disconnected consciousness; propofol sedation; sensory gating; serial awakening paradigm; slow wave activity; General Neuroscience
Abstract :
[en] [en] BACKGROUND: Disconnected consciousness describes a state in which subjective experience (i.e., consciousness) becomes isolated from the external world. It appears frequently during sleep or sedation, when subjective experiences remain vivid but are unaffected by external stimuli. Traditional methods of differentiating connected and disconnected consciousness, such as relying on behavioral responsiveness or on post-anesthesia reports, have demonstrated limited accuracy: unresponsiveness has been shown to not necessarily equate to unconsciousness and amnesic effects of anesthesia and sleep can impair explicit recollection of events occurred during sleep/sedation. Due to these methodological challenges, our understanding of the neural mechanisms underlying sensory disconnection remains limited.
METHODS: To overcome these methodological challenges, we employ a distinctive strategy by combining a serial awakening paradigm with auditory stimulation during mild propofol sedation. While under sedation, participants are systematically exposed to auditory stimuli and questioned about their subjective experience (to assess consciousness) and their awareness of the sounds (to evaluate connectedness/disconnectedness from the environment). The data collected through interviews are used to categorize participants into connected and disconnected consciousness states. This method circumvents the requirement for responsiveness in assessing consciousness and mitigates amnesic effects of anesthesia as participants are questioned while still under sedation. Functional MRI data are concurrently collected to investigate cerebral activity patterns during connected and disconnected states, to elucidate sensory disconnection neural gating mechanisms. We examine whether this gating mechanism resides at the thalamic level or results from disruptions in information propagation to higher cortices. Furthermore, we explore the potential role of slow-wave activity (SWA) in inducing disconnected consciousness by quantifying high-frequency BOLD oscillations, a known correlate of slow-wave activity.
DISCUSSION: This study represents a notable advancement in the investigation of sensory disconnection. The serial awakening paradigm effectively mitigates amnesic effects by collecting reports immediately after regaining responsiveness, while still under sedation. Ultimately, this research holds the potential to understand how sensory gating is achieved at the neural level. These biomarkers might be relevant for the development of sensitive anesthesia monitoring to avoid intraoperative connected consciousness and for the assessment of patients suffering from pathologically reduced consciousness.
CLINICAL TRIAL REGISTRATION: European Union Drug Regulating Authorities Clinical Trials Database (EudraCT), identifier 2020-003524-17.
Disciplines :
Human health sciences: Multidisciplinary, general & others
Montupil, Javier ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'anesthésie - réanimation
Mortaheb, Sepehr ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog) ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Physiology of Cognition
Panda, Rajanikant ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Sanders, Robert D; Central Clinical School, Sydney Medical School & NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia ; Department of Anaesthetics & Institute of Academic Surgery, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
Phillips, Christophe ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Neuroimaging, data acquisition and processing
Alnagger, Naji ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Remacle, Emma; Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
DEFRESNE, Aline ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'anesthésie - réanimation
Boly, Mélanie ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie ; Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin, Madison, WI, United States
Bahri, Mohamed Ali ; Université de Liège - ULiège > Département de physique ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Aging & Memory
