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A B S T R A C T

Tropical climates have favorable irradiation levels for the development of photovoltaic systems; however,
high temperatures have a negative impact on the efficiency of solar cells. Since direct measurement of cell
temperature is not common, mathematical models are needed to make predictions. Numerous models have
been documented, highlighting the challenge of applying a universal model to different climatic conditions.
The main contribution of this study is the proposal of a metaheuristic algorithm to accurately compute the
temperature of solar cells. This method is simple and effective in exploring numerous potential states of the
reference parameters (i.e., irradiance and ambient temperature). Data collected over a 23-month period in
two photovoltaic installations with an output power of 2.2 MW of multicrystalline silicon technology were
used to develop the proposed method and validate it. The proposed model was compared with 19 previously
reported models in the literature. Compared to the model recommended by the International Electrotechnical
Commission (IEC Standard 61215-1), the mean square error, mean absolute error (MAE) and mean absolute
percentage error were reduced by 4.9, 4.8, and 2.4 times, respectively. The accuracy of the proposed method
is demonstrated by MAE errors ranging from 0.56 ◦C to 1.88 ◦C, obtained by considering three different daily
profiles of irradiance and ambient temperature. Therefore, the proposed method is recommended to more
accurately calculate the temperature of the photovoltaic cell in tropical areas.
1. Introduction

According to the International Renewable Energy Agency, the ex-
pansion of the wind and solar energy generation sector in 2022 ac-
counted for the largest annual increase in renewable energy generation
capacity. These two sources accounted for 90% of all net renewable ad-
ditions in 2022 [1]. Globally, all renewable energy sources contributed
to a 295 GW (+9.6%) increase in capacity, with photovoltaic (PV)
energy leading the expansion with a worldwide increase of 192 GW
(+22%) [2]. .5

Regarding PV energy, silicon-based technologies continue to dom-
inate the market and are expected to maintain their position for the

∗ Corresponding author.
E-mail address: victor.tuninetti@ufrontera.cl (V. Tuninetti).

next five years [3]. However, the electrical efficiency (𝜂) of this tech-
nology is negatively affected when the PV cell temperature (𝑇𝑐) exceeds
25 ◦C [4–6]. Other factors, such as the physical characteristics of the
PV module (i.e., monocrystalline, multicrystalline or amorphous silicon
technology), setup configuration, meteorological data (i.e., irradiance
(𝐺), ambient temperature (𝑇𝑎), wind velocity (𝑣𝑤)), and electrical
parameters from the datasheet, must also be taken into account [7,8].
However, temperature is one of the most extensively studied param-
eters, as it has been identified as one of the most significant and
influential factors on PV efficiency [9].
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Nomenclature

Acronyms

EVA Ethyl Vinyl Acetate
IEC International Electrotechnical Commission
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
NOCT Nominal Operating Cell Temperature
PV Photovoltaic
RMSE Root Mean Square Error
ROMT Realistic Operational Module Temperature
STC Standard Test Conditions
tFOC Tropical Field Operation Cell Temperature

Symbols

𝛼 transmissivity coefficient
𝛽𝑆𝑇𝐶 temperature coefficient of power (%∕◦C)
𝜂 efficiency (%)
𝜂𝑆𝑇𝐶 efficiency at STC (%)
𝜏 absorbance coefficient
𝐴𝑀 air mass
𝑒 estimated values
𝐸𝑐,𝑑𝑎𝑦 daily produced energy by photovoltaic cells
𝐸𝑖,𝑑𝑎𝑦 daily produced energy by photovoltaic installation
𝐺 irradiance (W∕m2)
𝐺𝑁𝑂𝐶𝑇 irradiance at NOCT (W∕m2)
𝐻 convective heat transfer coefficient (W∕m2 K)
𝐻𝑟 relative humidity (%)
𝐼𝑡𝑒𝑟 iteration
𝑚 measured values
𝑛 number of data
𝑃𝑐,𝑆𝑇𝐶 power of PV cells at STC (W)
𝑃𝑐 power of PV cells (W)
𝑅2 coefficient of determination
𝑇𝑎 ambient temperature (◦C)
𝑇𝑐 cell temperature (◦C)
𝑇𝑎,𝑁𝑂𝐶𝑇 ambient temperature at NOCT (◦C)
𝑢0 empirical coefficient (W∕m2)
𝑢1 empirical coefficient (W s∕m3 K)
𝑣𝑤 wind velocity (m/s)
d day
h hour
m month
y year

1.1. Effect of temperature on silicon solar cell efficiency

The difference between 𝑇𝑐 and 𝑇𝑎 values can be estimated as a
function of 𝐺, using the thermal conductivity of the PV module ma-
terials [4]. The solar cells operate under open space irradiation and,
to protect them from harsh environmental conditions, they are encap-
sulated with additional materials such as tempered glass, ethyl vinyl
acetate (EVA) and a polymer layer (back-sheet) [5,10]. Due to the
structure and physical composition of PV modules, 𝑇𝑐 is determined by
the balance between the heat produced by the PV module and the heat
lost to the environment (encapsulating material). The latter is mainly
affected by 𝑇𝑎 and 𝑣𝑤 at the installation site [11]. PV module properties
influence heat loss include thermal resistance, emissivity properties,
and surface-related convection properties [12].
2

As a general rule, 𝜂 is evaluated under the standard test conditions
(STC) specified in the datasheet, which define 𝐺 = 1000 W∕m2,
𝑇𝑐 = 25 ◦C and air mass 1.5 𝐴𝑀 . Under these conditions, the elec-
rical parameters (current, voltage and power) are obtained with 𝜂 =
(𝐺, 𝑇𝑐 , 𝐴𝑀). However, 𝜂 is typically assessed without considering
eteorological factors such as tropical, desert or extreme climates.
o better approximate actual operating conditions, the datasheet also
rovides the Nominal Operating Cell Temperature (NOCT), defined as
he cell temperature in a module exposed to 𝐺 = 800 W∕m2, 𝑇𝑎 = 25 ◦C
nd 𝑣𝑤 = 1 m∕s, with typical NOCT values ranging from 43 ◦C to 47 ◦C.
n practice, both the STC and NOCT values are imprecise for many
eal-world PV installations [13,14].

Crystalline silicon cells have a correlation between 𝑇𝑐 and 𝜂, ex-
ressed by Eq. (1) [15].

= 𝜂𝑆𝑇𝐶

[

1 + 𝛽𝑆𝑇𝐶
(

𝑇𝑐 − 𝑇𝑎,𝑆𝑇𝐶
)

]

(1)

here 𝜂𝑆𝑇𝐶 is the reference electrical efficiency (%), 𝛽𝑆𝑇𝐶 is the refer-
nce temperature coefficient of the power, 𝑇𝑎,𝑆𝑇𝐶 is the reference cell
emperature; 𝜂𝑆𝑇𝐶 , 𝛽𝑆𝑇𝐶 and 𝑇𝑎,𝑆𝑇𝐶 are available from the datasheet.

During the incident of irradiance on the PV module, a fraction of the
nergy causes a slight increase in the short-circuit current, while the
est is transformed into thermal energy. Consequently, 𝑇𝑐 to increase
nd the open-circuit voltage to decrease, causing the power of cells 𝑃𝑐
nd 𝜂 to decrease. Eq. (2) is one of the most commonly used to express
he correlation between 𝑇𝑐 and 𝑃𝑐 [16].

𝑐 = 𝑃𝑐,𝑆𝑇𝐶
𝐺

𝐺𝑆𝑇𝐶

[

1 + 𝛽𝑆𝑇𝐶
(

𝑇𝑐 − 𝑇𝑎,𝑆𝑇𝐶
)

]

(2)

where 𝑃𝑐,𝑆𝑇𝐶 is the reference power (W), is available from the
datasheet. The amount of produced energy is highly dependent on the
temperature during the day. The cumulative daily produced energy
𝐸𝑐,𝑑𝑎𝑦 is given by Eq. (3) [17].

𝐸𝑐,𝑑𝑎𝑦 =
𝑃𝑐,𝑆𝑇𝐶

𝐺𝑆𝑇𝐶

𝐻
∑

ℎ=1
𝐺(ℎ,𝑑,𝑚,𝑦)

[

1 + 𝛽𝑆𝑇𝐶
(

𝑇𝑐(ℎ,𝑑,𝑚,𝑦) − 𝑇𝑎,𝑆𝑇𝐶
)

]

𝛥𝑡ℎ (3)

where 𝑇𝑐(ℎ,𝑑,𝑚,𝑦) is the cell temperature value at the time interval 𝛥𝑡ℎ
f day 𝑑 of month 𝑚 of year 𝑦. 𝑇𝑐 is essential to accurately predict 𝜂,
𝑐 and 𝐸𝑐,𝑑𝑎𝑦, therefore, it is important to conduct an investigation and
mplement appropriate mathematical models according to the specific
ase study.

