Critical current density; Dendritic avalanches; Laser Induced Periodic Surface Structures; Magnetic flux penetration; Dendritic avalanche; Dendritics; Femtosecond UV lasers; Flux penetration; Laser-induced periodic surface structures; Metasurface; Nano-structured; Thin-films; Condensed Matter Physics; Surfaces and Interfaces; Surfaces, Coatings and Films; General Physics and Astronomy; General Chemistry
Abstract :
[en] Superconducting Nb thin films have been nanostructured by means of a femtosecond UV laser. Laser induced periodic surface structures (LIPSS) with lateral modulation of ≈250nm and depth smaller than amplitude (≲20nm from crest to trough) are obtained for optimized laser scanning conditions over the film surface, i.e. power, frequency, scanning speed and polarization. This provides a fast and scalable procedure of surface control at the nanoscale. In thin films, control over the kinetics of the LIPSS formation process has been crucial. Untreated and laser-patterned samples have been characterized by electron and atomic force microscopy as well as by local and global magnetometry. The superconducting properties reveal anisotropic behavior in accordance with the observed topography. The imprinted LIPSS define channels for anisotropic current flow and flux penetration. At low temperatures, magnetic flux avalanches are promoted by the increased critical current density, though flux tends to be channeled along the LIPSS. In general, directional flux penetration is observed, being a useful feature in fluxonic devices. Scalability allows us to pattern areas of the order of cm2/min.
Research Center/Unit :
Q-MAT - Quantum Materials - ULiège
Disciplines :
Physics
Author, co-author :
Badía-Majós, Antonio ; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
Martínez, Elena ; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
Angurel, Luis A.; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
de la Fuente, Germán F. ; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
Fourneau, Emile ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Marinkovic, Stefan ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Language :
English
Title :
Laser nanostructured metasurfaces in Nb superconducting thin films
The authors gratefully acknowledge the financial support from Spanish MCIN/AEI / 10.13039/501100011033 (project PID2020- 113034RB-I00), Gobierno de Aragón, Spain (research group T54_23R ). The work of A.V. Silhanek and E. Fourneau has been financially supported by the Fonds de la Recherche Scientifique - FNRS, Belgium under the grants Excellence of Science (EOS) project O.0028.22 and PDR T.0204.21. S. Marinković acknowledges support from FRS-FNRS (Research Fellowships ASP) . A. Badía-Majós wants to acknowledge partial financial support from the European Union under Hi-Scale COST action ( CA19108 ). The authors also would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI and Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza.The authors gratefully acknowledge the financial support from Spanish MCIN/AEI/10.13039/501100011033 (project PID2020- 113034RB-I00), Gobierno de Aragón, Spain(research group T54_23R). The work of A.V. Silhanek and E. Fourneau has been financially supported by the Fonds de la Recherche Scientifique - FNRS, Belgium under the grants Excellence of Science (EOS) project O.0028.22 and PDR T.0204.21. S. Marinković acknowledges support from FRS-FNRS (Research Fellowships ASP). A. Badía-Majós wants to acknowledge partial financial support from the European Union under Hi-Scale COST action (CA19108). The authors also would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI and Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Eisenstein, J., Superconducting elements. Rev. Modern Phys. 26 (1954), 277–291.
Prozorov, R., Zarea, M., Sauls, J.A., Niobium in the clean limit: An intrinsic type-I superconductor. Phys. Rev. B, 106, 2022, L180505.
Marinković, S., Abbey, E.A., Chaves, D.A.D., Collienne, S., Fourneau, E., Jiang, L., Xue, C., Zhou, Y.H., Ortiz, W.A., Motta, M., Nguyen, N.D., Volodin, A., Van de Vondel, J., Silhanek, A.V., Effect of moderate electropulsing on Nb multiterminal transport bridges. Phys. Rev. A, 19, 2023, 054009.
Colauto, F., Motta, M., Ortiz, W.A., Controlling magnetic flux penetration in low-Tc superconducting films and hybrids. Supercond. Sci. Technol., 34(1), 2020, 013002.
Kadin, A.M., Duality and fluxonics in superconducting devices. J. Appl. Phys. 68:11 (1990), 5741–5749.
Villegas, J.E., Savel'ev, S., Nori, F., González, E.M., Anguita, J.V., García, R., Vicent, J.L., A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302:5648 (2003), 1188–1191.