Lamalle, Laurent ; Université de Liège - ULiège > Département des sciences cliniques ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Aging & Memory
Laureys, Steven ; Université de Liège - ULiège > Département des sciences cliniques ; Cervo Brain Research Centre, University Institute in Mental Health of Quebec, Québec, QC, Canada ; Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Bonhomme, Vincent ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Anesthesia and Intensive Care Laboratory
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group ; Department of Data Analysis, University of Ghent, Ghent, Belgium
Andersson J. L. R. Skare S. Ashburner J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20, 870–888. doi: 10.1016/S1053-8119(03)00336-7, PMID: 14568458
Andrillon T. Kouider S. (2020). The vigilant sleeper: neural mechanisms of sensory (de)coupling during sleep. Curr. Opin. Physio. 15, 47–59. doi: 10.1016/J.COPHYS.2019.12.002
Bekinschtein T. A. Dehaene S. Rohaut B. Tadel F. Cohen L. Naccache L. (2009). Neural signature of the conscious processing of auditory regularities. Proc. Natl. Acad. Sci. USA 106, 1672–1677. doi: 10.1073/PNAS.0809667106/SUPPL_FILE/0809667106SI.PDF, PMID: 19164526
Boly M. Massimini M. Tsuchiya N. Postle B. R. Koch C. Tononi G. (2017). Are the neural correlates of consciousness in the front or in the Back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613. doi: 10.1523/JNEUROSCI.3218-16.2017, PMID: 28978697
Boly M. Moran R. Murphy M. Boveroux P. Bruno M. A. Noirhomme Q. et al. (2012). Connectivity changes underlying spectral EEG changes during Propofol-induced loss of consciousness. J. Neurosci. 32, 7082–7090. doi: 10.1523/JNEUROSCI.3769-11.2012, PMID: 22593076
Bonhomme V. Vanhaudenhuyse A. Demertzi A. Bruno M. A. Jaquet O. Bahri M. A. et al. (2016). Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125, 873–888. doi: 10.1097/ALN.0000000000001275, PMID: 27496657
Behrens T. E. J. Woolrich M. W. Jenkinson M. Johansen-Berg H. Nunes R. G. Clare S. et al. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med., 50: 1077–1088. doi: 10.1002/mrm.10609
Behrens T. Johansen-Berg H. Woolrich M. Smith S. M. Wheeler-Kingshott C. A. M. Boulby P. A. et al. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6, 750–757. doi: 10.1038/nn1075
Casey C. P. Tanabe S. Farahbakhsh Z. Parker M. Bo A. White M. et al. (2022b). Dynamic causal modelling of auditory surprise during disconnected consciousness: the role of feedback connectivity. NeuroImage 263:119657. doi: 10.1016/J.NEUROIMAGE.2022.119657, PMID: 36209793
Casey C. P. Tanabe S. Farahbakhsh Z. Parker M. Bo A. White M. et al. (2022a). Distinct EEG signatures differentiate unconsciousness and disconnection during anaesthesia and sleep. Br. J. Anaesth. 128, 1006–1018. doi: 10.1016/j.bja.2022.01.010, PMID: 35148892
Chung F. Subramanyam R. Liao P. Sasaki E. Shapiro C. Sun Y. (2012). High STOP-bang score indicates a high probability of obstructive sleep apnoea. Br. J. Anaesth. 108, 768–775. doi: 10.1093/BJA/AES022, PMID: 22401881
Chung F. Yegneswaran B. Liao P. Chung S. A. Vairavanathan S. Islam S. et al. (2008). STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology 108, 812–821. doi: 10.1097/ALN.0B013E31816D83E4
Cloninger C. R. Svrakic D. M. Przybeck T. R. (1993). A psychobiological model of temperament and character. Arch. Gen. Psychiatry 50, 975–990. doi: 10.1001/ARCHPSYC.1993.01820240059008
Ellia F. Hendren J. Grasso M. Kozma C. Mindt G. Lang J. P. et al. (2021). Consciousness and the fallacy of misplaced objectivity. Neurosci. Cons. 2021:niab032. doi: 10.1093/nc/niab032, PMID: 34667639
Errando C. L. Sigl J. C. Robles M. Calabuig E. García J. Arocas F. et al. (2008). Awareness with recall during general anaesthesia: a prospective observational evaluation of 4001 patients. Br. J. Anaesth. 101, 178–185. doi: 10.1093/BJA/AEN144, PMID: 18515816
Esser S. K. Hill S. Tononi G. (2009). Breakdown of effective connectivity during slow wave sleep: investigating the mechanism underlying a cortical gate using large-scale modeling. J. Neurophysiol. 102, 2096–2111. doi: 10.1152/JN.00059.2009, PMID: 19657080
