NOCT model; Photovoltaic efficiency; Photovoltaic module temperature; Restart local search algorithm; Local search algorithm; Mean absolute error; Metaheuristic; Module temperature; Photo-voltaic efficiency; Photovoltaic modules; Photovoltaics; Renewable Energy, Sustainability and the Environment; General Materials Science
Abstract :
[en] Tropical climates have favorable irradiation levels for the development of photovoltaic systems; however, high temperatures have a negative impact on the efficiency of solar cells. Since direct measurement of cell temperature is not common, mathematical models are needed to make predictions. Numerous models have been documented, highlighting the challenge of applying a universal model to different climatic conditions. The main contribution of this study is the proposal of a metaheuristic algorithm to accurately compute the temperature of solar cells. This method is simple and effective in exploring numerous potential states of the reference parameters (i.e., irradiance and ambient temperature). Data collected over a 23-month period in two photovoltaic installations with an output power of 2.2 MW of multicrystalline silicon technology were used to develop the proposed method and validate it. The proposed model was compared with 19 previously reported models in the literature. Compared to the model recommended by the International Electrotechnical Commission (IEC Standard 61215-1), the mean square error, mean absolute error (MAE) and mean absolute percentage error were reduced by 4.9, 4.8, and 2.4 times, respectively. The accuracy of the proposed method is demonstrated by MAE errors ranging from 0.56 °C to 1.88 °C, obtained by considering three different daily profiles of irradiance and ambient temperature. Therefore, the proposed method is recommended to more accurately calculate the temperature of the photovoltaic cell in tropical areas.
Research Center/Unit :
ArGEnCo Department
Precision for document type :
Case briefs/Comments on statutes or statutory instruments
Disciplines :
Energy
Author, co-author :
Osorio Laurencio, Liomnis ; Université de Liège - ULiège > Faculté des Sciences Appliquées > stage conv. Erasmus en sc. appl. ; Université de Liège - ULiège > Faculté des Sciences Appliquées > Form. doct. sc. ingé. & techn. (archi., gén. civ. - paysage) ; Université de Liège - ULiège > Faculté des Sciences Appliquées > Doct. sc. ingé/ tech. (archi. gén. civ. géol.)
Moreno, Mailyn; Departamento Administración, Facultad de Economía y Administración, Universidad Católica del Norte, Antofagasta, Chile
Rivera, Marco ; Laboratorio de Conversión de Energías y Electrónica de Potencia (LCEEP), Dirección de Investigación, Universidad de Talca, Curicó, Chile ; Power Electronics, Machines and Control Research Group, Faculty of Engineering, University of Nottingham, Lenton, United Kingdom
Tuninetti, Víctor ; Department of Mechanical Engineering, Universidad de La Frontera, Temuco, Chile
Chavarria, Gerardo Ruíz ; Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
Duchene, Laurent ; Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Wheeler, Patrick; Faculty of Engineering, University of Nottingham, Lenton, United Kingdom
Language :
English
Title :
A metaheuristic-based method for photovoltaic temperature computation under tropical conditions
Alternative titles :
[en] A metaheuristic-based method for photovoltaic temperature computation under tropical conditions
Original title :
[en] A metaheuristic-based method for photovoltaic temperature computation under tropical conditions
FONDECYT - Chile Fondo Nacional de Desarrollo Científico y Tecnológico WBI - Wallonie-Bruxelles International
Funding text :
The authors thank the support of ANID/ATE220023 Project ; FONDECYT Regular Research Project 1220556 ; CLIMAT AMSUD 21001 , FONDAP SERC Chile 1522A0006 ; International collaborative research project WBI/AGCID RI02 (DIE23-0001 ) and the University of Nottingham through the IRCF project 24932270 .
IRENA, Renewable Capacity Statistics 2023, international Renewable Energy Agency, Abu Dhabi. 2023, IRENA, 69 https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023.
Benda, V., Cerna, L., A note on limits and trends in PV cells and modules. Appl. Sci., 12(7), 2022, 10.3390/app12073363.
Santiago, I., Trillo-Montero, D., Moreno-Garcia, I., Pallarés-López, V., Luna-Rodríguez, J., Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain. Renew. Sustain. Energy Rev. 90 (2018), 70–89, 10.1016/j.rser.2018.03.054.
Silva, D.D., Marson, V., de Souza, R.R., de Oliveira, J.D., Silva, J.B.C., Cardoso, E.M., A new predictive model for a photovoltaic module's surface temperature. Energy Rep. 8 (2022), 15206–15220, 10.1016/j.egyr.2022.11.094.
