Article (Scientific journals)
Topology-Aware Reinforcement Learning for Tertiary Voltage Control
Donon, Balthazar; Cubelier, François; Karangelos, Efthymios et al.
2024In Electric Power Systems Research, 234, p. 110658
Peer Reviewed verified by ORBi
 

Files


Full Text
PSCC24___Topology_aware_reinforcement_learning_for_tertiary_voltage_control__Compact_.pdf
Author preprint (602.95 kB)
Download
Full Text Parts
PSCC 2024 Paper Topology-Aware Reinforcement Learning for Tertiary Voltage Control.pdf
Author postprint (1.01 MB)
Download
Annexes
PSCC24___Topology_aware_reinforcement_learning_for_tertiary_voltage_control-supplementary-21.pdf
(5.63 MB)
Supplementary material
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Graph Neural Networks; Reinforcement Learning; Tertiary Voltage Control; power systems
Abstract :
[en] Transmission systems have experienced an increase in the occurrence frequency and intensity of high voltage events over the past few years. Since traditional approaches to optimal power flow do not scale well to real-life systems, it has become urgent to develop new methods to help operators improve tertiary voltage control. In this paper, we propose to train a graph neural network to choose voltage setpoints by interacting with a power grid simulator using reinforcement learning techniques. Moreover, we introduce the hyper heterogeneous multi graph formalism to account for topology variations of real-life systems (assets disconnection, bus-splitting, etc.). Our approach is validated on an artificial case study based on the case60nordic power grid.
Disciplines :
Energy
Electrical & electronics engineering
Computer science
Author, co-author :
Donon, Balthazar  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Cubelier, François ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Karangelos, Efthymios ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Wehenkel, Louis  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Crochepierre, Laure;  Réseau de Transport d'Électricité (RTE) > Research & Development
Pache, Camille;  Réseau de Transport d'Électricité (RTE) > Research & Development
Saludjian, Lucas;  Réseau de Transport d'Électricité (RTE) > Research & Development
Panciatici, Patrick;  Réseau de Transport d'Électricité (RTE) > Research & Development
Language :
English
Title :
Topology-Aware Reinforcement Learning for Tertiary Voltage Control
Publication date :
27 June 2024
Journal title :
Electric Power Systems Research
ISSN :
0378-7796
eISSN :
1873-2046
Publisher :
Elsevier, Amsterdam, Netherlands
Special issue title :
Proceedings of the 23rd Power Systems Computation Conference (PSCC 2024)
Volume :
234
Pages :
110658
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Available on ORBi :
since 28 March 2024

Statistics


Number of views
296 (30 by ULiège)
Number of downloads
699 (15 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi