Management zones; NDVI; Sentinel-2; Spatio-temporal delineation; Winter-wheat; Agricultural and Biological Sciences (all); General Agricultural and Biological Sciences
Abstract :
[en] Improving agricultural nitrogen management is one of the key objectives of the recent Green Deal in Europe. Current technological developments in agriculture offer new opportunities to improve nitrogen fertilization practices. The aim of this study was to adapt to Sentinel-2 data a proven delineation method initially developed for yield maps, in order to facilitate precise nitrogen management by farmers. The study was conducted in two steps. Firstly, an analysis at annual level was conducted to assess the relationship between vegetation indices and yield at the subfield scale, for different sensing period. The second step consisted in performing a pluri- annual analysis through the delineation of management zones and compare the results achieved from yield maps and from NDVI maps. Among different vegetation indices, NDVI proved to be an interesting candidate for subfield detection of yield variation, specifically when the index was sensed was sensed around the second half of May. In this area, this period usually corresponds to phenological development between the flag leaf stage and heading stage, just prior the initiation of winter wheat flowering. Using NDVI maps within Blackmore’s delineation approach instead of yield maps. Allowed to reach an accuracy of 69% on zone classification. However, as yields and NDVI distribution do not respond to similar statistical distributions, we considered that the delineation threshold used to differentiate high from low yielding zones had to be adapted. The adaptation of the “performance threshold” in favor of the median NDVI, made it possible to achieve a higher accuracy (71%) of the delineation. But above all, the improvement lies also in a more robust satellite-based delineation.
Disciplines :
Agriculture & agronomy
Author, co-author :
Lenoir, Arthur ; Université de Liège - ULiège > TERRA Research Centre
Vandoorne, Bertrand; Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille Cedex, France
Siah, Ali; Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille Cedex, France
Dumont, Benjamin ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Language :
English
Title :
Advancing Blackmore’s methodology to delineate management zones from Sentinel 2 images
Alternative titles :
[fr] Adapter la méthodologie de Blackmore pour délimiter des zones de management à partir d'images satellites Sentinel 2
Agreste. (2019). Agreste Hauts-de-France – Etudes et analyses (Studies and analyses) – no 36. Novembre 2019. Retrieved June 28, 2023, from https://draaf.hauts-de-france.agriculture.gouv.fr/IMG/pdf/Etudes_et_analyses_No36_-_fertilisation_cle87ac22.pdf
Agreste 2020. Memento 2020 – Hauts-de-France. Agreste, La statistique, l’évaluation et la prospective agricole (The agricultural statistic, evaluation and prospective) and. Retrieved June 28, 2023, from https://draaf.hauts-de-france.agriculture.gouv.fr/IMG/pdf/Memento2020-Productions-vegetales_cle8b64ff.pdf
P. Alexander A. Arneth R. Henry J. Maire S. Rabin M.D.A. Rounsevell High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment Nature Food 2023 4 84 95 10.1038/s43016-022-00659-9 37118577
L. Anselin I. Syabri Y. Kho M.M. Fischer A. Getis GeoDa: An introduction to spatial data analysis Handbook of applied spatial analysis: Software tools, methods and applications 2010 Springer 73 89 10.1007/978-3-642-03647-7_5
S. Arslan T.S. Colvin Grain yield mapping: Yield sensing, yield reconstruction, and errors Precision Agriculture 2002 3 135 154 10.1023/A:1013819502827
G. Azzari M. Jain D.B. Lobell Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries Remote Sensing of the Environment 2017 202 129 141 2017RSEnv.202.129A 10.1016/j.rse.2017.04.014