.2. PV module temperature estimation models – a literature review

Two categories of approaches and tools used to estimate 𝑇𝑐 have
een identified in the literature and categorized into steady-state and
ynamic [11]. The thermal models based on steady-state are relatively
imple and assume that all parameters are time-independent, while
he dynamic thermal models are relatively complex, and require more
omputation time, because some parameters are time-dependent [18].
ince the turn of the century, numerous predictive models incorporat-
ng different climate factors and methodologies have been documented.
ome approaches use the correlation 𝑇𝑐 = 𝑓 (𝐺, 𝑇𝑐 ) primarily, but to
nhance the results, additional input variables such as 𝑣𝑤 or relative
umidity (𝐻𝑟) can be added using the correlation 𝑇𝑐 = 𝑓 (𝐺, 𝑇𝑐 ,𝐻𝑟, 𝑣𝑤).

These thermal models are intended to be useful for specialists inter-
sted in installing PV systems in their respective countries and nearby
egions. In Europe, [4] analyzed 24 thermal models and found that
he highest 𝑇𝑐 were reached in the summer months; [35] proposed a
ransient one-dimensional thermal model that provides the distribution
f 𝑇𝑐 along the panel thickness, which is used to predict 𝑃𝑐 ; [36]

developed a novel compact model to predict the coefficient 𝑓 which
elates 𝑇𝑐 with 𝐺, 𝑇𝑎, 𝑣𝑤, the inclination of PV module and the output
ower 𝑃𝑐 . In Asia, [33] derived a correlation between 𝑇𝑐 , 𝜂 and 𝑃𝑐 ,

using a case study of a floating PV system of 200 GW; [37] suggested
a predictive model to calculate 𝑃 as a function of 𝐺, 𝑇 , 𝑣 , and
𝑐 𝑎 𝑤
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Table 1
Thermal models to calculate the operating cell temperature.

Year Model Reference Equation

1976 𝑇𝑐 = 𝑇𝑎 + 0.03𝐺 [19] (4)
1980 𝑇𝑐 = 𝑇𝑎 +

𝐺
𝐺𝑁𝑂𝐶𝑇

(

𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇
)

(

1 −
𝜂𝑆𝑇𝐶
𝛼𝜏

)

[20] (5)

1984 𝑇𝑐 = 1.31𝑇𝑎 + 0.0282𝐺 − 1.65𝑣𝑤 + 3.81 [21] (6)
1985 𝑇𝑐 = 𝑇𝑎 + 0.028𝐺 − 1 [22] (7)
1986 𝑇𝑐 = 𝑇𝑎 +

𝐺
𝐺𝑁𝑂𝐶𝑇

(

𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇
)

[23] (8)

1990 𝑇𝑐 = 1.14
(

𝑇𝑎 − 25
)

+ 0.0175 (𝐺 − 300) + 30.006 [24] (9)
1996 𝑇𝑐 = 𝑇𝑎 +

𝐺
1000

(

0.0712𝑣2𝑤 − 2.411𝑣𝑤 + 32.96
)

[25] (10)

1997 𝑇𝑐 = 𝑇𝑎 +
𝐺

1000
(

19.6𝑒−0.223𝑣𝑤 + 11.6
)

[26] (11)
2003 𝑇𝑐 = 0.943𝑇𝑎 + 0.028𝐺 − 1.528𝑣𝑤 + 4.3 [27] (12)
2004 𝑇𝑐 = 𝑇𝑎 + 𝐺𝑒−3.56−0.0750𝑣𝑤 [28] (13)
2004 𝑇𝑐 = 𝑇𝑎 + 𝐺𝑒−3.47−0.0594𝑣𝑤 [28] (14)

2006 𝑇𝑐 = 𝑇𝑎 +
(

9.5
5.7 + 3.8𝑣𝑤

)

𝐺
𝐺𝑁𝑂𝐶𝑇

(

𝑁𝑂𝐶𝑇 − 𝑇𝑎,𝑁𝑂𝐶𝑇
)

(

1 −
𝜂𝑆𝑇𝐶
𝛼𝜏

)

[29] (15)

2007 𝑇𝑐 = 𝑇𝑎 + 0.031𝐺 [30] (16)
2008 𝑇𝑐 = 𝑇𝑎 +

0.25
5.7 + 3.8𝑣𝑤

𝐺 [31] (17)

2008 𝑇𝑐 = 𝑇𝑎 +
0.32

8.91 + 2𝑣𝑤
𝐺 [31] (18)

2014 𝑇𝑐 = 0.943𝑇𝑎 + 0.0195𝐺 − 1.528𝑣𝑤 + 0.3529 [32] (19)
2014 𝑇𝑐 = 𝑇𝑎 +

𝐺
886

(𝑡𝐹𝑂𝐶𝑇 − 34) [14] (20)
2018 𝑇𝑐 = 0.9458𝑇𝑎 + 0.0215𝐺 − 1.2376𝑣𝑤 + 2.0458 [33] (21)

2020 𝑇𝑐 = 𝑇𝑎 +
(

𝛼𝜏𝐺(1 − 𝜂𝑆𝑇𝐶 )
2ℎ

)

[34] (22)

𝑇𝑎 and 𝐺 are measured by meteorological stations; 𝑁𝑂𝐶𝑇 , 𝜂𝑆𝑇𝐶 , 𝐺𝑁𝑂𝐶𝑇 = 800 W∕m2 and 𝑇𝑎,𝑁𝑂𝐶𝑇 = 20 ◦C are given in the datasheet;
𝑡𝐹𝑂𝐶𝑇 = 45 ◦C; 𝛼𝜏 = 0.9 is the product of the transmissivity and absorbance coefficients; ℎ - convective heat transfer coefficient, with
ℎ = 𝑢0 + 𝑢1𝑣𝑤; 𝑢0 = 12.85 W∕m2; 𝑢1 = 1.06 W s∕m3 K.
𝑟, of the PV modules installed on a rooftop; [38] proposed two
nnovative models (one with and one without wind) to improve the
ccuracy of estimating 𝑇𝑐 in outdoor conditions, taking into account
he variation of 𝐺 over time and the thermal inertia of different PV
odule technologies; [39] developed a novel model that determines 𝑇𝑐

based on 𝑇𝑎, 𝐺 and 𝑣𝑤. In Africa, [12] used an experimental technique
to obtain datasets to develop 80 models, optimize 7 thermal models,
and compute 𝑇𝑐 at various tilt angles and orientations; [6] proposed
a methodology to predict 𝑇𝑐 using 𝐺 and 𝑇𝑎 as input parameters, for

onocrystalline PV modules under a hot desert climate, based on actual
nd estimated meteorological data. In America, [32] obtained a model
ased on linear correlation with an error of less than 3%, for forecasting
𝑐 under a tropical climate, based on 𝑇𝑎, 𝐺 and 𝑣𝑤; [5] proposed a
ew model to calculate the thermal behavior of PV modules with an
ccuracy of a mean absolute percentage error of 3.1%, based on the
nalysis of a 172-day database; [40] estimated and compared 𝑇𝑐 of a
loating PV module using thermal, empirical and computational fluid
ynamics (CFD) models.

These aforementioned models highlight the absence of a universally
ccepted model applicable to multiple climatic environments. Based
n the empirical models of 1976–2018 analyzed by [41], in addition
o the models obtained by [14,34], 19 empirical thermal models were
xamined in this paper, as summarized in Table 1.

The specialists in Cuba use the model represented by Eq. (8) in
able 1 to calculate the operating temperature of PV cells, which leads
o the prediction of PV produced energy. This model is known as the
OCT model and is recommended by the IEC Standard 61215-1 to
redict the cell temperature of the entire module [42]. However, the
OCT model is not effective when applied to different meteorological
onditions found in different locations around the world. [13] proposed
odifying this model by introducing a new condition called Realistic
perational Module Temperature (ROMT) to better distinguish it from
OCT. [14] also proposed a new condition called Tropical Field Op-
ration Cell Temperature (tFOCT) for the tropical climate of Malaysia
Eq. (20) listed in Table 1) instead of the NOCT condition, with the

2 ◦
3

alues of 𝐺𝑡𝐹𝑂𝐶𝑇 = 886 W∕m and 𝑇𝑎,𝑡𝐹𝑂𝐶𝑇 = 34 C.
1.3. Metaheuristics for finding a path

Metaheuristics are well known as approximate methods for opti-
mizing functions in large solution spaces or domains. While they do
not guarantee to find the global optimum, they typically obtain suffi-
ciently good solutions in a reasonable period of time [43]. Metaheuris-
tics have been widely used in various fields, including combinatorial
optimization, artificial intelligence, planning, engineering, and data
science [44]. These techniques have proven to be effective in solving
complex optimization problems where finding the best possible solution
is challenging or impractical within a reasonable time frame.

The key characteristic of metaheuristics, which grants them their
general nature, is that they do not make assumptions about the problem
being addressed or the objective function being optimized. They only
require a defined way to represent and evaluate solutions, as well as
operators to construct an initial solution and transform the solutions
into new ones [43].

Some examples of metaheuristics include simulated annealing, tabu
search, and evolutionary algorithms. In recent years, many new meta-
heuristics, variants, and combinations of existing ones have emerged.
These techniques have been successfully applied to problems such as
resource allocation, scheduling, route optimization, parameter opti-
mization, and design problem solving [45].

