[fr] On considère une variété algébrique contenant une involution cyclique d'ordre premier p, n'ayant qu'un nombre fini de points unis et sur cette variété un système linéaire d'hypersurfaces contenant p systèmes linéaires partiels appartenant à l'involution. L'un de ces systèmes est privé de points-base. On démontre que les autres ont la même dimension.