F. Baret N. Baghdadi M. Zribi 2 - Estimation of biophysical variables from satellite observations Land surface remote sensing in agriculture and forest 2016 Elsevier 37 80 10.1016/B978-1-78548-103-1.50002-9
LeBas, C. (2021). “Carte de la profondeur du sol issue de la Base de Données Géographique des Sols de France”. Recherche Data Gouv, V1. https://doi.org/10.15454/7ZDND6
B. Basso M. Bertocco L. Sartori E.C. Martin Analyzing the effects of climate variability on spatial pattern of yield in a maize–wheat–soybean rotation European Journal of Agronomy 2007 26 82 91 10.1016/j.eja.2006.08.008
B. Basso D. Cammarano C. Fiorentino J.T. Ritchie Wheat yield response to spatially variable nitrogen fertilizer in Mediterranean environment European Journal of Agronomy 2013 51 65 70 1:CAS:528:DC%2BC3sXhsFeks7fK 10.1016/j.eja.2013.06.007
B. Basso B. Dumont D. Cammarano A. Pezzuolo F. Marinello L. Sartori Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone Science of the Total Environment 2016 545–546 227 235 2016ScTEn.545.227B 1:CAS:528:DC%2BC28XitV2nsA%3D%3D 10.1016/j.scitotenv.2015.12.104 26747986
B. Basso J.T. Ritchie D. Cammarano L. Sartori A strategic and tactical management approach to select optimal N fertilizer rates for wheat in a spatially variable field European Journal of Agronomy 2011 35 215 222 10.1016/j.eja.2011.06.004
B. Basso G. Shuai J. Zhang G.P. Robertson Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest Science and Reports 2019 9 5774 2019NatSR..9.5774B 1:CAS:528:DC%2BC1MXoslGqurk%3D 10.1038/s41598-019-42271-1
S. Blackmore The interpretation of trends from multiple yield maps Computers and Electronics in Agriculture 2000 26 37 51 10.1016/S0168-1699(99)00075-7
S. Blackmore R.J. Godwin S. Fountas The analysis of spatial and temporal trends in yield map data over six years Biosystems Engineering 2003 84 455 466 10.1016/S1537-5110(03)00038-2
J. Bukowiecki T. Rose H. Kage Sentinel-2 data for precision agriculture?—A UAV-based assessment Sensors 2021 21 2861 2021Senso.21.2861B 10.3390/s21082861 33921631 8073067
N. Darra E. Anastasiou O. Kriezi E. Lazarou D. Kalivas S. Fountas Can yield prediction be fully digitilized? A systematic review Agronomy 2023 13 9 2441 10.3390/agronomy13092441
C.S.T. Daughtry C.L. Walthall M.S. Kim E. Brown de Colstoun E. McMurtrey Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance Remote Sensing of Environment 2000 74 229 239 2000RSEnv.74.229D 10.1016/S0034-4257(00)00113-9
S. Delin B. Lindén K. Berglund Yield and protein response to fertilizer nitrogen in different parts of a cereal field: Potential of site-specific fertilization European Journal of Agronomy 2005 22 325 336 10.1016/j.eja.2004.05.001
C. Delloye M. Weiss P. Defourny Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems Remote Sensing of Environment 2018 216 245 261 2018RSEnv.216.245D 10.1016/j.rse.2018.06.037
M. Diacono P. Rubino F. Montemurro Precision nitrogen management of wheat. A review Agronomy Sustainable Development 2013 33 219 241 10.1007/s13593-012-0111-z
B. Dumont B. Basso B. Bodson J.-P. Destain M.-F. Destain Climatic risk assessment to improve nitrogen fertilisation recommendations: A strategic crop model-based approach European Journal of Agronomy 2015 65 10 17 10.1016/j.eja.2015.01.003
B. Dumont B. Basso B. Bodson J.-P. Destain M.-F. Destain Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium Environmental Modelling & Software 2016 79 184 196 10.1016/j.envsoft.2016.02.015
B. Dumont B. Basso V. Leemans B. Bodson J.-P. Destain M.-F. Destain A comparison of within-season yield prediction algorithms based on crop model behaviour analysis Agricultural and Forest Meteorology 2015 204 10 21 2015AgFM.204..10D 10.1016/j.agrformet.2015.01.014
EAW, 2022. Froment d'hiver: produits, charges et marge brute. Etat de l'Agriculture Wallonne. (Winter wheat: products, inputs, and gross margin. State of Walloon Agriculture). Retrieved June 28, 2023, from https://etat-agriculture.wallonie.be/contents/indicatorsheets/EAW-C_III_b_2.html#