1.4. Tropical climate and current status of PV installations in Cuba

Cuba has a predominantly warm tropical climate with a rainy
season in the summer [46]. In 2022, the Cuban Institute of Meteorology
reported an extremely hot year, with a mean annual 𝑇𝑎 = 25.5 ◦C,
representing an increase of 0.88 ◦C compared to the previous historical
record (2021), confirming the trend of rising temperatures [47].

In 2014, the Cuban government declared its intention to transit to a
more diverse energy mix through the Prospective Development of Re-
newable Energy Sources and the Efficient Use of Energy for 2014–2030.
The focus is on increasing the share of renewable energy sources [48].
The goal is to achieve an 24% of electricity from renewable sources by
2030 [49], with a contribution from the PV capacity of 700 MW [50].

Currently, the installed capacity in Cuba is 258 MW [2]. Domestically
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produced (model DSM-270) and imported PV modules from various
manufacturers and power capacities are utilized, but only 37% of the
total capacity planned for 2030 has been achieved so far.

While the meteorological conditions in this region are favorable for
PV energy development, with a daily average insolation of approxi-
mately 5 kWh∕m2 on a horizontal surface [51], the continuous exposure
to intense solar radiation in the tropical climate leads to an increase
in the cell temperature, resulting in a decrease in efficiency 𝜂 and
maximum power point 𝑃𝑐 . Given that 63% of PV systems are yet to
be designed, sized, and installed, it is crucial to utilize thermal mod-
els for accurate calculations of their short-, medium-, and long-term
performance, as well as the annual electrical energy production.

In this context, the goal of the study is to propose a metaheuristic-
based method to calculate the operating temperature using the cor-
relation 𝑇𝑐 = 𝑓 (𝐺, 𝑇𝑎). A more appropriate and representative NOCT
model is desired for tropical meteorological conditions. To achieve it,
a steady-state approach based on the Occam razor principle is used,
which asserts that when there are multiple possible explanations for
a phenomenon, the simplest one is often correct [52]. This approach
represents the original contribution of the study and can be applied
in any geographical area, provided that accurate measurements are
available and collected over a period of at least one year. For this study,
measurements from two operational PV plants in eastern Cuba were
used, combined with data from the Cuban Institute of Meteorology and
technical specifications of PV modules.

The structure of this paper is as follows: Section 2 describes the steps
taken to develop the method, introducing local search as one of the
most promising metaheuristic algorithms for this study. The flowchart
of the proposed metaheuristic-based method is also presented. Sec-
tion 3 presents and discusses the advantages of the proposed method,
comparing it with 19 previously established empirical models. Finally,
Section 4 objectively summarizes the main results and contributions.

2. Materials and methods

The cell temperature was computed using the approach based on
the NOCT model described by Eq. (8) listed in Table 1. Despite the
recommendation of IEC Standard 61215-1, it would be more useful to
develop a new model that improves the correlation between 𝑇𝑐 , 𝑇𝑎 and
𝐺, considering the data of the specific meteorological conditions of the
PV installation.

2.1. Specifications of the PV installations

The data of 𝐺, 𝑇𝑎, and 𝑇𝑐 from two PV installations connected to
the National Electroenergetic System in the eastern zone of Cuba were
analyzed. Each PV installation is composed of 8,800 modules, which
provides an installed capacity of 2.2 MW.

Table 2 shows the technical specifications of the PV modules DSM-
270 [53] and JKM265PP [54], both certified according to the IEC
Standard 61215 [42]. The setup is arranged on metal structures on the
ground, with air circulation behind the back-sheet (free-standing PV
modules).

The PV systems were equipped with a SunGrow SolarInfoTMEM
environmental monitoring device with integrated sensors to measure
irradiance, temperature (𝑇𝑎 and 𝑇𝑐), and wind velocity. Based on the
echnical specifications, the irradiance sensor has a sensitivity of 7 ∼
4 μv∕W m−2, a spectral range of 300 ∼ 3000 nm, an annual stability
f ±2%, and an output range of 0 ∼ 2000 W∕m2; the ambient and PV
ell temperature sensor has the same technical characteristics, with an
ccuracy of ±0.1 ◦C for the range of −55 ∼ +125 ◦C; to measure the PV
ell temperature values, the sensor was tightly connected onto the back
heet of the module to ensure close contact; the wind velocity sensor
as an accuracy of 0.1 m∕s (per 5 m∕s) for the measurement range of
4

∼ 96 m∕s. i
Table 2
Technical specifications of the PV modules.

PV module

Parameter DSM-270 JKM265PP

𝑃𝑚𝑝𝑝 (W) 270 ± 3% 265 ± 3%
𝜂𝑆𝑇𝐶 (%) 16 16.19
𝛽𝑆𝑇𝐶 (%∕◦C) −0.41 −0.40
Number of cells 60 (6 × 10)
Operating temperature (◦C) −40 ∼ +85
𝑁𝑂𝐶𝑇 (◦C) 45 ± 2
Top side Tempered glass
Encapsulating material EVA
Cell type Multicrystalline

2.2. Datasets and preprocessing data

Metaheuristics do not necessarily require data cleaning; however,
it is essential to apply a data filter to ensure the consistency with
previously recorded measurements. Following this procedure ensure
that the data are representative and contextually relevant, enhancing
the accuracy of the findings [55]. Consequently, recovery of data lost
was not necessary in this study.

The measurement period was from January 1, 2021 to December
19, 2022 with a 10-minute resolution. Some measurements were not
registered, due to technical issues with the environmental monitoring
device. The datasets consist of a matrix of 93206 × 3 and 93914 × 3 for
he DSM-270 and JKM265PP PV modules, respectively. According to
he criteria for NOCT conditions [42] and studies conducted by [13,56],
he nominal operating temperature can be determined by rejecting the
ollowing measurements:

• Wind velocity outside of range: 𝑣𝑤 = 0.25–1.75 m/s.
• Ambient temperature outside the range: 𝑇𝑎 = 5–35 ◦C.
• Values of irradiance: 𝐺 < 400 W∕m2.
• Variations of 𝐺 between successive 10-minute intervals: 𝛥𝐺 >
10%.

• Variations of 𝑣𝑤 between successive 10-minute intervals: 𝛥𝑣𝑤 >
4 m∕s.

• Variations of 𝑇𝑎 between successive 10-minute intervals: 𝛥𝑇𝑎 >
5 ◦C.

After filtering the measured data according to the criteria described
bove, datasets of 655 × 3 and 1168 × 3 were obtained, for DSM-
70 and JKM265PP PV modules, respectively. These results represent
.98% of the measurements that comply with the NOCT conditions.
herefore, it is advisable to use a model that responds better to the
nvironmental conditions of the PV installations. A similar result was
btained by [13], with 0.02% of data filtered of a dataset of 219168
easurements.

Based on the report by [47] of the Cuban Institute of Meteorology,
range of 𝑇𝑎 = 2.80–36.90 ◦C was defined for data preprocessing.

his criterion was used as the limits to avoid possible errors in the
emperature measurement. Additionally, a condition of 𝐺 ≥ 100 W∕m2

as applied to exclude night-time measurements and to account for
luctuations in irradiance caused by transient cloudiness, which is
ommon during summer periods. Finally, the dataset consisting of two
atrices of size 28304 × 3 and 39069 × 3 were obtained for the
SM-270 and JKM265PP PV modules, respectively.

Fig. 1(a) shows the plot of the measured irradiance, with three peaks
rom 120–420 W∕m2, 450–690 W∕m2 and 720–990 W∕m2; the values
bove 1000 W∕m2 have a low probability, while the measured maxi-
um value was 1199.60 W∕m2 with the lowest probability. Figs. 1(b)

nd 1(c) show the plot for 𝑇𝑎 and 𝑇𝑐 ; the probable temperature ranges
re 25–35 ◦C and 22–48 ◦C, respectively. The maximum values reg-
stered were 𝑇𝑎 = 35 ◦C (Fig. 1(b)) and 𝑇𝑐 = 57.10 ◦C (Fig. 1(c)).
egistered measurements that comply with the condition of 𝑇𝑎 > 𝑇𝑐

ndicate that no PV energy is generated due to very low levels of



Solar Energy 271 (2024) 112414L. Osorio et al.

i
o
v
a
p

2

h
r
i
b
t
i
n
f
s
f

l
l
i
o
o
a
p

2

s
A
t
e
a

e
(

Fig. 1. Plots of probability density of the measured parameters (a) irradiance, (b) ambient temperature, (c) wind velocity and (d) PV cell temperature.
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rradiance or nighttime [4]. Fig. 1(d) shows the Weibull distribution
f the measured wind velocity. It is observed that the most frequent
alues are in the range of 3–5 m/s, with an average of 3.74 m∕s and
standard deviation of 1.91 m∕s. Values close to 1 m∕s have a lower

robability, while the maximum value was 12.5 m∕s.

.3. Local search: a simple and effective metaheuristic algorithm

Local search is a metaheuristic algorithm that focuses on finding
igh-quality solutions in a nearby search space. Unlike global algo-
ithms that explore the entire solution space, local search aims to
mprove an initial solution through local changes. This approach is
ased on the idea that small modifications to a solution can lead
o significant improvements [57]. The search process begins with an
nitial solution, and iterative local changes are made to search for
eighboring solutions that are better in terms of a specific objective
unction. If a better solution is found, it becomes the new current
olution, and the process continues. However, if no better solution is
ound, the algorithm may become trapped in a local optimum [43,58].