Aoun, N., Methodology for predicting the PV module temperature based on actual and estimated weather data. Energy Convers. Manag.: X, 14, 2022, 100182, 10.1016/j.ecmx.2022.100182.
Mustafa, R.J., Gomaa, M.R., Al-Dhaifallah, M., Rezk, H., Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), 2020, 10.3390/su12020608.
Siddiqui, M.U., Siddiqui, O.K., Alquaity, A.B., Ali, H., Arif, A.F., Zubair, S.M., A comprehensive review on multi-physics modeling of photovoltaic modules. Energy Convers. Manage., 258(February), 2022, 115414, 10.1016/j.enconman.2022.115414.
Jathar, L.D., Ganesan, S., Awasarmol, U., Nikam, K., Shahapurkar, K., Soudagar, M.E.M., Fayaz, H., El-Shafay, A., Kalam, M., Bouadila, S., Baddadi, S., Tirth, V., Nizami, A.S., Lam, S.S., Rehan, M., Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environ. Pollut., 326, 2023, 121474, 10.1016/j.envpol.2023.121474.
Kumar, R., Kumar, M., Gupta, R., Leakage current in solar photovoltaic modules., 2023, CRC Press, 111, 10.1201/9781003373902-7.
Santos, L.d., de Carvalho, P.C.M., Filho, C.d.C., Photovoltaic cell operating temperature models: A review of correlations and parameters. IEEE J. Photovolt. 12:1 (2022), 179–190, 10.1109/JPHOTOV.2021.3113156.
Obiwulu, A.U., Erusiafe, N., Olopade, M.A., Nwokolo, S.C., Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance. Renew. Energy 154 (2020), 404–431, 10.1016/j.renene.2020.02.103.
Koehl, M., Heck, M., Wiesmeier, S., Wirth, J., Modeling of the nominal operating cell temperature based on outdoor weathering. Sol. Energy Mater. Sol. Cells 95:7 (2011), 1638–1646, 10.1016/j.solmat.2011.01.020.
Ya'acob, M.E., Hizam, H., Khatib, T., Radzi, M.A.M., Gomes, C., Bakri, A.M., Marhaban, M.H., Elmenreich, W., Modelling of photovoltaic array temperature in a tropical site using generalized extreme value distribution. J. Renew. Sustain. Energy, 6(3), 2014, 033134, 10.1063/1.4885175.
Evans, D., Florschuetz, L., Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Sol. Energy 19:3 (1977), 255–262, 10.1016/0038-092X(77)90068-8.
Skoplaki, E., Palyvos, J., On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 83:5 (2009), 614–624, 10.1016/j.solener.2008.10.008.
Borunda, M., Ramírez, A., Garduno, R., Ruíz, G., Hernandez, S., Jaramillo, O.A., Photovoltaic power generation forecasting for regional assessment using machine learning. Energies, 15(23), 2022, 10.3390/en15238895.
Shafieian, A., Khiadani, M., Nosrati, A., Theoretical modelling approaches of heat pipe solar collectors in solar systems: A comprehensive review. Sol. Energy 193:September (2019), 227–243, 10.1016/j.solener.2019.09.036.
Ross, R., Interface design considerations for terrestrial solar cell modules. 12th Photovoltaic Specialists Conference, 1976, 801–806 https://ui.adsabs.harvard.edu/abs/1976pvsp.conf.801R.
Rauschenbach, H., Solar Cell Array Design Handbook. 1980, New York: Van Nostrand Reinhold Co, New York https://refhub.elsevier.com/S0196-8904(23)00119-X/sb15.
Risser, V., Fuentes, M., Linear regression analysis of flat-plate photovoltaic system performance data. 5th Photovoltaic Solar Energy Conference, 1984, 623–627 https://ui.adsabs.harvard.edu/abs/1984pvse.conf.623R.
Schott, T., Operation Temperatures of PV Modules: A Theoretical and Experimental Approach. 1985, 392–396 https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8144674.
Ross, R., Smokler, M., Electricity from photovoltaic solar cells Flat-Plate Solar Array Project final report. Volume VI: Engineering sciences and reliability: Technical Report October., 1986, JPL Publication, 86-31, Jet Propulsion Laboratory, California Inst. of Tech. United States, 12–13 https://refhub.elsevier.com/S0196-8904(23)00119-X/sb18.
Lasnier, F., Ang, T., Book Chapter: Chapter 6: Power Conditioning Systems, 1990, Routledge Adam Hilger, Bristol and New York, Photovoltaic Engineering Handbook, https://refhub.elsevier.com/S2352-4847(22)02480-5/sb16.