H. Fang F. Baret S. Plummer G. Schaepman-Strub An overview of global leaf area index (LAI): Methods, products, validation, and applications Review of Geophysics 2019 57 739 799 2019RvGeo.57.739F 10.1029/2018RG000608
R.A. Fischer Number of kernels in wheat crops and the influence of solar radiation and temperature The Journal of Agricultural Science 1985 105 447 461 10.1017/S0021859600056495
D. Fowler M. Coyle U. Skiba M.A. Sutton J.N. Cape S. Reis et al. The global nitrogen cycle in the twenty-first century Philosophical Transactions of the Royal Society b: Biological Sciences 2013 368 20130164 1:CAS:528:DC%2BC3sXht1Wkt77O 10.1098/rstb.2013.0164
F. Gastal G. Lemaire J.-L. Durand G. Louarn Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency, in: Crop physiology 2015 Elsevier 161 206
A.A. Gitelson A. Viña T.J. Arkebauer D.C. Rundquist G. Keydan B. Leavitt Remote estimation of leaf area index and green leaf biomass in maize canopies: Remote estimation of Leaf Area Index Geophysical Research Letters 2003 10.1029/2002GL016450
A. Gobin Weather related risks in Belgian arable agriculture Agricultural Systems 2018 159 225 236 10.1016/j.agsy.2017.06.009
G. Grolemund H. Wickham Dates and times made easy with lubridate Journal of Statistical Software 2011 40 1 25 10.18637/jss.v040.i03
D. Haboudane Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture Remote Sensing of Environment 2004 90 337 352 2004RSEnv.90.337H 10.1016/j.rse.2003.12.013
O. Hagolle M. Huc D. Villa Pascual G. Dedieu A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of formosat-2, landsat, venμs and sentinel-2 images Remote Sensing 2015 7 2668 2691 2015RemS..7.2668H 10.3390/rs70302668
A. Huete K. Didan T. Miura E.P. Rodriguez X. Gao L.G. Ferreira Overview of the radiometric and biophysical performance of the MODIS vegetation indices Remote Sensing of Environment 2002 83 195 213 2002RSEnv.83.195H 10.1016/S0034-4257(02)00096-2
M.L. Hunt G.A. Blackburn L. Carrasco J.W. Redhead C.S. Rowland High resolution wheat yield mapping using Sentinel-2 Remote Sensing of Environment 2019 233 111410 10.1016/j.rse.2019.111410
IRM (Meteorological RoyalInstitut), 2021. Bilans climatologiques de 2021. Retrieved March 21, 2023, from https://www.meteo.be/en/weather/observations/belgium
L.S. Jensen J.K. Schjoerring K.W. van der Hoek H.D. Poulsen J.F. Zevenbergen C. Pallière J. Lammel F. Brentrup A.W. Jongbloed J. Willems H. van Grinsven M.A. Sutton C.M. Howard J.W. Erisman G. Billen A. Bleeker P. Grennfelt H. van Grinsven B. Grizzetti Benefits of nitrogen for food, fibre and industrial production The European nitrogen assessment 2011 Cambridge University Press 32 61 10.1017/CBO9780511976988.006
A. Kern Z. Barcza H. Marjanović T. Árendás N. Fodor P. Bónis P. Bognár J. Lichtenberger Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices Agricultural and Forest Meteorology 2018 260–261 300 320 2018AgFM.260.300K 10.1016/j.agrformet.2018.06.009
P. Kowaleczko T. Tarasiewicz M. Ziaja D. Kostrzewa J. Nalepa P. Rokita M. Kawulok A real-world benchmark for sentinel-2 multi-image super-resolution Scientific Data 2023 10 644 10.1038/s41597-023-02538-9 37735171 10514337
M. Kuhn Building predictive models in R using the caret package Journal of Statistical Software 2008 28 1 26 10.18637/jss.v028.i05
Lachia N, Pichon L, Marcq P., Taylor J.-A. & Tisseyre B. (2021). Why are yield sensors seldom used by farmers? A French case study. Conference: 13th European Conference on Precision Agriculture
L. Lassaletta G. Billen B. Grizzetti J. Anglade J. Garnier 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland Environmental Research Letters 2014 9 105011 2014ERL...9j5011L 10.1088/1748-9326/9/10/105011
Legrain, X., Demarcin, P., Colinet, G., Bock, L. (2011). Cartographie des sols en Belgique: aperçu historique et présentation des travaux actuels de valorisation et de révision de la Carte Numérique des Sols de Wallonie. Biotechnologie, Agronomie, Société et Environnement 15.