This metaheuristic algorithm is particularly useful for complex prob-
ems where full exploration of the search space is inefficient due to its
arge size. Local search has been successfully applied in several areas,
ncluding scheduling, resource allocation, network design, and route
ptimization, among others [59,60]. Its low computational cost, ease
f use, and explainability [61] make the local search a suitable choice
s the foundational algorithm for the present temperature computation
roblem.

.4. The proposed metaheuristics-based method

The proposed metaheuristics-based method consists of a series of
teps to calculate the nominal operating temperature of the PV module.
crucial aspect of the method is the use of the local search metaheuris-

ic algorithm, which was briefly described in Section 2.3. A graphical
xplanation of the metaheuristics-based method is illustrated by an
ctivity diagram in Fig. 2.

The proposed method is simple, and its simplicity is the main nov-
lty. A critical component involves performing a proper data analysis
5

step 1) using the dataset (28304 × 3) taken from the DSM-270 PV s
odule, followed by data preprocessing (step 2) and data normalization
step 3), to filter out irrelevant data and erroneous measurements, as
xplained in Section 2.2. This step 3, data normalization, not only pro-
ides a preprocessed data set, but also extracts basic parameters, such
s the range of variables 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 , the mutation operators
o move from the current point to the neighbors, and most importantly,
ow to evaluate the results of each iteration. Section 2.5 provides an
xplanation of this process. Additionally, an important step is the split
f the dataset (step 4) into training data and validation data. Although
t is not a classification task or other machine learning techniques, it is
lways essential to separate data to avoid biased results [62].

The step of applying restart local search (step 5) is explained in
ection 2.5. It has its stopping condition, as outlined in pseudocode
lgorithm 1; this step yields pairs of 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 . The pairwise

sets are then used to perform the error analysis (step 6), based on the
mean absolute error (MAE), so the validation set obtained in (step 4)
is used. Pairwise sets of 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 are substituted in the
NOCT model described by Eq. (8) to calculate the estimated value of
𝑇𝑐 . Then the error 𝑀𝐴𝐸 between the estimated and measured values of
𝑇𝑐 is analyzed. Eq. (4) explains 𝑀𝐴𝐸, presented in Section 2.7. Based
on the study conducted by [56] at the National Renewable Energy
Laboratory in the United States, successful results are considered when
the condition 𝑀𝐴𝐸 < 3 is reached. If 𝑀𝐴𝐸 > 3, the process returns to
5), otherwise, the final values of 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 are obtained.

.5. Restart local search: Cuban data

After preprocessing and normalizing the dataset (step 2 and step
), a set of clean data was obtained, as explained in Section 2.2. Fig. 1
hows the resulting values for irradiance and ambient temperature. This
nalysis helped to determine the input parameters for the restart local
earch algorithm, as described in Section 2.5.1. The pseudocode for our
estart local search algorithm is presented in Section 2.6.

.5.1. Input parameters for restart local search
Ranges of 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 ; after analyzing the measured data

Fig. 1), the value of NOCT it set to 45 ◦C and the initial random

olution should adhere to the following ranges:
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Fig. 2. Metaheuristics-based method for exploring numerous potential states of the
parameters 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 in the NOCT model under site-specific meteorological
conditions.

• Ambient temperature: 𝑇𝑎,𝑁𝑂𝐶𝑇 = 25–35 ◦C; are the values with
the highest probability.

• Irradiance: 𝐺𝑁𝑂𝐶𝑇 = 700–900 W∕m2; the third peaks registered
are closest to the STC and NOCT conditions.

Neighborhood Steps: In local search, a mutation operator is a func-
ion or procedure used to modify the current solution and generate

neighboring solution within the search space. The purpose of this
perator is to explore the search space for potentially better solutions.
he mutation operator applies random changes to the current solution,
hich may include swapping, inversion, insertion, or any other relevant

hanges specific to the problem. These changes allow the exploration
f different neighborhoods around the current solution in search of po-
ential improvements. The choice and design of the mutation operator
epends on the specific context in which the local search algorithm is
pplied [60]. An effective mutation operator should strike a balance
etween exploring the search space to avoid getting trapped in local
ptima and exploiting the best solutions found so far.

In this case, the mutation operator for both variables was de-
ined as: increase, decrease, or keep the value of 𝐺𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and
𝑎,𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, respectively. The increment or decrement step size was
.1 ◦C and 1 W∕m2 for 𝑇𝑎,𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝐺𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, respectively.
he possible combinations of the mutation operator are shown in the
able 3.
6

Table 3
Possible combinations of the mutation operator.

Parameters Mutation combination

𝑇𝑎,𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (◦C) +0.1 +0.1 +0.1 −0.1 −0.1 −0.1 +0 +0
𝐺𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (W∕m2) +1 −1 +0 −1 +1 +0 −1 +1

The steps for making these decisions are explicitly detailed below
and are based on the analysis of the available data. For 𝑇𝑎,𝑁𝑂𝐶𝑇 , the
tep size to move in the search space is 0.1 ◦C in the movement range
efined in Table 3. Dividing the unit into 10 parts allows for the
ossibility of having 100 possible neighbors, allowing for a less abrupt
ransition from the current state to a neighboring state. Similarly,
or 𝐺𝑁𝑂𝐶𝑇 , the step size for movement is 1 W∕m2 in the range of
ovement defined in Table 3, resulting in 200 possible states for this

ariable. This gives a total of 20000 possible combinations to explore
he neighborhood.

Number of validation individuals: for conducting the validations in
ach iteration, 5 individuals were selected. The selection of this number
as determined through a Design of Experiment that involved 5, 10,
5, and 20 individuals [63]. The optimal population size was found to
e 5 individuals per iteration. These individuals are randomly chosen
rom the entire training dataset.

The objective function used in the restart local search described
n line 12 of the Algorithm 1, is an instance of 𝑀𝐴𝐸 error described
n Eq. (4). It is referred to as an instance of 𝑀𝐴𝐸 because it is calcu-

lated using 𝐺𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑇𝑎,𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 of the current iteration,
and only the quantity of validation individuals chosen in that iteration
is used.

2.6. Restart local search: pseudocode

All input parameters explained in Section 2.5.1 were taken into
account to run the algorithm. In addition, the following parameters
were set 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 1000, 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 20 and 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠 = 300.
During each iteration, all eight possible mutations are performed, and
the one that produces the best results is selected as the new current
value. The pseudocode used for the proposed method, along with the
analyzed Cuban data, is shown in Algorithm 1.

2.7. Validation of the proposed method

The proposed algorithm was executed using datasets from the DSM-
270 PV module, which comprises a data matrix of size 28304 × 3.
In the model obtained, 𝑇𝑐 was calculated using a dataset from the
JKM265PP PV module, which comprises a matrix of size 39069 × 3.
The validation was facilitated by four statistical metrics: 𝑀𝐴𝐸, mean
absolute percentage error (𝑀𝐴𝑃𝐸), root mean square error (𝑅𝑀𝑆𝐸)
and coefficient of determination (𝑅2), represented by Eqs. (4), (5), (6),
and (7), respectively.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑇𝑐,𝑚 − 𝑇𝑐,𝑒|| (4)

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

|

𝑇𝑐,𝑚 − 𝑇𝑐,𝑒
𝑇𝑐,𝑚

|

|

|

|

|

100% (5)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑇𝑐,𝑚 − 𝑇𝑐,𝑒)2 (6)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑇𝑐,𝑚 − 𝑇𝑐,𝑒)2
∑𝑛

𝑖=1(𝑇𝑐,𝑚 − 𝑇𝑐,𝑚)2
(7)

The indices (𝑚) and (𝑒) represent the measured and estimated
values, respectively, 𝑛 represents the number of data points and 𝑇𝑐,𝑚
represents the average of the measured values.
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Algorithm 1 Restart local search: pseudocode.
Require: parameter : Parameter list
nsure: 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇
1: x= 𝐺𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
2: y= 𝑇𝑎,𝑁𝑂𝐶𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
3: Function load_data()
4: Open the CSV file 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛.𝑐𝑠𝑣 in read mode
5: Initialize an empty list called 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠
6: for each row in the CSV file do
7: Split the row by the delimiter ; and add it to the 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 list
8: end for
9: Close the CSV file
0: Return 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠
1: Function objective_function(𝑥,𝑦,𝐺,𝑇𝑎,𝑇𝑐):

12: Return the absolute value of (𝑇𝑐 − (𝑇𝑎 + 𝐺∕𝑥 ∗ (45 − 𝑦)))
13: Function mutate():
14: Initialize the list possibilities with the combinations in Table 3
15: Return a randomly selected combination from the list possibilities
16: Function 𝑔𝑢𝑖𝑑𝑒𝑑_𝑠𝑐𝑎𝑙𝑖𝑛𝑔 (𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒_𝑥, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒_𝑦,

𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠, 𝑟𝑎𝑛𝑔𝑒_𝑥, 𝑟𝑎𝑛𝑔𝑒_𝑦):
17: readings = load_data()
18: Initialize an empty list called ℎ𝑖𝑠𝑡𝑜𝑟𝑦
19: Initialize 𝑏𝑒𝑠𝑡_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 as None
20: Initialize 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 𝑎𝑠 +∞
21: Initialize 𝑥 and 𝑦 as random values based on 𝑟𝑎𝑛𝑔𝑒_𝑥 and 𝑟𝑎𝑛𝑔𝑒_𝑦
22: for Each iteration in the range 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
23: Generate a random sample of size 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 by selecting random
24: rows from 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠
25: Initialize an empty list called differences
26: for Each sample in the samples do
27: Get the values 𝐺, 𝑇𝑎, and 𝑇𝑐 from the sample
28: Calculate the difference using the objective_function and add it to
29: differences
30: end for
31: Calculate the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒 as the sum of differences divided by it is
32: length
33: Add [𝑥, 𝑦, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒] to ℎ𝑖𝑠𝑡𝑜𝑟𝑦
34: if The 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒 is better than 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 then
35: Update 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 with the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒
36: else
37: Keep 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒
38: end if
39: Generate all possible mutations and store them in the 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 list
40: Adjust the values in 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 based on 𝑟𝑎𝑛𝑔𝑒_𝑥 and 𝑟𝑎𝑛𝑔𝑒_𝑦
41: Initialize an empty list called neighbor_scores
42: for Each mutation in 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 do
43: Calculate the coordinates of the neighbor by adding the
44: 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒_𝑥 and 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒_𝑦 to 𝑥 and 𝑦
45: Initialize an empty list called temp_scores
46: for Each sample in the samples do
47: Get the values 𝐺, 𝑇𝑎, and 𝑇𝑐 from the sample
48: Calculate the score using the objective function and add it to
49: temp_scores
50: end for
51: Calculate the average from temp_scores and add it to
52: neighbor_scores with the coordinates of the neighbor
53: end for
54: Get the neighbor with the lowest score from neighbor_scores
55: Update 𝑥 and 𝑦 with the coordinates of the neighbor
56: end for

3. Results and discussions

After applying the method (Fig. 2) using the DSM-270 PV mod-

ule dataset, pairwise 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 were obtained which best
7

corresponded to the model (8) for the Cuban scenario.
Table 4
Ranking according to the MAE metric of evaluated thermal models (4–22) and the
proposed model (8) applied to DSM-270 PV module.

Ranking Model 𝑀𝐴𝐸 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅2

(◦C) (%) (◦C)

1 (8) 2.34 6.60 2.57 0.74
2 (20) 2.55 7.23 2.70 0.73
3 (15) 3.07 8.86 4.33 0.59
4 (17) 3.18 9.18 4.44 0.59
5 (19) 3.55 10.34 4.01 0.66
6 (21) 3.67 10.41 4.16 0.68
7 (9) 4.80 13.52 3.67 0.72
8 (18) 5.58 15.77 3.95 0.72
9 (11) 5.74 16.20 3.78 0.74
10 (13) 6.20 17.45 3.93 0.73
11 (22) 6.80 19.07 4.13 0.72
12 (12) 7.19 19.99 5.37 0.65
13 (14) 7.98 22.28 4.56 0.71
14 (10) 7.99 22.30 4.54 0.72
15 (5) 8.53 23.77 5.16 0.66
16 (7) 8.83 24.38 5.60 0.65
17 (4) 10.82 29.97 5.99 0.65
18 (16) 11.36 31.43 6.18 0.64
19 (8) 11.49 31.79 6.23 0.64
20 (6) 16.61 46.89 5.48 0.69

Table 5
Ranking according to the MAE metric of evaluated thermal models (4–22) and the
proposed model (8) applied to JKM265PP PV module.
Ranking Model 𝑀𝐴𝐸 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅2

(◦C) (%) (◦C)

1 (20) 2.89 7.00 2.58 0.76
2 (8) 3.14 7.54 2.45 0.77
3 (9) 3.17 8.19 3.52 0.74
4 (21) 3.33 8.63 4.32 0.67
5 (15) 3.71 9.44 4.63 0.52
6 (17) 3.71 9.46 4.75 0.52
7 (11) 4.15 10.83 4.16 0.70
8 (18) 4.16 10.89 4.42 0.67
9 (13) 4.51 11.69 4.21 0.71
10 (22) 4.97 12.84 4.36 0.71
11 (19) 5.07 12.93 4.18 0.64
12 (12) 5.84 14.95 5.57 0.64
13 (14) 6.13 15.68 4.80 0.70
14 (10) 6.21 15.89 4.87 0.70
15 (5) 6.34 16.13 5.01 0.69
16 (7) 6.76 16.95 5.47 0.69
17 (4) 8.59 21.64 5.86 0.68
18 (16) 9.12 22.94 6.05 0.68
19 (8) 9.25 23.26 6.10 0.68
20 (6) 14.72 38.24 5.69 0.67

3.1. Proposed model according to Cuban data

In step 5 of the method, a total of 28 pairwise sets 𝐺𝑁𝑂𝐶𝑇 and
𝑇𝑎,𝑁𝑂𝐶𝑇 were obtained, varying within the ranges 702.92–894.83 W∕m2

and 25.32–34.90 ◦C, respectively. The algorithm followed the limits
defined in Section 2.5.1. The pairwise set obtained by the metaheuristic
method iterations are shown in Fig. 3, the results complied with
𝑀𝐴𝐸 < 3 error are marked in gray. The execution time for each run
of the algorithm was ranged 5–20 s.

The 28th iteration yielded the lowest MAE. The values of 𝐺𝑁𝑂𝐶𝑇
nd 𝑇𝑎,𝑁𝑂𝐶𝑇 corresponding to this iteration are represented by Eq. (8)
nd demonstrate the strongest correlation found for the tropical cli-
atic conditions of Cuba.

𝑐 = 𝑇𝑎 +
𝐺

869.63
(𝑁𝑂𝐶𝑇 − 34.90) (8)

Based on the model (8) of Table 1, the parameters 𝐺𝑁𝑂𝐶𝑇 and
𝑎,𝑁𝑂𝐶𝑇 were recomputed, obtaining the new values 𝐺𝑁𝑂𝐶𝑇 = 869.63±
W∕m2 and 𝑇𝑎,𝑁𝑂𝐶𝑇 = 34.90±0.1 ◦C for the wind velocity of 3–5 m/s.
Both parameters resulted in values higher than the NOCT conditions
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Fig. 3. Mean absolute error (MAE) versus number of iterations obtained through the application of the proposed local search-based method.
recommended by IEC Standard 61215-1, resulting in a lower nominal
operating temperature. Therefore, the applied methodology shows that
the average values of irradiance and ambient temperature during peak
solar hours are the best climatic conditions to estimate the nominal
operating temperature.

3.2. Evaluation of the models

The algorithm was executed using a dataset from DSM-270 PV mod-
ule, while to evaluate the model obtained in Eq. (8), a separate dataset
from JKM265PP PV module was used, as explained in Section 2.7.
In this section, both dataset are used to evaluate the accuracy of the
models shown in Table 1.

For easily understanding, in this study the model is referred by
the equation number, e.g., the evaluated thermal models correspond
to (4–22), while model (8) is the proposed thermal model. Based on
the datasets, comparative assessments of model (8) with each model
listed in Table 1 were performed. Fig. 4 shows the metrics defined by
Eqs. (4)–(7). Tables 4 and 5 show the ranking according to the MAE
metric for the DSM-270 and JKM265PP PV modules, respectively.

Tables 4 and 5 show model (8) ranked in 1st and 2nd position
highlighted in gray). It is observed that the positions ranked from 1st

to 7th were models that calculated 𝑇𝑐 with high accuracy. Although
the position in Table 4 is different from the positions in Table 5, the
models (8), (20), (15), (17), (19), (21) and (9) determine the operating
temperature more accurately for the Cuba data. Models (15), (17), (19)
and (21) use wind velocity as an input parameter, which improves the
prediction of 𝑇𝑐 . Conversely, the positions ranked from 8th to 20th are
occupied by almost the same models between Tables 4 and 5. Due
to the similarity of the physical properties of both PV modules (see
Table 2), these similar results are consistent in both tables. Model (8)
(highlighted in green) recommended by IEC Standard 61215-1, was
ranked in the 19th position for both modules, because it is effective
in the limited meteorological conditions described in Section 2.2.

Model (20) established by [14] ranks 2nd in the Table 4 and 1st

in Table 5, this research was also conducted under tropical climate
conditions (Malaysian study with input parameters 𝐺𝑡𝐹𝑂𝐶𝑇 = 886 W∕m2

and 𝑇𝑎,𝑡𝐹𝑂𝐶𝑇 = 34 ◦C). This result confirms the assumption that PV
installations operating in this type of climate need to fix the parameters
of the model (8).

After evaluating the results of the DSM-270 PV module shown in
Table 4, models (8) and (20) were the highest-ranked models according
to the metrics. Conversely, the analysis of the 𝑀𝐴𝐸 and 𝑀𝐴𝑃𝐸 metrics
showed that models (8) and (6) were the worst performing. The 𝑅𝑀𝑆𝐸
metric showed that model (8) had the poorest value with 𝑅𝑀𝑆𝐸 =
6.23 ◦C while models (8) and (11) had the highest score for the 𝑅2

metric, with (𝑅2 = 0.74 for both models). In each instance, results for
models (15) and (17) were the worst, with 𝑅2 = 0.59.

