensitivity
to contextual approach. Section 3 ends with an analysis of feature contribution from the
best results. The results are discussed in Section 4 while the conclusions and prospects are
presented in Section 5.

2. Materials and Methods
2.1. Study Area

This research focuses on the landfill site of Hallembaye, located in the east of Wallonia
(Belgium) less than 2 km from the Dutch border, on the Communes of Oupeye and Visé
(Figure 1). The site covers an area of 31.4 ha. It has been operating since 1989 for the
burial of household waste, non-hazardous and non-toxic industrial waste, inert waste,
as well as residual waste from sorting centers. The landfill is characterized by areas in
exploitation (active) and areas under temporary rehabilitation (passive), with a wide variety
of LC objects. The Hallembaye landfill site is part of the dozen-site network in Wallonia
submitted to the same exploitation and obligation protocols.
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Figure 1. Location of the Hallembaye landfill and of the UAVs datasets.

2.2. Data

Three UAV datasets were used in this study (Table 1). The two main datasets used
in this study were acquired on 1 March 2021, using two vectors and two different sensors.
The DJI®® Mavic 2 Enterprise has a three-band true-color on-board sensor by default
(Dataset #1) [29]. The MicaSense®® RedEdge MX Dual Camera System embarked on the
Mavic M600 Pro UAV provides spectral information in 10 wavelengths (Dataset #2) [30].
The RedEdge MX provides blue (center wavelength: 475 nm (bandwidth: 32 nm)), green
(560 (27)), red (668 (14)), red-edge (717 (12)), and near-infrared (NIR) channels (842 (57)).
The RedEdge MX Blue provides aerosol (444 (28)), green (431 (14)), red (650 (16)), and
red-edge channels (705 (10) and 740 (18)).

To a lesser extent the classification results of a third dataset acquired on 3 October 2019
were exploited (Dataset #0; [16]). Its acquisition was performed using the DJI®® Mavic
M600 Pro hexacopter equipped with a DJI® Zenmuse X5 [31]. This camera captures RGB
information. For all three datasets, frontal and side overlap was set between 70 and 80%
while camera angle was set to 70◦. All flights were conducted from the top of the landfill
for visibility reasons. In order to achieve the objectives of spatial resolution (between 3
and 4 cm) and overlap, the height above ground level (AGL) of 90 m (Datasets #0 and #1)
and 45 m (#2) were defined in relation to the take-off point. As a result, and in view of the
battery capacities, the following areas could be covered: 27.6 ha for Dataset #0, 56.1 ha for
Dataset #1 and 15.2 ha for Dataset #2 (Figure 1).

The flight planner for Dataset #0 was Pix4DCapture [32], while DJI Ground Station
pro ([33] was used for planning Datasets #1 and #2. Ground control points ((GCPs) 9 for
Dataset #0 and 6 for Datasets #1 and #2) were used to improve the geometric accuracy of
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the photogrammetric processing. These GCPs were acquired using a Sokkia GRX1 global
navigation satellite system (GNNS) receiver [34], which is compatible with the real time
kinematic (RTK) technique and operates the permanent network of Walcors stations [35].
The accuracies in XYZ given by the device are lower than 1 cm. Images were radiometrically
corrected and mosaicked using the Pix4D Mapper software v4.4.12. RGB orthomosaics and
digital surface models (DSMs) were obtained for Datasets #0 and #1. The spatial resolution
of the orthomosaics ranges between 2.8 and 3.8 cm. From Dataset #2, a 10-band orthomosaic
characterized by a 3.2 cm spatial resolution was obtained.

Table 1. UAVs datasets over the landfill of Hallembaye.

#
D

at
as

et

Date Vector-
Sensor

Height
AGL [m]

Frontal-
Side

Overlap
[%]

Camera
Angle

[◦]

Spatial
Res.
[cm]

Spectral Res.
[nm]

Coverage
[ha]

#
Im

ag
es

#
Fl

ig
ht

s

0
3 October

2019—11 h
53–12 h 36

Mavic DJI
M600

Pro—DJI
Zenmuse X5

90 80–70 70 2.8 Blue, green,
and red 27.6 710 2

1
1 March

2021—11 h
36–13 h 14

DJI Mavic 2
Enterprise
00-14MV

90 75–75 70 3.8 Blue, green,
and red 56.1 954 4

2
1 March

2021—13 h
32–14 h 32

Mavic DJI
M600 Pro—
Micasense

RedEdge MX
Dual Camera

System

45 75–75 70 3.2

RedEdge MX:
blue (center
wavelength:

475 nm
(bandwidth:

32 nm)), green
(560 (27)), red

(668 (14)),
red-edge (717
(12)), and NIR

channels
(842 (57)).

RedEdge MX
Blue: aerosol

(444 (28)), green
(431 (14)), red

(650 (16)),
red-edge
channels

(705 (10), and
740 (18)).