Leroux C. (2020). R codes to be used within QGIS for Precision Agriculture applications. Retrieved December, 2021, from https://github.com/Corentin39-aspexit/R-QGIS-Precision-Agriculture/blob/master/R_codes/
C. Leroux H. Jones A. Clenet B. Dreux M. Becu B. Tisseyre A general method to filter out defective spatial observations from yield mapping datasets Precision Agriculture 2018 19 789 808 10.1007/s11119-017-9555-0
G. Lyle B.A. Bryan B. Ostendorf Post-processing methods to eliminate erroneous grain yield measurements: Review and directions for future development Precision Agriculture 2014 15 377 402 10.1007/s11119-013-9336-3
J.-M. Machet P. Dubrulle N. Damay R. Duval J.-L. Julien S. Recous A dynamic decision-making tool for calculating the optimal rates of N application for 40 annual crops while minimising the residual level of mineral N at harvest Agronomy 2017 7 73 10.3390/agronomy7040073
B. Maestrini B. Basso Drivers of within-field spatial and temporal variability of crop yield across the US Midwest Scientific Reports 2018 8 14833 2018NatSR..814833M 1:CAS:528:DC%2BC1MXhsVekurw%3D 10.1038/s41598-018-32779-3 30287846 6172268
T.S. Magney J.U.H. Eitel D.R. Huggins L.A. Vierling Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality Agricultural and Forest Meteorology 2016 217 46 60 2016AgFM.217..46M 10.1016/j.agrformet.2015.11.009
D. Makowski M. Tichit L. Guichard H. Van Keulen N. Beaudoin Measuring the accuracy of agro-environmental indicators Journal of Environmental Management 2009 90 S139 S146 10.1016/j.jenvman.2008.11.023 19128870
J. Marti J. Bort G.A. Slafer J.I. Araus Can wheat yield be assessed by early measurements of normalized difference vegetation index? Annals of Applied Biology 2007 150 253 257 10.1111/j.1744-7348.2007.00126.x
R.A. Martinez-Feria B. Basso Unstable crop yields reveal opportunities for site-specific adaptations to climate variability Science and Reports 2020 10 2885 2020NatSR.10.2885M 1:CAS:528:DC%2BB3cXlvVKrtL8%3D 10.1038/s41598-020-59494-2
J.M. Meynard C. Aubry E. Justes M. Le Bail G. Lemaire Nitrogen diagnosis and decision support Diagnosis of the nitrogen status in crops 1997 Springer 10.1007/978-3-642-60684-7_9
D.J. Miralles G.A. Slafer Sink limitations to yield in wheat: how could it be reduced? Journal of Agricultural Science 2007 145 139 149 10.1017/S0021859607006752
S.V. Ollinger Sources of variability in canopy reflectance and the convergent properties of plants New Phytologist 2011 189 375 394 1:STN:280:DC%2BC3M%2FlvFehsg%3D%3D 10.1111/j.1469-8137.2010.03536.x 21083563
E. Panek D. Gozdowski Analysis of relationship between cereal yield and NDVI for selected regions of Central Europe based on MODIS satellite data Remote Sensing Application: Society and Environment 2020 17 100286 10.1016/j.rsase.2019.100286
Parry, J. (2022). sfdep: Spatial dependence for simple features. R package version 0.2.4. https://github.com/josiahparry/sfdep, https://sfdep.josiahparry.com
E. Pebesma Simple features for R: Standardized support for spatial vector data The R Journal 2018 10 439 446 10.32614/RJ-2018-009
J. Qi A. Chehbouni A.R. Huete Y.H. Kerr S. Sorooshian A modified soil adjusted vegetation index Remote Sensing of Environment 1994 48 119 126 1994RSEnv.48.119Q 10.1016/0034-4257(94)90134-1
C. Ravier M.H. Jeuffroy J.-M. Meynard Mismatch between a science-based decision tool and its use: The case of the balance-sheet method for nitrogen fertilization in France | Elsevier Enhanced Reader NJAS - Wageningen Journal of Life Sciences 2016 79 1 31 40 10.1016/j.njas.2016.10.001