By analyzing the results of the JKM265PP PV module shown in
Table 5, models (20) and (8) are the highest-ranked. For 𝑀𝐴𝐸 and

𝐴𝑃𝐸 metrics, models (8) and (6) presented the worst value. Ac-
ording to the 𝑅𝑀𝑆𝐸 metric, model (8) presented the worst value
𝑀𝑆𝐸 = 6.10 ◦C. Based on the 𝑅2 metric, models (8) and (20)
emonstrated best values, conversely models (15) and (17) presented
he worst values (𝑅2 = 0.52 in each case).
8

The metric 𝑅2 is explained graphically in Fig. 5, which shows the
linear fit plot of 𝐺 and 𝑇𝑎 with 𝑇𝑐 , of the evaluated thermal models (4–
22) and the proposed model (8). The models vary linearly with both
𝑇𝑎 and 𝐺 with different slopes. The analysis suggests that the models
predict 𝑇𝑐 differently when exposed to the same operating conditions.
For example, model (19) underestimates 𝑇𝑐 for 𝐺 < 1200 W∕m2

(Fig. 5(a)) and 𝑇𝑎 < 35 ◦C (Fig. 5(b)); while the rest of the models
have an overestimation behavior.

In Fig. 5(a), for the conditions 𝐺𝑁𝑂𝐶𝑇 = 869.63 W∕m2, the models
(15) and (17) presented low operating temperatures in the range of
𝑇𝑐 = 40–50 ◦C. Models (20) and (8) were the best performers, with
slight variations in the measured temperature range 𝑇𝑐 = 40–45 ◦C.
On the opposite, model (6) presented highest operating temperatures
of 𝑇𝑐 = 60–70 ◦C, and for the maximum values of irradiance measured
(𝐺 = 1199.60 W∕m2) it is even in the range of 𝑇𝑐 = 70–80 ◦C. Based
on the cell temperature measurements shown in Fig. 1(c), models (4),
(5), (6), (7), (8), (10), (12), (14) and (16) overestimate the maximum
value of 𝑇𝑐 = 57.10 ◦C.

In Fig. 5(b), for the conditions 𝑇𝑎,𝑁𝑂𝐶𝑇 = 34.90 ◦C, the models
(15), (17), (19), (20), and (21) presented low operating temperatures
in the range of 𝑇𝑐 = 40–50 ◦C, therefore, correctly calculating the
cell temperature, due to the incorporation of 𝑣𝑤 as input parameter;
on the opposite, models (4), (6), (8) and (16) presented the highest
temperatures, in the order of 𝑇𝑐 ≥ 60 ◦C, which is the worst correlation
of 𝑇𝑐 with input parameter 𝑇𝑎.

Based on the findings presented in Table 4, Table 5 and Fig. 5,
it can be concluded that the proposed thermal model establishes a
stronger correlation between the meteorological factors of Cuba and
cell temperature. By contrast, the NOCT model (model (8)) presented
the worst performance. In Table 4, model (8) decreased the MAE, MAPE
and RMSE of model (8) by 4.91, 4.82 and 2.42 times, respectively. In
Table 5, model (8) reduced the MAE, MAPE and RMSE of model (8) by
2.95, 3.08 and 2.49 times, respectively.

3.3. Comparison of the predictive capacity for daily profiles

To assess the performance of the models for daily profiles, a compar-
ative analysis of specific days has been conducted. Fig. 6 shows three
days chosen because the input parameters of the evaluated thermal
models (𝐺, 𝑇𝑎 and 𝑣𝑤) had a varied behavior. Fig. 6(a) shows a partly
cloudy day with irregular irradiance (July 5, 2021), Fig. 6(c) shows
a sunny day with regular irradiance (August 29, 2021) and Fig. 6(e)
shows a cloudy day with low irradiance (November 4, 2021). The
months of July and August in which 𝑇𝑎 are greater at the summer
period, despite the eventual irregularity of the incident irradiance, and
the month of November, with a low level of 𝐺 and 𝑇𝑎 have been
selected. Figs. 6(b), 6(d), 6(f) depicts 𝑇𝑐 values determined using the
evaluated thermal models, applied to the DSM-270 PV module for each
day. Table 6 shows the ranking of the models, according to the metrics
of Eqs. (4)–(7), for the three different meteorological scenarios shown
in Figs. 6(a), 6(c), 6(e).

On July 5, 2021, represented in Fig. 6(a), an irradiation of
5.39 kWh∕m2 was registered, in accordance to the average daily value

2
for Cuba of 5 kWh∕m [51]. The maximum irradiance value 𝐺 =
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Fig. 4. Metrics for the comparison of evaluated thermal models (4–22) and the proposed model (8) applied to (a) DSM-270 and (b) JKM265PP PV modules.
Fig. 5. Linear fit plot of (a) 𝑇𝑐 vs 𝐺 and (b) 𝑇𝑐 vs 𝑇𝑎, for the evaluated thermal models (4–22) and the proposed model (8) applied to DSM-270 PV module.
1091.90 W∕m2 was registered at 13:00 h and the maximum cell tem-
perature 𝑇𝑐 = 52.60 ◦C was registered at 13:10 h. The ambient and
cell temperature values were in the ranges 𝑇𝑎 = 23.20–36.70 ◦C and
𝑇𝑐 = 21.90–52.60 ◦C, respectively; the average wind velocity was
𝑣𝑤 = 1.80 m∕s with a standard deviation of 1.87 m∕s. According to
the findings shown in Table 6 and Fig. 6(b), model (6) was the less
accurate, overestimating the maximum cell temperature, with 𝑇 =
9

𝑐

32.15–80.72 ◦C and the metrics 𝑀𝐴𝐸 = 14.27 ◦C, 𝑀𝐴𝑃𝐸 = 47.56%,
𝑅𝑀𝑆𝐸 = 4.48 ◦C and 𝑅2 = 0.85. Model (8) was the most accurate,
reaching the values of cell temperature in the range 𝑇𝑐 = 23.20–48.25
◦C, with metrics 𝑀𝐴𝐸 = 1.88 ◦C, 𝑀𝐴𝑃𝐸 = 6.12%, 𝑅𝑀𝑆𝐸 = 1.99 ◦C
and 𝑅2 = 0.92. The analysis of the maximum measured and predicted
cell temperatures values, showed models (8) and (6) have an 𝑀𝐴𝐸 =
−4.35 ◦C (underestimation) and 𝑀𝐴𝐸 = +28.12 ◦C (overestimation),
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Fig. 6. Measurements of irradiance and ambient temperature on (a) July 5, 2021, a partly cloudy day with irregular and high level of irradiance, (c) August 29, 2021, a clearsky
day with regular irradiance and (e) November 4, 2021, a cloudy day with low level of irradiance; (b, d, f) the cell temperature predicted by the evaluated thermal models (4–22)
and the proposed model (8), applied to DSM-270 PV module.
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respectively. It can be concluded that the difference in the maximum
temperature values reached by the models is significant.

On August 29, 2021, represented in Fig. 6(c), a high level irradiation
of 6.48 kWh∕m2 was registered, above the average daily for Cuba. The
maximum irradiance value 𝐺 = 963.40 W∕m2 was observed at 12:20 h
and the maximum cell temperature 𝑇𝑐 = 46.60 ◦C at 12:50 h. The
mbient and cell temperature values were in the range of 𝑇𝑎 = 25.50–
5.80 ◦C and 𝑇𝑐 = 23.80–46.60 ◦C, respectively; the average wind
elocity was 𝑣𝑤 = 2.46 m∕s with a standard deviation of 1.90 m∕s.
he results presented in Table 6 and Fig. 6(d) show the models (8) and
6) were less accurate, overestimating the cell temperature. In the case
f model (6), predicted values were in the range of 𝑇𝑐 = 34.14–72.34
C, with the metrics 𝑀𝐴𝐸 = 14.61 ◦C, 𝑀𝐴𝑃𝐸 = 45.85%, 𝑅𝑀𝑆𝐸 =
.08 ◦C and 𝑅2 = 0.93. Models (8), (20) and (15) were the most
ccurate; model (8) predicted values were in the range 𝑇𝑐 = 25.50–
6.61 ◦C, with the metrics 𝑀𝐴𝐸 = 1.22 ◦C, 𝑀𝐴𝑃𝐸 = 4.15%, 𝑅𝑀𝑆𝐸 =
.66 ◦C and 𝑅2 = 0.99. In analysis of the maximum measured and
10
redicted cell temperature values, models (8) and (6) have an 𝑀𝐴𝐸 =
0.01 ◦C (underestimation) and 𝑀𝐴𝐸 = +25.77 ◦C (overestimation),

espectively. In this instance, model (8) largely reduced the difference
etween maximum measured and the predicted cell temperature.