King, D.L., Photovoltaic module and array performance characterization methods for all system operating conditions. AIP Conf. Proc. 394:1 (1997), 347–368, 10.1063/1.52852.
King, D.L., Kratochvil, J.A., Boyson, W.E., Field Experience with a New Performance Characterization Procedure for Photovoltaic Arrays: Technical Report., 1997, U.S. Department of Energy, 6 https://www.osti.gov/biblio/629484.
Tamizhmani, G., Ji, L., Tang, Y., Petacci, L., Osterwald, C., Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development For Energy Rating., 2003, 936–939 https://refhub.elsevier.com/S0038-092X(22)00832-5/h0215.
King, D.L., Boyson, W.E., Kratochvil, J.A., Photovoltaic Array Performance Model: Technical Report Sandia Report No. 2004-3535 8., 2004, U.S. Department of Energy, Springfield, 1–19, 10.2172/919131.
Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes. 2013, John Wiley & Sons https://refhub.elsevier.com/S0196-8904(23)00119-X/sb24.
Mondol, J.D., Yohanis, Y.G., Norton, B., Comparison of measured and predicted long term performance of grid a connected photovoltaic system. Energy Convers. Manage. 48:4 (2007), 1065–1080, 10.1016/j.enconman.2006.10.021.
Skoplaki, E., Boudouvis, A., Palyvos, J., A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells 92:11 (2008), 1393–1402, 10.1016/j.solmat.2008.05.016.
Muzathik, A.M., Photovoltaic modules operating temperature estimation using a simple correlation. Int. J. Energy Eng. 4:August 2014 (2014), 151–158 https://api.semanticscholar.org/CorpusID:113931662.
Kamuyu, W.C.L., Lim, J.R., Won, C.S., Ahn, H.K., Prediction model of photovoltaic module temperature for power performance of floating PVs. Energies, 11(2), 2018, 10.3390/en11020447.
Jacques, S., Chapter five the importance of cell temperature in modelling the energy efficiency., 2020, Cambridge Scholars Publishing, 67 https://univ-tours.hal.science/hal-02525736.
Bevilacqua, P., Perrella, S., Bruno, R., Arcuri, N., An accurate thermal model for the PV electric generation prediction: long-term validation in different climatic conditions. Renew. Energy 163 (2021), 1092–1112, 10.1016/j.renene.2020.07.115.
Kaplanis, S., Kaplani, E., Kaldellis, J., PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency and ageing. Renew. Energy 181 (2022), 235–249, 10.1016/j.renene.2021.08.124.
Kim, G.G., Choi, J.H., Park, S.Y., Bhang, B.G., Nam, W.J., Cha, H.L., Park, N., Ahn, H.-K., Prediction model for PV performance with correlation analysis of environmental variables. IEEE J. Photovolt. 9:3 (2019), 832–841, 10.1109/JPHOTOV.2019.2898521.
Nguyen, D.P.N., Neyts, K., Lauwaert, J., Proposed models to improve predicting the operating temperature of different photovoltaic module technologies under various climatic conditions. Appl. Sci., 11(15), 2021, 10.3390/app11157064.
Yolcan, O.O., Kose, R., Photovoltaic module cell temperature estimation: Developing a novel expression. Sol. Energy 249 (2023), 1–11, 10.1016/j.solener.2022.11.020.
Rahaman, M.A., Chambers, T.L., Fekih, A., Wiecheteck, G., Carranza, G., Possetti, G.R.C., Floating photovoltaic module temperature estimation: Modeling and comparison. Renew. Energy 208 (2023), 162–180, 10.1016/j.renene.2023.03.076.
Korab, R., omski, M.P., Naczyński, T., Kandzia, T., A dynamic thermal model for a photovoltaic module under varying atmospheric conditions. Energy Convers. Manage., 280, 2023, 116773, 10.1016/j.enconman.2023.116773.
IEC, R., Terrestrial photovoltaic (PV) modules – Design qualification and type approval – Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules. 2021 IEC 61215-1-1:2021, https://webstore.iec.ch/publication/61346.
Amodeo, L., Talbi, E.-G., Yalaoui, F., Recent Developments in Metaheuristics, 2018, Springer International Publishing AG 2018, 219–225, 10.1007/978-3-319-58253-5.
Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro, A.J., Molina, D., LaTorre, A., Suganthan, P.N., Coello Coello, C.A., Herrera, F., A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm Evol. Comput., 64, 2021, 100888, 10.1016/j.swevo.2021.100888.