Dobrovolskiy, O.V., Huth, M., Dual cut-off direct current-tunable microwave low-pass filter on superconducting Nb microstrips with asymmetric nanogrooves. Appl. Phys. Lett., 106(14), 2015, 142601.
Vlasko-Vlasov, V.K., Colauto, F., Benseman, T., Rosenmann, D., Kwok, W.K., Triode for magnetic flux quanta. Sci. Rep.(1), 2016, 36847.
Birnbaum, M., Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36:11 (1965), 3688–3689.
van Driel, H.M., Sipe, J.E., Young, J.F., Laser-induced periodic surface structure on solids: A universal phenomenon. Phys. Rev. Lett. 49 (1982), 1955–1958.
Höhm, S., Rosenfeld, A., Krüger, J., Bonse, J., Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation. Appl. Surf. Sci. 278 (2013), 7–12 Laser materials processing for micro and nano applications, E-MRS 2012 Symposium V.
Bonse, J., Höhm, S., Kirner, S.V., Rosenfeld, A., Krüger, J., Laser-induced periodic surface structures— A scientific evergreen. IEEE J. Sel. Top. Quantum Electron., 23(3), 2017.
Bonse, J., Quo vadis LIPSS?—Recent and future trends on laser-induced periodic surface structures. Nanomaterials, 10(10), 2020.
Karim, W., Petit, A., Millon, E., Vulliet, J., Tabbal, M., Thomann, A.L., Semmar, N., Nano-squares and regular LIPSS on YSZ coating by picosecond UV laser beam: Thin film mediated and direct texturing. Appl. Surf. Sci., 623, 2023, 157110.
Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, Vol. 111, 1988, Springer Berlin, Heidelberg.
Fraggelakis, F., Tsibidis, G.D., Stratakis, E., Tailoring submicrometer periodic surface structures via ultrashort pulsed direct laser interference patterning. Phys. Rev. B, 103, 2021, 054105.
Pan, A., Dias, A., Gómez-Aranzadi, M., Olaizola, S.M., Rodríguez, A., Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation. J. Appl. Phys., 115(17), 2014, 173101.
Cubero, A., Martínez, E., Angurel, L.A., de la Fuente, G.F., Navarro, R., Legall, H., Krüger, J., Bonse, J., Effects of laser-induced periodic surface structures on the superconducting properties of Niobium. Appl. Surf. Sci., 508, 2020, 145140.
Cubero, A., Martínez, E., Angurel, L.A., de la Fuente, G.F., Navarro, R., Legall, H., Krüger, J., Bonse, J., Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures. Nanomaterials, 10(12), 2020, 2525.
Rodríguez, A., Morant-Miñana, M.C., Dias-Ponte, A., Martínez-Calderón, M., Gómez-Aranzadi, M., Olaizola, S.M., Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films. Appl. Surf. Sci. 351 (2015), 135–139.
Evertsson, J., Bertram, F., Zhang, F., Rullik, L., Merte, L., Shipilin, M., Soldemo, M., Ahmadi, S., Vinogradov, N., Carlà, F., Weissenrieder, J., Göthelid, M., Pan, J., Mikkelsen, A., Nilsson, J.-O., Lundgren, E., The thickness of native oxides on aluminum alloys and single crystals. Appl. Surf. Sci. 349 (2015), 826–832.
Liu, J.M., Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7:5 (1982), 196–198.
Shaw, G., Brisbois, J., Pinheiro, L.B.G.L., Müller, J., Blanco Alvarez, S., Devillers, T., Dempsey, N.M., Scheerder, J.E., Van de Vondel, J., Melinte, S., Vanderbemden, P., Motta, M., Ortiz, W.A., Hasselbach, K., Kramer, R.B.G., Silhanek, A.V., Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures. Rev. Sci. Instrum., 89(2), 2018, 023705.
Porta-Velilla, L., Turan, N., Cubero, A., Shao, W., Li, H., de la Fuente, G.F., Martínez, E., Larrea, A., Castro, M., Koralay, H., Cavdar, S., Bonse, J., Angurel, L.A., Highly regular hexagonally-arranged nanostructures on Ni-W alloy tapes upon irradiation with ultrashort UV laser pulses. Nanomaterials, 12(14), 2022, 2380.
Tsibidis, G., Mansour, D., Stratakis, E., Damage threshold evaluation of thin metallic films exposed to femtosecond laser pulses: The role of material thickness. Opt. Laser Technol., 156, 2022, 108484.