On November 4, 2021, represented in Fig. 6(e), a low level ir-
adiation of 1.63 kWh∕m2 was registered, due to cloudiness and low
ntensity of the irradiance. It was registered the maximum irradiance
alue 𝐺 = 428.40 W∕m2 at 13:40 h and the maximum cell temperature
𝑐 = 35.00 ◦C at 14:00 h. The ambient and cell temperature values were
n the range of 𝑇𝑎 = 22.20–29.90 ◦C and 𝑇𝑐 = 22.00–35.00 ◦C, respec-
ively. This day presented meteorological conditions where the wind
elocity was higher than other days analyzed, the average wind velocity
as 𝑣𝑤 = 3.19 m∕s with a standard deviation of 1.51 m∕s. According to

he findings shown in Table 6 and Fig. 6(f), models (19) and (6) were
he least accurate; in the case of model (6), values of 𝑇𝑐 = 23.75–48.73
C and metrics 𝑀𝐴𝐸 = 8.10 ◦C, 𝑀𝐴𝑃𝐸 = 31.09%, 𝑅𝑀𝑆𝐸 = 2.67 ◦C
nd 𝑅2 = 0.72. Models (8), (20) and (15) were the most accurate; in
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Table 6
Metrics for the comparison of evaluated thermal models (4–22) and the proposed model (8) for the selected days, applied to
DSM-270 PV module.
Date Ranking Model Metric Predicted cell temperature

𝑀𝐴𝐸 𝑀𝐴𝑃𝐸 𝑅𝑀𝑆𝐸 𝑅2 Minimum Average Maximum
(◦C) (%) (◦C) (◦C) (◦C) (◦C)

July 5, 2021

1 (8) 1.88 6.12 1.99 0.92 23.20 31.45 48.25
2 (20) 1.93 6.26 2.09 0.92 23.20 31.63 49.10
3 (15) 2.55 7.92 3.80 0.83 23.20 32.46 81.17
4 (17) 2.60 8.05 3.89 0.82 23.20 32.55 82.26
5 (19) 2.74 8.35 3.33 0.82 20.05 29.17 54.87
6 (9) 2.77 8.37 2.82 0.91 22.70 33.06 55.75
7 (21) 2.80 8.99 3.40 0.85 22.42 31.91 58.77
8 (11) 3.33 9.93 3.40 0.89 23.20 33.71 68.91
9 (18) 3.35 9.98 3.63 0.88 23.20 33.73 73.88
10 (13) 3.46 10.25 3.38 0.90 23.20 33.85 66.00
11 (22) 3.67 10.79 3.51 0.89 23.20 34.09 67.03
12 (7) 3.76 10.12 4.24 0.88 22.20 34.12 64.87
13 (14) 4.12 11.92 3.81 0.89 23.20 34.60 68.82
14 (5) 4.16 12.03 3.91 0.88 23.20 34.61 63.36
15 (10) 4.17 12.04 3.88 0.89 23.20 34.66 70.77
16 (12) 4.83 15.46 4.37 0.82 24.00 35.02 67.78
17 (4) 5.03 14.23 4.53 0.88 23.20 35.57 68.06
18 (16) 5.24 14.75 4.67 0.87 23.20 35.80 69.15
19 (8) 5.29 14.88 4.71 0.87 23.20 35.85 69.42
20 (6) 14.27 47.56 4.48 0.85 32.15 44.94 80.72

August 29, 2021

1 (8) 1.22 4.15 0.66 0.99 25.50 32.88 46.61
2 (20) 1.42 4.65 0.71 0.99 25.50 33.09 47.36
3 (15) 1.50 4.89 1.32 0.97 25.50 32.99 49.95
4 (17) 1.54 5.01 1.35 0.97 25.50 33.07 50.32
5 (21) 2.24 6.79 2.34 0.93 23.73 32.93 52.50
6 (19) 2.37 7.62 2.53 0.90 20.21 29.90 48.03
7 (18) 3.17 9.02 1.60 0.97 25.50 34.88 56.69
8 (9) 3.18 9.01 1.02 0.99 25.33 34.89 53.39
9 (11) 3.35 9.45 1.47 0.98 25.50 35.06 56.59
10 (13) 3.68 10.27 1.49 0.98 25.50 35.39 57.39
11 (22) 3.99 11.01 1.50 0.98 25.50 35.70 58.17
12 (10) 4.59 12.52 1.76 0.98 25.50 36.30 61.01
13 (14) 4.62 12.57 1.67 0.98 25.50 36.33 60.52
14 (7) 4.65 11.86 1.78 0.98 24.50 36.30 61.00
15 (12) 4.80 14.10 3.05 0.92 24.53 36.14 60.14
16 (5) 4.97 13.40 1.62 0.98 25.50 36.68 59.84
17 (4) 6.13 16.27 1.93 0.98 25.50 37.84 63.88
18 (16) 6.40 16.94 2.00 0.98 25.50 38.11 64.82
19 (8) 6.47 17.10 2.02 0.98 25.50 38.18 65.06
20 (6) 14.61 45.85 3.08 0.93 34.14 46.32 72.34

November 4, 2021

1 (8) 0.56 2.22 0.45 0.97 22.20 26.42 34.58
2 (20) 0.59 2.32 0.46 0.97 22.20 26.48 34.91
3 (15) 0.62 2.44 0.51 0.97 22.20 26.49 35.12
4 (17) 0.63 2.47 0.52 0.97 22.20 26.51 35.28
5 (9) 0.83 3.03 0.58 0.98 21.56 26.67 37.40
6 (18) 1.05 3.84 0.64 0.97 22.20 26.97 38.04
7 (11) 1.08 3.96 0.64 0.97 22.20 27.01 38.00
8 (7) 1.15 4.03 0.86 0.97 21.20 26.54 40.19
9 (13) 1.17 4.25 0.67 0.97 22.20 27.10 38.34
10 (22) 1.24 4.47 0.70 0.97 22.20 27.17 38.77
11 (10) 1.41 5.02 0.78 0.97 22.20 27.33 39.91
12 (14) 1.41 5.01 0.77 0.97 22.20 27.33 39.74
13 (5) 1.46 5.18 0.79 0.97 22.20 27.38 40.26
14 (4) 1.75 6.14 0.93 0.96 22.20 27.68 42.00
15 (16) 1.82 6.37 0.96 0.96 22.20 27.75 42.40
16 (8) 1.84 6.42 0.97 0.96 22.20 27.76 42.50
17 (12) 2.15 8.36 2.53 0.69 16.71 25.51 38.96
18 (21) 2.41 9.50 2.01 0.72 16.18 23.81 34.83
19 (19) 4.98 19.30 2.38 0.59 12.77 20.99 31.47
20 (6) 8.10 31.09 2.67 0.72 23.75 34.05 48.73
the case of model (8), reaching the values 𝑇𝑐 = 22.20–34.58 ◦C, with
the metrics 𝑀𝐴𝐸 = 0.56 ◦C, 𝑀𝐴𝑃𝐸 = 2.22%, 𝑅𝑀𝑆𝐸 = 0.45 ◦C and
𝑅2 = 0.97. Under these meteorological conditions, according to MAE,
MAPE and RMSE metrics; the proposed thermal model (8) performed
better compared to the other analyzed days. Similar to the other days,
models (8) and (8) had an error 𝑀𝐴𝐸 = −0.42 ◦C (underestimation)
and 𝑀𝐴𝐸 = +7.50 ◦C (overestimation), between maximum measured
and the predicted cell temperature.
11
The results illustrated in Fig. 6 and Table 6 allow the assertion that
model (8) has a robust correlation between 𝑇𝑐 and 𝐺, 𝑇𝑎 under different
climate scenarios, including a clear sky day with high irradiance and
a cloudy day with low irradiance. The evaluation of short- and long-
term performance metrics demonstrated the necessity to compute the
cell temperature using the appropriate approach for the specific mete-
orological conditions at the PV system site. Therefore, the generated
power can be accurately predicted using model (8), for a high level of
ambient temperature, such as on August 29, 2021. In the opposite, the
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Fig. 7. Predictive capacity of the evaluated thermal models (4–22) and the proposed model (8) on (a) the efficiency and (b) the produced energy for the selected days, applied
to the DSM-270 PV module and the installation; the errorbars show the MAE metric.
Table 7
Daily produced energy by the evaluated thermal models (4–22) and the proposed model (8) during the
analyzed days.
Model July 5, 2021 August 29, 2021 November 4, 2021

𝐸𝑐,𝑑𝑎𝑦 𝐸𝑖,𝑑𝑎𝑦 𝑀𝐴𝑃𝐸𝑖 𝐸𝑐,𝑑𝑎𝑦 𝐸𝑖,𝑑𝑎𝑦 𝑀𝐴𝑃𝐸𝑖 𝐸𝑐,𝑑𝑎𝑦 𝐸𝑖,𝑑𝑎𝑦 𝑀𝐴𝑃𝐸𝑖
(kWh) (kWh) (%) (kWh) (kWh) (%) (kWh) (kWh) (%)