15.2 25,862 2

This study mainly used Datasets #1 and #2 as input for sensitivity experiments on
the OBIA processing chain described in the following sections (Sections 2.3 and 2.4). To
perform an objective comparison of the classification results, Dataset #1 was clipped to the
extent of Dataset #2. This smaller area comprises a wide range of LC classes and includes
active waste deposit areas. The classification results obtained from Dataset #0 in a previous
work [16] were exploited for comparison with results obtained with the new classification
results generated in this study from Dataset #1 and Dataset #2.

2.3. OBIA Processing Chain

The OBIA processing chain used to extract the LC of Hallembaye was based on the
work of Wyard et al. [16]. They transposed and modified the open-source processing chain
developed by Grippa et al. [22] to UAVs data. This processing chain was based on an
integration of GRASS GIS and R within a Python programming environment. The code
was implemented in a Jupyter Notebook. The modifications applied to the original work
of Grippa et al. [18] included textural index calculation and implementation of feature
selection through the classification optimizer presented by Georganos et al. [36]. The full
flowchart of the processing chain can be found in the study by Grippa et al. [22].
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2.3.1. Classification Scheme and Sampling

The variability in spatial coverages and LC change over time impact classification
scheme and sampling strategy. A total of 11 classes were identified over the common
dataset coverage (Figure 2).
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Figure 2. LC classes observed over the Hallembaye landfill site (images from Dataset #1).

These are green and dry vegetation, grey concrete roads and buildings, mostly spread
over the passive area and surroundings of the site. Waste, black tarps, white tarps and three
types of soils (embankments, classified according to their colors) are visible in the active
area. These classes correspond to the LC generally observed on active landfills in Wallonia
and other neighboring regions. However, the nature of the soil embankments may vary
from one landfill to another, as well as the typology of the buried waste. This variation can
also be observed over time, due to the strong dynamics of these sites. Wells and pipes are
specific elements that are not included in our automatic classification tests. The site manager
maintains geolocation files of these objects which allowed us to extract both classes from
the UAV images. UAV data are valuable for updating these objects by manual digitalization.
Samples were collected for the 9 remaining classes. A random stratified sampling was used
to obtain a minimum of 100 points per class. Sample classes were identified through a
visual interpretation. A total of 70 training points per class were considered for the training,
the remaining samples were considered for the validation (Table 2).
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Table 2. Classification scheme and size of the training and test sets.

LC Class Training Set Size Test Set Size

Green vegetation 70 33
Dry vegetation 70 30

Waste 70 54
Grey bare soil 70 32

Brown bare soil 70 58
Black bare soil 70 98

Grey concrete roads and buildings 70 25
Black tarp 70 54
White tarp 70 41

2.3.2. Image Segmentation

The extraction of objects from raster data can be performed using various GRASS-GIS
add-ons and strategies. For instance, the i.segment GRASS GIS add-on, which is based
on a region-growing algorithm [37], can be applied to raster data. Object recognition
is tuned by setting a segment minimum size and a ‘threshold’ representing the spectral
similarity between adjacent segments. A threshold of 0 allows only identical valued pixels
to be merged, while a threshold of 1 allows everything to be merged. The i.superpixels.slic
(Simple Linear Iterative Clustering (SLIC)) GRASS-GIS add-on is another option. It creates
superpixels using a k-means method, based on the work of Radhakrishna et al. [38]. This
add-on divides the image into a number of compact and nearly uniform superpixels.

2.3.3. Object Statistics Computation/Feature Creation

For each segment, a wide range of statistics can be computed from the various raster
provided as input. The available raster statistics are: minimum, maximum, range, mean,
mean of absolute values, standard deviation, sum, sum of absolute values, variance, coeffi-
cient of variation, first quartile, median, third quartile, and percentile 90 statistics. Input
raster can be optical bands, DSM and its by-products, and textural indexes computed
from optical bands. The r.texture GRASS GIS add-on was implemented after the studies by
Haralick et al. [39,40] and allows the computation of a few dozen texture indexes including
angular second moment (ASM), contrast (CONTR), correlation (CORR), entropy (ENTR),
difference variance (DV), inverse difference moment (IDM), sum average (SA), and sum
entropy (SE). Raster statistics can be completed with the morphological attributes of the
segments, namely: area, perimeter, compact circle, compact square, fractal dimension (fd),
x coordinates (xcoords), and y coordinates (ycoords).

2.3.4. Classification

The classification stage was performed using v.class.mlR in GRASS GIS [41]. Classifica-
tion performance is optimized through feature selection using the RF classifier [36]. Indeed,
RF was shown to be highly accurate and stable with high-dimensional data which is the
case in this study given the large variety of features that can be created (Section 2.3.3) [42].

2.3.5. Post-Processing

The resulting map was scanned by a convolutional square window of 7 × 7 pixels. The
class value of the central pixel was replaced by the most frequently occurring class value in
the neighborhood (modal filter). The size of the neighborhood was chosen by considering
a minimum mapping unit (MMU) of 20 cm (image spatial resolution x neighborhood
size = MMU). This operation was performed using the r.neighbors GRASS GIS add-on.