Fraggelakis, F., Lingos, P., Cusworth, E., Kravets, V.G., Grigorenko, A.N., Kabashin, A.V., Stratakis, E., Highly ordered LIPSS on Au thin film for plasmonic sensing fabricated by double femtosecond pulses. 2023 Preprint. arXiv:2303.03180.
Bean, C.P., Magnetization of hard superconductors. Phys. Rev. Lett. 8:6 (1962), 250–253.
Bean, C.P., Magnetization of high-field superconductors. Rev. Modern Phys. 36:1 (1964), 31–39.
Swartz, P.S., Bean, C.P., A model for magnetic instabilities in hard superconductors: The adiabatic critical state. J. Appl. Phys. 39:11 (1968), 4991–4998.
Albrecht, J., Matveev, A.T., Strempfer, J., Habermeier, H.-U., Shantsev, D.V., Galperin, Y.M., Johansen, T.H., Dramatic role of critical current anisotropy on flux avalanches in MgB2 films. Phys. Rev. Lett., 98, 2007, 117001.
Menghini, M., Wijngaarden, R.J., Silhanek, A.V., Raedts, S., Moshchalkov, V.V., Dendritic flux penetration in Pb films with a periodic array of antidots. Phys. Rev. B, 71, 2005, 104506.
Motta, M., Colauto, F., Vestgården, J.I., Fritzsche, J., Timmermans, M., Cuppens, J., Attanasio, C., Cirillo, C., Moshchalkov, V.V., Van de Vondel, J., Johansen, T.H., Ortiz, W.A., Silhanek, A.V., Controllable morphology of flux avalanches in microstructured superconductors. Phys. Rev. B, 89, 2014, 134508.
Motta, M., Burger, L., Jiang, L., González Acosta, J.D., Jelić, Z.L., Colauto, F., Ortiz, W.A., Johansen, T.H., Milosević, M.V., Cirillo, C., Attanasio, C., Xue, C., Silhanek, A.V., Vanderheyden, B., Metamorphosis of discontinuity lines and rectification of magnetic flux avalanches in the presence of noncentrosymmetric pinning forces. Phys. Rev. B, 103, 2021, 224514.
Mikheenko, P., Jacquemin, M., Mojarrad, M., Mercier, F., Controlling dendritic flux avalanches by nanostructure of superconducting films. 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), 2022, SNMS01–1–SNMS01–5.
Silhanek, A.V., Raedts, S., Moshchalkov, V.V., Paramagnetic reentrance of ac screening: Evidence of vortex avalanches in Pb thin films. Phys. Rev. B, 70, 2004, 144504.
Halbritter, J., On the oxidation and on the superconductivity of niobium. Appl. Phys. A 43:1 (1987), 1–28.
Grundner, M., Halbritter, J., XPS and AES studies on oxide growth and oxide coatings on niobium. J. Appl. Phys. 51:1 (2008), 397–405.
Rhyner, J., Magnetic properties and AC-losses of superconductors with power law current—voltage characteristics. Phys. C: Supercond. 212:3 (1993), 292–300.
Kim, Y.B., Hempstead, C.F., Strnad, A.R., Magnetization and critical supercurrents. Phys. Rev. 129:2 (1963), 528–535.
Chen, D.X., Goldfarb, R.B., Kim model for magnetization of type-II superconductors. J. Appl. Phys. 66:6 (1989), 2489–2500.
Vestgården, J.I., Mikheenko, P., Galperin, Y.M., Johansen, T.H., Nonlocal electrodynamics of normal and superconducting films. New J. Phys., 15(9), 2013, 093001.
Colauto, F., Carmo, D., de Andrade, A.M.H., Oliveira, A.A.M., Ortiz, W.A., Johansen, T.H., Anisotropic thermomagnetic avalanche activity in field-cooled superconducting films. Phys. Rev. B, 96, 2017, 060506.
Jiang, L., Xue, C., Burger, L., Vanderheyden, B., Silhanek, A.V., Zhou, Y., Selective triggering of magnetic flux avalanches by an edge indentation. Phys. Rev. B, 101, 2020, 224505.
Brandt, E.H., Indenbom, M., Type-II-superconductor strip with current in a perpendicular magnetic field. Phys. Rev. B 48:17 (1993), 12893–12906.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.