(4) 1.286 11.317 5.518 1.532 13.482 6.240 0.420 3.698 2.125
(5) 1.303 11.469 4.251 1.554 13.676 4.890 0.422 3.716 1.646
(6) 1.242 10.932 8.732 1.487 13.094 8.937 0.409 3.606 4.561
(7) 1.300 11.440 4.491 1.549 13.635 5.174 0.422 3.722 1.483
(8) 1.281 11.273 5.886 1.525 13.425 6.632 0.419 3.692 2.264
(9) 1.330 11.711 2.233 1.589 13.983 2.751 0.425 3.748 0.799
(10) 1.302 11.462 4.306 1.562 13.745 4.407 0.422 3.719 1.556
(11) 1.319 11.610 3.073 1.585 13.954 2.957 0.424 3.739 1.025
(12) 1.310 11.531 3.735 1.570 13.821 3.878 0.426 3.754 0.642
(13) 1.316 11.589 3.250 1.579 13.896 3.357 0.424 3.734 1.172
(14) 1.303 11.472 4.227 1.561 13.740 4.445 0.422 3.719 1.554
(15) 1.341 11.806 1.438 1.625 14.303 0.527 0.428 3.772 0.162
(16) 1.282 11.282 5.813 1.526 13.437 6.553 0.419 3.693 2.237
(17) 1.340 11.792 1.553 1.623 14.290 0.616 0.428 3.770 0.196
(18) 1.318 11.606 3.103 1.589 13.986 2.733 0.425 3.742 0.962
(19) 1.367 12.038 0.496 1.642 14.454 0.518 0.437 3.852 1.961
(20) 1.356 11.937 0.343 1.622 14.274 0.727 0.428 3.772 0.167
(21) 1.343 11.822 1.302 1.610 14.175 1.420 0.431 3.798 0.539
(22) 1.312 11.551 3.564 1.573 13.845 3.712 0.423 3.729 1.285
(8) 1.359 11.965 0.107 1.626 14.311 0.476 0.429 3.775 0.078
other models tended to overestimate the cell temperature, which results
in underestimating the generated power.

Applying Eq. (3) with the measurements of cell temperature on
the selected days, the daily produced energy was obtained: 𝐸𝑐,𝑑𝑎𝑦 =
1.361 kWh, 𝐸𝑐,𝑑𝑎𝑦 = 1.634 kWh and 𝐸𝑐,𝑑𝑎𝑦 = 0.429 kWh on July 5, August
29 and November 4, 2021, respectively. The daily energy produced
by the PV installation 𝐸𝑖,𝑑𝑎𝑦, as per the specifications described in
Section 2.1, is 𝐸𝑖,𝑑𝑎𝑦 = 11.978 MWh, 𝐸𝑖,𝑑𝑎𝑦 = 14.379 MWh and 𝐸𝑖,𝑑𝑎𝑦 =
3.778 MWh, respectively, for the selected days. The amount of daily
produced energy was significantly affected by irradiance under the
different meteorological scenarios.

Fig. 7 and Table 7 depict the predictive ability on the efficiency
and the produced energy for the selected three days, applying Eq. (1)
and (3) to the thermal models (4) and (22) and the proposed thermal
model (8). By analysis of the predictive capability of the efficiency
shown in Fig. 7(a), models (19) and (8) have efficiency values above the
12
other models, the latter tending to overestimate the cell temperature,
and consequently, efficiency is underestimated. However, model (8) has
the lowest error levels and shows the most accurate prediction, while
models (6) and (8) were the least accurate, with wider error ranges,
for the selected days. Fig. 7(b) shows a similar response to Fig. 7(a) for
the predictive capability of the produced energy. Overall, under the
meteorological conditions of November 4, 2021, the models predicted
the efficiency and produced energy more accurately.

Through analysis of the results presented in Table 7, adjusting
the values of 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 , the proposed thermal model (8)
(highlighted in gray) significantly reduced the MAPE error of model
(8) (highlighted in green) by 54.86, 13.93, and 28.85 times on July 5,
August 29 and November 4, 2021, respectively. However, an inaccurate
prediction of 𝑇𝑐 resulted in an inaccurate prediction of PV conversion
efficiency and therefore the amount of produced energy. It could also
cause errors in the prediction of PV module lifetime. Indeed, as the 𝑇𝑐
exceeds 45 ◦C, the degradation process is enhanced [64].
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3.4. Final discussion

The adoption of a metaheuristic as the basis of the proposed method
has proven to be highly efficient, producing excellent results without
the need to perform an exhaustive search of all possible combinations.
It improves the process and reduces and significantly reduces the exe-
cution time required to obtain 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 and has minimized
the MAE error, this is also due to the low algorithm complexity that
the restart local search has. An innovative aspect of this study lies in
the treatment of the data set, where the identification and elimination
of erroneous values in the measurements allow to start the search from
the best values in a more accurate and efficient way. This approach
simplifies the process and improves the robustness and reliability of
the results.

The estimated and measured cell temperature values were com-
pared, considering a 23-month period, to obtain long-term model val-
idation. Evaluation metrics demonstrated that the proposed thermal
model (8) was ranked in 1st and 2nd positions for the DSM-270 and
JKM265PP PV modules, respectively. Similarly, the three daily profiles
in different months of the year were used to obtain short-term model
validation. Under these meteorological conditions, the proposed ther-
mal model (8) was ranked in 1st position for both PV modules. These
findings demonstrate the accuracy of the local search-based algorithm
applied to predict long- and short-term PV cell temperatures, improving
the predictive capacity of the energy and efficiency of the PV systems
studied.

Using the dataset of the currently operating PV systems in Cuba, the
parameters 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 of the NOCT model were adjusted from
800 W∕m2 to 869.63 W∕m2 and from 20 ◦C to 34.90 ◦C, respectively. To
perform the adjustment of the parameters for Cuba, as outlined in the
proposed method and described in Section 2.5, the data were divided
into training and validation sets. The input data used in step 5 of the
method presented in Fig. 2 was taken from the DSM-270 PV module
dataset (training data). When the results were validated in step 6, using
the dataset of the JKM265PP PV module (validation data), identical
findings were obtained (Figs. 5, 6 and 7, as well as Tables 6 and 7).

The Cuban government aims to install 191 PV systems by 2030,
to achieve a total installed capacity of 700 MW [50,51]. Therefore,
based on the analyzed metrics and the fact that 63% of PV systems in
Cuba have not been designed, sized, or installed, it is advisable to use
thermal model (8) to enhance the forecasting accuracy of temperatures
for PV modules, especially under these tropical climate conditions.
Similar 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 were computed for tropical environments
(Malaysian case), resulting in an average absolute error of 1.72% [14].
The local search-based method shown in Fig. 2 and Algorithm 1 is
suggested to compute the parameters 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 , in order to
accurately predict the cell temperature under different meteorological
conditions. Noteworthy, it is important to have a dataset of reliable
measurements, at least one year of records. Also, including other input
parameters, such as 𝑣𝑤 and 𝐻𝑟, could enhance the accuracy of the
results [32,33,37].

Given the similar electrical and mechanical characteristics of both
PV modules (shown in Table 2), they reached the same cell temperature
under the same conditions of ambient temperature and irradiance.
DSM-270 multicrystalline silicon modules are manufactured in Cuba
and are widely used in PV systems connected to the National Elec-
troenergetic System. Multicrystalline silicon modules with similar char-
acteristics were considered for this study. Different solar cell technolo-
gies have different responses to ambient temperature variations [65],
it is then recommended to extend this study to monocrystalline or
13

amorphous silicon technologies.
4. Conclusions

The wide range and variety of thermal models documented in the
scientific literature, highlight the need to apply the most accurate
model according to the specific location of the PV installation. To
solve this identified issue, a local search-based method with restart was
proposed to obtain the operating temperature of photovoltaic cells. The
input parameters for the method consisted of meteorological variables
recorded over a period of 23 months, including solar irradiance and
ambient temperature. The main findings of this study were:

• The method is straightforward and pragmatic, as it analyzes the
input values 𝐺𝑁𝑂𝐶𝑇 and 𝑇𝑎,𝑁𝑂𝐶𝑇 . By using a restart local search,
it has a low computational cost and also adheres to the principle
of Explainable Artificial Intelligence.

• The NOCT model (8) recommended by IEC Standard 61215-1 is
one of the less accurate among the 19 models analyzed. For the
dataset over 23-month period, the proposed thermal model (8)
reduced the MAE, MAPE and RMSE of model (8) by 4.91, 4.82
and 2.42 times, respectively.

• For three daily profiles with varying levels of irradiance, the pro-
posed thermal model (8) yielded the lowest MAE error, obtaining
1.88 ◦C, 1.22 ◦C 𝑦 0.56 ◦C, respectively; consequently, enhanced
it the prediction of the energy production and efficiency of the
photovoltaic systems studied.

• Based on registered and preprocessed Cuban data, it is rec-
ommended to use the following values in the NOCT model to
accurately calculate the operating cell temperature: 𝐺𝑁𝑂𝐶𝑇 =
869.63 W∕m2 and 𝑇𝑎,𝑁𝑂𝐶𝑇 = 34.90 ◦C, for a wind velocity of
4 ± 1 m/s.

The cell temperature directly affects the efficiency and produced
energy. Therefore, to achieve the goal of installing a capacity of 700
MW by 2030 in Cuba, it is highly recommended to use the model (8)
proposed in this paper for projects of designing and sizing PV systems.
The findings are limited to multicrystalline silicon technology. While
most PV modules installed in Cuba and future planned installations use
this technology, it is imperative to create models that encompass all the
PV varieties available on the market.
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