2.4. Experiments

To reach the objectives of this study, sensitivity experiments were carried out on
Dataset #1 and Dataset #2 (Section 2.2). Table 3 summarizes the tests performed and their
main characteristics.
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Table 3. Overview of all sensitivity experiments performed in the framework of this study.

Experiment Test Id

#
D

at
as

et

Input
Raster

Segmentation Type
and Parameters

OA
[%]

R
ob

us
tn

es
s

Se
gm

en
ta

ti
on

Te
xt

ur
e

Sp
ec

tr
al

In
fo

.

Sp
at

ia
lr

es
.

C
on

te
xt

In
fo

X 0 * 0
RGB + Slope + 8 texture

indexes computed from a
pseudo-panchromatic band *

i.segment,
threshold = 0.06,
minsize = 20 *

80.5 *

X X X X X 1 1
RGB + Slope + 8 texture

indexes computed from a
pseudo-panchromatic band *

i.segment,
threshold = 0.06,
minsize = 20 *

82.6

X 2 1 Same as Test 1 Superpixel + i.segment 79.5

X 3 1

RGB + Slope + 3 texture
indexes (ASM, CONTR, SA)

computed for each
spectral band

Same as Test 1 78.8

X 4 1

RGB + Slope + 5 texture
indexes (ASM, CONTR,

CORR, DV, SA) computed for
each spectral band

Same as Test 1 79.8

X 5 1
RGB + Slope + 8 texture

indexes computed for each
spectral band

Same as Test 1 80.0

X 6 2

MX 10 Bands + Slope +
8 texture indexes computed

from a pseudo-
panchromatic band

Same as Test 1 80.0

X 7 2

MX 5 Bands + Slope +
3 texture indexes (ASM,

CONTR, SA) computed for
each spectral band

Same as Test 1 80.9

X 8 2

MX 5 Bands + Slope +
5 texture indexes (ASM,
CONTR, CORR, DV, SA)

computed for each
spectral band

Same as Test 1 82.2

X X 9 2
MX 5 Bands + Slope +

8 texture indexes computed
for each spectral band

Same as Test 1 82.4

X 10 2
MX Blue 5 Bands + Slope +
8 texture indexes computed

for each spectral band
Same as Test 1 82.8

X 11 2
MX 10 Bands + Slope +

8 texture indexes computed
for each spectral band

Same as Test 1 81.2

X 12 1 ** Same as Test 1 Same as Test 1 79.7

X 13 *** 1 Same as Test 1 Same as Test 1 88.5

* Test 0 on Dataset #0 was originally presented in Wyard et al. [16]; ** resampled to 10 cm; *** used xcoords and
ycoords in the geometric attributes.
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First, the robustness of the processing chain was assessed by applying it without
modification to the new RGB Dataset (#1) in its native spatial resolution (3.8 cm), which was
set with similar acquisition characteristics as Dataset #0 used by Wyard et al. [16]. Related
tests are Test #0 and Test #1.

Second, the sensitivity of the processing chain to the segmentation approach was
assessed. More precisely, two approaches were tested. On the one hand, a region-growing
approach was applied. Objects were extracted from the multispectral data (either 3 or
10 bands) in their native spatial resolution by directly applying the i.segment GRASS GIS
add-on. This first approach used the original version of the processing chain [16]. Then,
a hybrid clustering approach was performed. A preliminary step of superpixel creation
was performed using the i.superpixels.slic GRASS-GIS add-on and used as objects seeds
for subsequent region growing with i.segment. The division of the image into a number
of compact and nearly uniform superpixels provided useful clustering cues to guide
image segmentation and accelerated the convergence of the region-growing algorithm
(i.segment), which was then applied. Crommelinck et al. [43] tested the SLIC approach
for the segmentation of 5 cm UAV data and concluded that “the approach is not suitable
as a standalone approach for object delineation. However, it shows high potential for a
combination with further methods”. The SLIC approach can indeed be used in combination
with other algorithms or as a first step in image segmentation [44–47]. Such approach is
noted to be more efficient than the region-growing approach especially from a computation
time point of view (less time than traditional method). Wu et al. [46] combined the SLIC
superpixel to the region-growing algorithm with satisfying results. For both approaches,
parameters were determined by human eye assessment. Tests related to this experiment
are Test #1 and Test #2.