Faul F. Erdfelder E. Buchner A. Lang A. G. (2009). Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160. doi: 10.3758/BRM.41.4.1149, PMID: 19897823
Faul F. Erdfelder E. Lang A. G. Buchner A. (2007). G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146/METRICS, PMID: 17695343
Feng L. Motelow J. E. Ma C. Biche W. McCafferty C. Smith N. et al. (2017). Seizures and sleep in the thalamus: focal limbic seizures show divergent activity patterns in different thalamic nuclei. J. Neurosci. 37, 11441–11454. doi: 10.1523/JNEUROSCI.1011-17.2017, PMID: 29066556
Funk C. M. Honjoh S. Rodriguez A. V. Cirelli C. Tononi G. (2016). Local slow waves in superficial layers of primary cortical areas during REM sleep. Curr. Biol. 26, 396–403. doi: 10.1016/J.CUB.2015.11.062, PMID: 26804554
Garrido M. I. Kilner J. M. Kiebel S. J. Stephan K. E. Friston K. J. (2007). Dynamic causal modelling of evoked potentials: a reproducibility study. NeuroImage 36, 571–580. doi: 10.1016/J.NEUROIMAGE.2007.03.014, PMID: 17478106
Gorgolewski K. J. Auer T. Calhoun V. D. Craddock R. C. das S. Duff E. P. et al. (2016, 2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci. Data 3, 1–9. doi: 10.1038/sdata.2016.44, PMID: 27326542
Irvine E. (2012). Old problems with new measures in the science of consciousness. Br. J. Philos. Sci. 63, 627–648. doi: 10.1093/BJPS/AXS019
Kanai R. Komura Y. Shipp S. Friston K. (2015). Cerebral hierarchies: predictive processing, precision and the pulvinar. Philos. Trans. R Soc. Lond. B Biol. Sci. 370:20140169. doi: 10.1098/RSTB.2014.0169, PMID: 25823866
Koch C. Massimini M. Boly M. Tononi G. (2016). Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321. doi: 10.1038/NRN.2016.22, PMID: 27094080
Lau H. C. (2008). A higher order Bayesian decision theory of consciousness. Prog. Brain Res. 168, 35–48. doi: 10.1016/S0079-6123(07)68004-2, PMID: 18166384
Lennertz R. Pryor K. O. Raz A. Parker M. Bonhomme V. Schuller P. et al. (2023). Connected consciousness after tracheal intubation in young adults: an international multicentre cohort study. Br. J. Anaesth. 130, e217–e224. doi: 10.1016/J.BJA.2022.04.010, PMID: 35618535
Leslie K. (2010). “Dreaming during anesthesia” in Consciousness, Awareness, and Anesthesia, Ed. George A. Mashour. Cambridge University Press. 74–89. https://www.cambridge.org/core/books/consciousness-awareness-and anesthesia/5E3B4B566E7AC244045F687F552F3482
Leslie K. Ogilvie R. (1996). Vestibular dreams: the effect of rocking on dream mentation. Dreaming 6, 1–16. doi: 10.1037/H0094442
Leslie K. Skrzypek H. Paech M. J. Kurowski I. Whybrow T. (2007). Dreaming during anesthesia and anesthetic depth in elective surgery patients: a prospective cohort study. Anesthesiology 106, 33–42. doi: 10.1097/00000542-200701000-00010, PMID: 17197843
Leslie K. Sleigh J. Paech M. J. Voss L. Lim C. W. Sleigh C. (2009). Dreaming and electroencephalographic changes during anesthesia maintained with propofol or desflurane. Anesthesiology 111, 547–555. doi: 10.1097/ALN.0B013E3181ADF768
Linassi F. Zanatta P. Tellaroli P. Ori C. Carron M. (2018). Isolated forearm technique: a meta-analysis of connected consciousness during different general anaesthesia regimens. Br. J. Anaesth. 121, 198–209. doi: 10.1016/J.BJA.2018.02.019, PMID: 29935574
Liu J. Lee H. J. Weitz A. J. Fang Z. Lin P. Choy M. et al. (2015). Frequency-selective control of cortical and subcortical networks by central thalamus. elife 4:e09215. doi: 10.7554/ELIFE.09215.001, PMID: 26652162
Massimini M. Ferrarelli F. Huber R. Esser S. K. Singh H. Tononi G. (2005). Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232. doi: 10.1126/SCIENCE.1117256
Mechelli A. Price C. J. Henson R. N. A. Friston K. J. (2003). Estimating efficiency a priori: a comparison of blocked and randomized designs. Neuroimage 18, 798–805. doi: 10.1016/S1053-8119(02)00040-X
Mhuircheartaigh R. N. Warnaby C. Rogers R. Jbabdi S. Tracey I. (2013). Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci. Transl. Med. 5:208ra148. doi: 10.1126/SCITRANSLMED.3006007, PMID: 24154602
Murphy M. Bruno M. A. Riedner B. A. Boveroux P. Noirhomme Q. Landsness E. C. et al. (2011). Propofol anesthesia and sleep: a high-density EEG study. Sleep 34, 283–291. doi: 10.1093/SLEEP/34.3.283, PMID: 21358845