Liu, Q., Li, X., Liu, H., Guo, Z., Multi-objective metaheuristics for discrete optimization problems: A review of the state-of-the-art. Appl. Soft Comput., 93, 2020, 106382, 10.1016/j.asoc.2020.106382.
Agnoletti, M., Pelegrín, Y.M., Alvarez, A.G., The traditional agroforestry systems of Sierra del Rosario and Sierra Maestra, Cuba. Biodiversity and Conservation, vol. 31, 2022, Springer Netherlands, 2259–2296, 10.1007/s10531-021-02348-8.
Rivera, C.F., Alvarez, M.M., González, M.H., Suárez, R.P., Saldívar, B.V., Figueredo, N.V., García, I.G., Cancino, V.C., Montenegro, R.V., Beatriz, E., Estopiñan, C., Arenal, I.M., Mayo, A.H., Infante, J.C., Pedroso, B.L., Lobaina, O.M., Ortega, Y.R., State of the climate in Cuba 2022. Extended summary. Revista Cubana de Meteorología 29:1 (2023), 1–16 https://rcm.insmet.cu/index.php/rcm/article/view/703.
Alberto Alvarez, E., Korkeakoski, M., Santos Fuentefrí a, A., Lourdes Filgueiras Sainz de Rozas, M., Arcila Padura, R., Luukkanen, J., Long-range integrated development analysis: The Cuban Isla de la Juventud study case. Energies, 14(10), 2021, 10.3390/en14102865.
Morales Pedraza, J., Solar energy in Cuba: Current situation and future development. J. Solar Energy Res. Updates 6 (2019), 1–14, 10.31875/2410-2199.2019.06.1.
Korkeakoski, M., Towards 100% renewables by 2030: Transition alternatives for a sustainable electricity sector in Isla de la Juventud, Cuba. Energies, 14(10), 2021, 10.3390/en14102862.
Iakovleva, E., Guerra, D., Tcvetkov, P., Shklyarskiy, Y., Technical and economic analysis of modernization of solar power plant: A case study from the Republic of Cuba. Sustainability, 14(2), 2022, 10.3390/su14020822.
McFadden, J., Razor sharp: The role of Occam's razor in science. Ann. New York Acad. Sci. 1530:1 (2023), 8–17, 10.1111/nyas.15086.
Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K., Chapter 10 - metaheuristic algorithms: A comprehensive review. Sangaiah, A.K., Sheng, M., Zhang, Z., (eds.) Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications Intelligent Data-Centric Systems, 2018, Academic Press, 185–231, 10.1016/B978-0-12-813314-9.00010-4.
Muller, M., Measuring and Modeling Nominal Operating Cell Temperature. 2010, Technical Report. National Renewable Energy Laboratory https://refhub.elsevier.com/S0306-2619(22)01090-X/sb6.
Talbi, E.-G., Metaheuristics: from Design to Implementation. 2009, John Wiley & Sons https://refhub.elsevier.com/S0377-2217(22)00127-8/sbref0094.
Chalupa, D., Nielsen, P., Parameter-free and cooperative local search algorithms for graph colouring. Soft Comput. 25:24 (2021), 15035–15050, 10.1007/s00500-021-06347-3.
Jing, X.-L., Pan, Q.-K., Gao, L., Local search-based metaheuristics for the robust distributed permutation flowshop problem. Appl. Soft Comput., 105, 2021, 107247, 10.1016/j.asoc.2021.107247.
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., Herrera, F., Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58 (2020), 82–115, 10.1016/j.inffus.2019.12.012.
Bharadwaj, A., Prakash, K.B., Kanagachidambaresan, G.R., Programming with TensorFlow: Solution for Edge Computing Applications. 2021, Springer International Publishing, Cham, 105–144, 10.1007/978-3-030-57077-4_11.
Smucker, B.J., Stevens, N.T., Asscher, J., Goos, P., Profiles in the teaching of experimental design and analysis. J. Stat. Data Sci. Educ., 2023, 1–14, 10.1080/26939169.2023.2205907.
Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., Kirpichnikova, I., Advanced cooling techniques of P.V. modules: A state of art. Case Stud. Therm. Eng., 21(December 2019), 2020, 100674, 10.1016/j.csite.2020.100674.
Luo, W., Khoo, Y.S., Hacke, P., Naumann, V., Lausch, D., Harvey, S.P., Singh, J.P., Chai, J., Wang, Y., Aberle, A.G., Ramakrishna, S., Potential-induced degradation in photovoltaic modules: A critical review. Energy Environ. Sci. 10:1 (2017), 43–68, 10.1039/c6ee02271e.