Third, the sensitivity of the processing chain results to the textural information was
assessed. In fact, textural information was proven to have a significant positive impact
on UAV image classification results [28]. This was confirmed by Wyard et al. [16], who
improved the classification OA by 10% by using eight textural indexed computed from a
single pseudo-panchromatic band and by performing a feature selection. In this study, two
approaches were tested to determine which one provided the best results for reasonable
computation time. Texture computation is indeed very time-consuming (in our case, 1 h
per textural index depending on the resources available). The first approach used a pseudo-
panchromatic band (pseudo_panchro = 0.2989 × R + 0.5870 × G + 0.1140 × B) and the
calculation of eight textural indexes on the latter (hereafter referred to the texture from
one panchromatic band approach). The second approach consisted of the calculation of
a variable number (3, 5, and 8) of textural indexes on the raw spectral bands (hereafter
referred to the texture by spectral band approach). For both approaches a window of
15 pixels was set by experimentation. Tests were carried out on RGB Dataset #1 and
10-band Dataset #2 in their native spatial resolution using the best segmentation approach
identified in the previous experiment. Tests related to this experiment are Test #1 (best
result of previous experiment), Test #3, Test #4, Test #5, Test #6, Test #7, Test #8, and Test #9.

Fourth, the sensitivity of the processing chain to spectral resolution was assessed.
The hypothesis was indeed raised that a better spectral resolution can improve class
discrimination [16]. Results obtained for the three-band Dataset #1 were compared with
results obtained for the 10-band Dataset #2 using the best texture combination identified
in the previous experiment. The focus was on the precision by class. Tests used for this
analysis are Test #1 (best result of previous experiment using the RGB dataset), #Test 9 (best
result of previous experiment using the 10-band dataset), Test #10, and Test #11.

Fifth, the sensitivity of the processing chain to spatial resolution was assessed. The
spatial resolution on the ground is crucial because it impacts the objects that can be dis-
criminated depending on their size, the UAV flight height and speed, and thus directly the
area that can be covered and the amount of data to process. For this purpose, Dataset #1
was resampled from its native resolution of 3.8 cm to 10 cm and the best configuration of
the processing chain determined by the previous experiments was adapted to this coarser
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resolution. Namely, parameters were adapted to keep the same order of size. The result
was then compared with the best results obtained from the processing chain using Dataset
#1 in its native spatial resolution. The related tests are Test #1 (best result of previous
experiment) and Test #12.

Sixth, the sensitivity of the processing chain to contextual information was evaluated.
For this propose, Dataset #1 was used in its original spatial resolution, and xcoords and
ycoords were added as features. The related test is Test #13. Results were then compared
with the same test performed without contextual information (Test #1).

Tests #1 to #12 were performed using the same features. These features consist of the
following raster statistics: min, max, range, mean, stddev, sum, variance, first_quart, median,
third_quart; and the following geometric attributes: area, perimeter, compact_circle, fd. Test
#13 used all these features, plus xcoords and ycoords in the geometric attributes.

3. Results

Table 3 provides an overview of results obtained during the sensitivity experiments
that are described in Section 2.4. The OA of the different tests exhibits a 10% variation,
from 78.8% to 88.5%, which is significant given the complexity of the task (a nine-class
supervised classification) and the high OA which are already achieved. The following
subsections analyze the results in detail by sensitivity experiment.

3.1. Robustness

Results confirm the robustness of the OBIA processing chain for the LC mapping of
a landfill site using drone data. By applying this processing chain to a new RGB dataset
(Test #1) and compared with Wyard et al. [16] (Test #0), results show close OA of 80.5%
(Test #0) and 82.6% (Test #1) (Table 3). Test #1 OA is also significantly better than Test #0. It
can therefore be concluded that the processing chain is robust and applicable to RGB UAV
images taken at different dates. The only constraint is that the sampling must be checked
from one dataset acquisition to another.

3.2. Sensitivity to Segmentation Approach

Both tested segmentation approaches (see Section 2.4. for details) provide consistent
results but the direct application of i.segment remains the best compromise between compu-
tation time and performance. In fact, the results show that Test #1 has a significantly higher
OA (82.6%) than Test #2 (76.7%) (Table 3). Figure 3 provides a visual comparison of both
segmented images and classification results.

A significant drop in dry vegetation (−10.0%), brown bare soil (−8.4%), black bare
soil (−9.5%), grey concrete (−10.2%), and white tarp (−11.0%) class precision explains
the counter performance of Test #2 and is illustrated in Figure 3e. As expected, Test #2
allows for significantly reducing the segmentation computation time by 60% but requires
two steps of manual parameter fitting instead of one for Test #1. The first segmentation
approach is therefore considered the most relevant.

3.3. Sensitivity to Textural Information

Although the addition of textural information generally refines the classification results
and influences the precision of certain classes, the new tested approaches do not outperform
the original approach applied to RGB images by Wyard et al. [16]. However, the approach
generating the best results varies following the spectral resolution of the dataset.