Martuzzi R. Ramani R. Qiu M. Shen X. Papademetris X. Constable R. T. (2011). A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage, 58. doi: 10.1016/j.neuroimage.2011.06.075
Nieto-Castanon A. (2020). Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. Hilbert Press. doi: 10.56441/hilbertpress.2207.6598
Nielsen T. A. (1993). Changes in the kinesthetic content of dreams following somatosensory stimulation of leg muscles during REM sleep. Dreaming 3, 99–113. doi: 10.1037/H0094374
Noreika V. Jylhänkangas L. Móró L. Valli K. Kaskinoro K. Aantaa R. et al. (2011). Consciousness lost and found: subjective experiences in an unresponsive state. Brain Cogn. 77, 327–334. doi: 10.1016/J.BANDC.2011.09.002, PMID: 21986366
Pélissolo A. Lépine J. P. (2000). Normative data and factor structure of the temperament and character inventory (TCI) in the French version. Psychiatry Res. 94, 67–76. doi: 10.1016/S0165-1781(00)00127-X, PMID: 10788679
Radek L. Kallionpää R. E. Karvonen M. Scheinin A. Maksimow A. Långsjö J. et al. (2018). Dreaming and awareness during dexmedetomidine- and propofol-induced unresponsiveness. Br. J. Anaesth. 121, 260–269. doi: 10.1016/j.bja.2018.03.014, PMID: 29935581
Sanders R. D. Casey C. Saalmann Y. B. (2021). Predictive coding as a model of sensory disconnection: relevance to anaesthetic mechanisms. Br. J. Anaesth. 126, 37–40. doi: 10.1016/J.BJA.2020.08.017, PMID: 32912603
Sanders R. D. Gaskell A. Raz A. Winders J. Stevanovic A. Rossaint R. et al. (2017). Incidence of connected consciousness after tracheal intubation: a prospective, international, multicenter cohort study of the isolated forearm technique. Anesthesiology 126, 214–222. doi: 10.1097/ALN.0000000000001479, PMID: 27984262
Sanders R. D. Tononi G. Laureys S. Sleigh J. W. (2012). Unresponsiveness ≠ unconsciousness. Anesthesiology 116, 946–959. doi: 10.1097/ALN.0b013e318249d0a7, PMID: 22314293
Scheinin A. Kantonen O. Alkire M. Långsjö J. Kallionpää R. E. Kaisti K. et al. (2021). Foundations of human consciousness: imaging the twilight zone. J. Neurosci. 41, 1769–1778. doi: 10.1523/JNEUROSCI.0775-20.2020, PMID: 33372062
Schnider T. W. Minto C. F. Shafer S. L. Gambus P. L. Andresen C. Goodale D. B. et al. (1999). The influence of age on propofol pharmacodynamics. Anesthesiology 90, 1502–1516. doi: 10.1097/00000542-199906000-00003
Schredl M. Atanasova D. Hörmann K. Maurer J. T. Hummel T. Stuck B. A. (2009). Information processing during sleep: the effect of olfactory stimuli on dream content and dream emotions. J. Sleep Res. 18, 285–290. doi: 10.1111/J.1365-2869.2009.00737.X, PMID: 19552703
Siclari F. Baird B. Perogamvros L. Bernardi G. LaRocque J. J. Riedner B. et al. (2017). The neural correlates of dreaming. Nat. Neurosci. 20, 872–878. doi: 10.1038/nn.4545, PMID: 28394322
Siclari F. LaRocque J. J. Postle B. R. Tononi G. (2013). Assessing sleep consciousness within subjects using a serial awakening paradigm. Front. Psychol. 4:542. doi: 10.3389/FPSYG.2013.00542/BIBTEX
Smith S. M. Jenkinson M. Woolrich M. W. Beckmann C. F. Behrens T. E. J. Johansen-Berg H. et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219. doi: 10.1016/J.NEUROIMAGE.2004.07.051, PMID: 15501092
Song C. Boly M. Tagliazucchi E. Laufs H. Tononi G. (2022). fMRI spectral signatures of sleep. Proc. Natl. Acad. Sci. USA 119:e2016732119. doi: 10.1073/PNAS.2016732119, PMID: 35862450
Squires N. K. Squires K. C. Hillyard S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 38, 387–401. doi: 10.1016/0013-4694(75)90263-1, PMID: 46819
Tsuchiya N. Wilke M. Frässle S. Lamme V. A. F. (2015). No-report paradigms: extracting the true neural correlates of consciousness. Trends Cogn. Sci. 19, 757–770. doi: 10.1016/J.TICS.2015.10.002, PMID: 26585549
Valli K. Radek L. Kallionpää R. E. Scheinin A. Långsjö J. Kaisti K. et al. (2023). Subjective experiences during dexmedetomidine- or propofol-induced unresponsiveness and non-rapid eye movement sleep in healthy male subjects. Br. J. Anaesth. 131, 348–359. doi: 10.1016/j.bja.2023.04.026, PMID: 37268445
Windt J. M. Nielsen T. Thompson E. (2016). Does consciousness disappear in dreamless sleep? Trends Cogn. Sci. 20, 871–882. doi: 10.1016/J.TICS.2016.09.006, PMID: 27765517