On the one hand, by comparing the texture by spectral band approaches (new ap-
proaches) performed on the RGB imagery (Dataset #1) (Test #3, Test #4, Test #5) to the
texture from one panchromatic band approach (original approach) (Test #1), results show
that the latter remains the best with OA peaking at 82.6% (Figure 4a). The OA of Tests #3, #4,
and #5 are very close with values of 78.8, 79.8, and 80%, respectively (Figure 4a). Increasing
the number of texture indexes allows for refining the classification results, especially when
this number goes from three (Test #3) to five (Test #4) (+1%), which corresponds to the
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addition of DV and CORR. The addition of IDM, SE, and ENTR has a much more limited
impact on classification results (Test #5). The addition of textural information generally
benefits to all classes. By analyzing the precision by class, the texture by spectral band
approach allows to refine the identification of green vegetation, dry vegetation, waste, and
black tarp, which correspond to the most textured classes (Figure 2).
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On the other hand, tests performed on the 10-band imagery (Dataset #2) show that
contrary to the RGB imagery, texture by spectral band approaches are more indicative
with OA peaking at 82.2% when eight textures per spectral band of the first RedEdge MX
camera are used (Test #9) (Figure 4b). In fact, the use of a panchromatic band, and the
calculation of textures on the latter produced OA of 80.0% (Test #6). On the contrary, the
addition of up to eight textures calculated directly on the raw spectral bands contributes
to the improvement of the OA. However, the texture from spectral band approach is very
time consuming compared with the texture from one pseudo-panchromatic band approach,
up to +900% in terms of processing time for a gain of about 2% in OA. As observed for the
tests performed on the RGB imagery, the gain in OA is larger when the number goes from
three (80.9%) to five (82.2%) than to five to eight (82.4%) (Test #7, #8, and #9 respectively).

3.4. Sensitivity to Spectral Resolution

The results show that an RGB sensor allows for obtaining more comparable results
than the 10-band sensor such as the RedEdge MX Dual Camera System although potential
complementarities are identified. To reach this statement, several specific tests were carried
out on the 10-band imagery (Dataset #2).

Classification results using either or both MX cameras together show limited changes
in OA. Maximum OA (82.8%) was achieved using only the RedEdge MX Blue camera,
offering two RedEdge bands (Test #10) (Figure 5).

Comparative analysis by class shows that the first MX camera (having one band in the
RedEdge and one in the NIR) improves the classification of the dry vegetation and the waste
matrix by about 10% compared with the MX Blue sensor (Test #9). In contrast, the MX Blue
sensor improves the discrimination of grey bare soil and black membranes (Test #10). This
may highlight the value of using the two sensors in separate classifications and crossing
the results in post processing. Indeed, combining the 10 bands in the classification chain
tends to average out these improvements, and results in a lower OA (81.2%) (Test #11).
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In the end, the OA of the best results obtained from the 10-band imagery (i.e., the
RedEdge MX Blue camera classification using eight textures, Test #10) is comparable to the
best results obtained from the RGB imagery (i.e., three bands RGB, panchromatic band,
eight textures, Test #1) with OA of 82.8% and 82.6%, respectively. It can therefore be
concluded that for this LC mapping scheme applied to the Hallembaye landfill, an RGB
sensor is sufficient. However, it should be noted that the addition of spectral information
offered by the MX Dual camera contributes to improve the classification of brown bare
soils by more than 14%, black tarp by almost 12%, white tarp by 11%, and green vegetation
by 6%. On the other hand, the RGB classification performs better for dry vegetation and
waste (more than 14% better for these two classes) and for black bare soils (by 8%). In
total, the overall OA is not significantly different between these two tests, but potential
complementarities are identified.

3.5. Sensitivity to Spatial Resolution

Tests performed on the RGB imagery (Dataset #1) show that a spatial resolution of
10 cm is sufficient to obtain OA of about 80%. The comparison between Test #1 (3.8 cm) and
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Test #12 (10 cm) shows rather close OA (Figure 6). However, Test #1 remains significantly
better (+2.8%). Regarding precision by class, the 10 cm resolution seems to be more suitable
only for the identification of dry vegetation (+2.4%), waste (+2.2%), and black tarp (+2.9%),
which are classes rather heterogeneous. Indeed, the 10 cm resolution allows generalizing
information for these classes.
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In addition, the use of a coarser resolution has several advantages: reduction in
the UAV flight duration, reduction in the number of images to be pre-processed and
consequently the general processing time, possibility to cover a larger area. For a 10 cm
resolution, compared with a 3.8 cm resolution, the flight duration is reduced by 72% while
the number of images is reduced by 90%.

3.6. Sensitivity to Contextual Information

The addition of contextual information, namely, the x and y coordinates of the objects
in their features, produces the most significant improvement of classification with OA of
88.5%. Compared with Test #1, this is an improvement of nearly +6%. Almost all classes
benefit from the additional contextual information with gain in precision by class ranging
from +4.6% (green vegetation) to +20% (black tarp). Two classes show a drop in their
precision: grey concrete (−10.2%) and white tarp (−13.4%). The analysis of the Test #13
confusion matrix reveals a strong confusion between these two classes leading to precision
by class of 76.6% and 74.4%, respectively. Grey concrete and white tarp have indeed
close optical characteristics; however, this is their spatial proximity and their marginal
distribution over the site at this acquisition date which explains their confusion (Table 4).
Regarding the seven remaining classes, confusion is very limited so that their precision is
above 85% (five classes with precision above 90%). In addition, the comparison between
the classified LC map obtained from Test #13 (Figure 7b) and the original image (Figure 7a)
reveals unwanted classification artefacts of white tarp, black tarp, and grey bare soil. These
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classes are characterized by a reduced and marginal distribution at this acquisition date
which results in clustering in the sampling as well. The x and y coordinates used as features
results in the artifacts observed in Figure 7b and in confusion between classes of similar
appearance which are spatially close to each other.

Table 4. Confusion matrix of Test #13. PA: producer accuracy; UA: user accuracy.

Classification

11 12 21 31 32 33 41 42 43 SUM PA
[%]

Class
Prec.
[%]

R
ef

er
en

ce

Green vegetation 11 32 0 0 0 0 1 0 0 0 33 97.0 95.5
Dry vegetation 12 0 28 0 0 2 0 0 0 0 30 93.3 91.8

Waste 21 1 2 43 0 6 0 0 2 0 54 79.6 89.8
Grey bare soil 31 0 0 0 31 0 0 1 0 0 32 96.9 91.5

Brown bare soil 32 1 1 0 5 50 0 0 1 0 58 86.2 85.5
Black bare soil 33 0 0 0 0 1 94 0 3 0 98 95.9 96.9
Grey concrete
constructions 41 0 0 0 0 0 0 25 0 0 25 100.0 76.6

Black tarp 42 0 0 0 0 0 1 0 53 0 54 98.1 94.0
White tarp 43 0 0 0 0 0 0 21 0 20 41 48.8 74.4

SUM 34 31 43 36 59 96 47 59 20 425

UA [%] 97.0 94.1 90.3 100.0 86.1 84.7 97.9 53.2 89.8 100.0 OA = 88.5%
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3.7. Features Contribution

Among all tests performed, Test #13 produced the best OA with a value of 88.5%.
Regarding precision by class, Test #13 performs better with seven classes above 85% (five
above 90%) and a minimum precision by class of 74.4% (Table 4). Such performance
is achieved using a total of 22 features. Contextual information explains 70.7% of this
performance, while features related to optical bands and texture indexes account for 16.9%
and 12.4%, respectively.

By analyzing the second-best test (Test #10) when contextual information is not used,
the resulted classified LC map does not exhibit artefacts as strong as Test #13 (Figure 7c). As
a reminder, Test #10 used the five-band RedEdge MX Blue camera, slope, and eight textures
computed for each spectral band, which allows reaching OA of 82.8%. This performance is
achieved using a larger number of features: 94 in total. Features related to texture indexes
explain 70.4% of this performance, while features related to optical bands and to slope
account for 26.0% and 3.6%, respectively.

Finally, it should be noted that the classification of shadows is a challenge as illustrated
in both classified LC map presented in Figure 7.

4. Discussion

The final results show that the OBIA processing chain allows for producing consistent
LC classifications for at least two dates using RGB UAV imagery. They also show that
low-cost RGB standard sensors are sufficient to reach accuracies above 85% and that spatial
resolution of up to 10 cm can be adopted with limited impact on the performance of the
processing chain. The sensitivity experiments carried out on the segmentation approach,
textural, and contextual information, and spectral and spatial resolution show that when
contextual information is not taken into account, OA peaks at 82.8%. Dry vegetation,
waste and black bare soil are the classes which systematically drag down the classification
performance with precision below 80% and even below 70% for dry vegetation and waste.
Confusions originate from similar color and texture. The addition of NIR and red edge
spectral bands obviously fails to solve color-related confusion. The addition of contextual
information, namely the x and y coordinates of objects, allows to significantly improve the
performance of the processing chain with a +6% jump in OA reaching 88.6%. However,
unwanted classification artifacts are observed in the resulted LC map due to a reduced
and marginal distribution of certain class at this acquisition. The following subsections
discuss these results in view of the original objectives of the study, of improvements that
are still possible in the processing chain, and in the prospects offered by this work for the
monitoring of landfill sites.

4.1. Robustness and Replicability of the Processing Chain

The first objective of this study was to provide a robust and optimized open-source
OBIA processing chain as automated as possible for the production of LC maps using
UAVs data. The satisfying OA obtained for two UAV data acquisition dates demonstrates
the replicability of the processing chain. This replicability was already demonstrated in the
processing of airborne and satellite data at very high spatial resolution [22,24,25]. It was
demonstrated for the processing of UAV data.

However, the large number of activities carried out on an operational landfill does not
allow for a fully automated processing chain: the selection of training and validation points
must be checked manually between each dataset. However, experience shows that most of
the changes are made in the active zone, thus limiting the number of points to be updated
(max 1 to 2 h for the update of more than 1000 sampled points). Given the temporal
variability of landfill waste and soil deposits in terms of color, the automation of this
selection, such as in the works of Radoux et al. [48] or using active learning strategies [49],
appears complex on such site, but can be more easily considered in other applications.

In this study, the replicability of the processing chain was demonstrated for at least
two different seasons: early autumn and late winter. On the one hand, the flight conducted
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in early October 2019 (early autumn) occurred at the end of the growing season. The
advantages are: (a) less confusion between vegetation and other LC classes as vegetation is
mostly green; (b) and shadows can be limited. On the other hand, the flights conducted
in early March 2021 (late winter) occurred outside the growing season. This has two
advantages: (a) the mapping of the ground cover is partly free of vegetation and therefore
it is possible to better discriminate objects on the ground; (b) and it is carried out in the cold
period that is favorable for the thermographic analysis of the site for the detection of biogas
leaks, and therefore for the coupling of UAV-based services. The resulting difficulty is less
discrimination of vegetated areas and consequently greater confusion between vegetation
and other LC. For the other periods of year which have not yet been tested, late autumn
and early spring can be more challenging. Indeed, the various states of the vegetation at
these periods would add complexity to the discrimination of vegetation classes against soil
classes and waste.

The LC context of the Hallembaye landfill is characteristic of the context of other
Walloon landfills included in the monitoring network. We are therefore convinced, and the
prospects include running this service routinely on all sites, of the replicability of the OBIA
processing chain. However, it is crucial to adapt the sampling and classification strategy to
the classes present on each site. Indeed, the legal provisions vary from one site to another,
notably in the typology of the waste buried and in the status of the site (in activity, in
post-management, or in rehabilitation). Depending on the local soil properties of the site, it
is highly likely that the types of soil embankments will also vary from one site to another.

4.2. Data Acquisition Guidelines

The second objective of this paper was to provide guidelines on the necessary UAV
flight characteristics required for the automatic multi-class LC mapping of dynamic sites.
At the end of the empirical approach, we can conclude that the use of light UAV equipment
with a traditional multispectral sensor with three visible bands appears to be the best
compromise in terms of classification quality, flight autonomy, and consequently, the area
that can be covered during a flight campaign. The current legislation on flight authorization
(Regulation (EU) 2019/947 and Regulation (EU) 2019/945) is also more flexible for this
type of equipment, compared with that applicable to M600 Pro such as UAVs.

The richer multispectral information shows limited improvement in the classification
results in our case study. This observation is only valid for the equipment we compared and
should be put into perspective with the opportunities offered by a UAV-borne spectrometer
or those operating in other wavelength ranges [50,51].

In terms of recommendations for the flight height and the temporality of the acquisi-
tions (frequency and period in the year), we feel it is necessary to relate this application
to the other services using UAVs useful for landfill management. In this sense, our study
shows that a spatial resolution of 10 cm is sufficient for the purpose of LC mapping. How-
ever, such a resolution complicates the photo-interpretation purposes as developed by
Filkin et al. [52]. In this sense, we recommend aiming for a spatial resolution of less than or
equal to 5 cm, allowing the photo-interpretation of all the features of interest present on
a landfill.

The robustness of the processing chain was demonstrated in and out of the vegetation
period for two acquisition dates (early autumn and late winter) with satisfying results in
terms of OA. In terms of temporality, we recommend adjusting the acquisition frequency to
the needs of the topographic monitoring of landfills that can use the same equipment, but
keeping in mind that some periods of the year may be more challenging for LC mapping,
as detailed in Section 4.1. More generally we recommend acquiring UAV data in weather
and illumination conditions as homogeneous as possible.

4.3. Improving Classification Performances

Given the complexity of this classification (nine classes) and the high OAs that were
achieved (88.5%), every percentage that can still be gained is significant but the task is
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difficult. The more classes and the higher the OA, the more difficult it is to further improve
the OA. Sensitivity experiments performed on segmentation approach, textural, spatial, and
textural information showed limited impact on the classification performances compared
with the original version of the processing chain [16]. Still, the next step can be to take a
closer look at the spectral signatures of the different types of waste and landfill to better
guide the choice for specific sensor with a relevant spectral band. However, it should be
noted that such a task is difficult because each site is different and hosts different wastes.
Moreover, the availability of the relevant sensor on the market is not guaranteed.

The improvement of the classification performance can come from the addition of
contextual features and/or of contextual post-processing rules [53]. Regarding the addi-
tion of contextual features, the addition of object location criteria (namely their x and y
coordinates) in the features strongly impacted the classification results with a +6% jump
in the OA reaching 88.6% (Test #13, see Section 3.6). However, unwanted classification
artefacts were observed in the classified LC maps due to the clustering in the sampling of
certain classes (Figure 7b). This clustering results from the reduced and marginal spatial
distribution of certain classes such as black and white tarps. This situation can however
change from one acquisition date to another as landfill sites rapidly change from day to
day. In addition, this situation can also be solved with the extension of the study area.
Indeed, the use of light UAV equipment allows for acquiring data over larger areas as
explained in Section 4.1. Regarding the contextual post-processing rules, such rules must be
adapted from one classification result to another. It is not compatible with our processing
chain, which we want to be as automated as possible and replicable for other dates and for
other sites.

The analysis of the classified LC maps (Figure 7) showed that the presence of shadows
and classification is a challenge (Section 3.7). Several options are possible to tackle this
problem. Image acquisition can be carefully planned to limit the presence of shadows
(e.g., cloudy weather conditions avoid direct radiation and therefore shadows, around
noon under sunny conditions). Another option is the addition of a shadow class to the
classification scheme and its reclassification in post-processing using rules for instance. For
the latter option, the use of slope and their orientation (also called “aspect”) can be relevant.
However, as already noted, post-classification rules are not fully compatible with the first
objective of this study.

Reaching OA above 90% would allow obtaining results of the same order as authors
using other approaches for the LC mapping from UAV imagery. In fact, although OBIA
combined to supervised classification is the most commonly used technique for LC map-
ping, other approaches also have their proof. OBIA combined with a fuzzy unordered rule
induction algorithm outperforms decision tree and SVM with OA of 91.23% for a nine-class
LC mapping over palm tree exploitation [53].

Another way of improvement to investigate in the near future is the use of deep-
learning approaches [54]. However, creating fully labeled patches for semantic segmen-
tation is dramatically time consuming and should be avoided as much as possible. A
hybrid approach consisting of using state-of-the-art models such as Xception or DenseNet
pre-trained on ImageNet dataset and using them as feature extractors to generate features
to feed a conventional machine learning classifier such as random forest, is an option to
investigate [55,56].

4.4. Integration of the Method into Landfill Control Actions

During the last decade, the qualitative improvement of sensors, vectors, and processing
make UAVs an efficient technology for the identification and evaluation of environmental
effects and the regular analysis of operations related to landfill management [12]. Beyond
the services currently considered as operational, such as the extraction of information
on the spatial properties of a landfill [57] or its thematic inspection in connection with
technological monitoring and operational control [50], this study adds a new LC mapping
service in the framework of our landfill control actions (Figure 8).
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Achieving OA below 90% does not preclude the value of this application. Indeed, the
managers in the temporal follow-up of the deposits are particularly interested in the study
of the volumetric changes on site. For this application, the qualitative contribution (what
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type of waste, soils, vegetation growth, etc.) is value-added data. The generalization of
the classification in “super object”, delimiting a waste mass or an excavated zone, namely
allows for bringing this qualification to the volumetric statistics.

The proposed methodology not only offers a solution for the qualification and quan-
tification of LC features over landfills, it also can contribute to a better mapping of illegal
dumping sites (discriminating waste deposits from surrounding features), to the monitor-
ing of other complex sites (construction site, quarries, etc.), or for other applications where
only UAVs can provide suitable resolutions.

5. Conclusions

Achieving the qualitative standards of classification is a challenge and a difficulty
on sites as complex and in constant evolution as a landfill. This study aimed to develop
a robust and automated tool and to provide data acquisition guidelines for LC mapping
of such complex sites using UAV multispectral imagery. For this purpose, the robustness
of the object-based supervised classification processing chain originally developed by
Grippa et al. [22] and adapted to UAV data by Wyard et al. [16] was assessed. Its sensitivity
to the segmentation approach, textural information, spectral resolution, spatial resolution,
and contextual information were also tested. The experimental design included the use of
three distinct UAV datasets acquired using two vectors and three sensors at two acquisition
dates over the Hallembaye landfill.

The sensitivity experiments performed on the OBIA processing chain demonstrates
the added value of the use of contextual information as features in addition to features
computed from optical and texture index rasters with a gain in OA of +6% reaching 88.5%.
In fact, when contextual properties are not taken into account, OA peaks at 82.8% and
confusions remain between classes of similar spectra and texture.

Regarding the first objective of this study (production of a robust and automated tool),
the results proved the replicability of the OBIA processing chain for at least two acquisition
dates (early autumn and late winter). The processing chain developed in this study may be
used for other acquisition dates although the rapid evolution and different aspects of the
vegetation during early spring and late autumn can add a challenge to the discrimination
of LC classes. The processing chain can be used over other sites with the condition of
adapting the classification schema to the LC classes observed over these sites.

Regarding the second objective of this study (the formulation of acquisition guidelines),
the use of low cost and light UAV equipment with a standard RGB sensor appears to be the
best compromise in terms of classification quality, flight autonomy, and consequently, the
area that can be covered during a flight campaign. Results show that spatial resolution of up
to 10 cm can be adopted with limited impact on the performance of the processing chain.

Among all the options considered to further improve the classification performance,
the use of DL techniques is particularly promising and should certainly be investigated.

Finally, this study results in the creation of a new operational service for the monitoring
of active landfill sites of Wallonia.
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