D.K. Ray J.S. Gerber G.K. MacDonald P.C. West Climate variation explains a third of global crop yield variability Nature Communications 2015 6 5989 2015NatCo..6.5989R 1:CAS:528:DC%2BC2MXhtF2lurfP 10.1038/ncomms6989 25609225
M. Reckling H. Ahrends T.-W. Chen W. Eugster S. Hadasch S. Knapp F. Laidig A. Linstädter J. Macholdt H.-P. Piepho K. Schiffers T.F. Döring Methods of yield stability analysis in long-term field experiments. A review Agronomy Sustainable Development 2021 41 27 10.1007/s13593-021-00681-4
A. Revill A. Florence A. MacArthur S.P. Hoad R.M. Rees M. Williams The value of sentinel-2 spectral bands for the assessment of winter wheat growth and development Remote Sensing 2019 11 2050 2019RemS..11.2050R 10.3390/rs11172050
A. Revill A. Florence A. MacArthur S. Hoad R. Rees M. Williams Quantifying uncertainty and bridging the scaling gap in the retrieval of leaf area index by coupling sentinel-2 and UAV observations Remote Sensing 2020 12 1843 2020RemS..12.1843R 10.3390/rs12111843
D. Scheffler A. Hollstein H. Diedrich K. Segl P. Hostert AROSICS: An automated and robust open-source image co-registration software for multi-sensor satellite data Remote Sensing 2017 9 676 2017RemS..9.676S 10.3390/rs9070676
L.F. Schulte-Uebbing A.H.W. Beusen A.F. Bouwman W. de Vries From planetary to regional boundaries for agricultural nitrogen pollution Nature 2022 610 507 512 2022Natur.610.507S 1:CAS:528:DC%2BB38Xis1Onu7jO 10.1038/s41586-022-05158-2 36261550
S. Skakun N.I. Kalecinski M.G.L. Brown D.M. Johnson E.F. Vermote J.-C. Roger B. Franch Assessing within-field corn and soybean yield variability from worldview-3, planet, sentinel-2, and landsat 8 satellite imagery Remote Sensing 2021 13 872 2021RemS..13.872S 10.3390/rs13050872
SPW 2022. Productions Végétales. [WWW Document]. Retrieved April, 2022, from https://etat-agriculture.wallonie.be/contents/indicatorsheets/EAW2.html#
P.C. Stoy A.M. Khan A. Wipf N. Silverman S.L. Powell The spatial variability of NDVI within a wheat field: Information content and implications for yield and grain protein monitoring PLoS ONE 2022 17 e0265243 1:CAS:528:DC%2BB38Xot1ymurg%3D 10.1371/journal.pone.0265243 35316290 8939815
A. Tharwat Classification assessment methods Applied Computing and Informatics 2021 17 168 192 10.1016/j.aci.2018.08.003
Pôle Theia, 2022. Value-Adding Products and Algorithms for Land Surfaces. Retrieved January, 2022, from https://www.theia-land.fr/en/homepage-en/
P. Toscano A. Castrignanò S.F. Di Gennaro A.V. Vonella D. Ventrella A. Matese A Precision agriculture approach for durum wheat yield assessment using remote sensing data and yield mapping Agronomy 2019 9 437 10.3390/agronomy9080437
C.J. Tucker Red and photographic infrared linear combinations for monitoring vegetation Remote Sensing of Environment 1979 8 127 150 1979RSEnv..8.127T 10.1016/0034-4257(79)90013-0
C. Vallentin K. Harfenmeister S. Itzerott B. Kleinschmit C. Conrad D. Spengler Suitability of satellite remote sensing data for yield estimation in northeast Germany Precision Agriculture 2022 23 52 82 1:CAS:528:DC%2BB38XhvVOjtrbO 10.1007/s11119-021-09827-6
A. Vannoppen A. Gobin Estimating farm wheat yields from NDVI and meteorological data Agronomy 2021 11 946 10.3390/agronomy11050946
Wickham, H., 2016. ggplot2: Elegant graphics for data analysis. ggplot2 3.4.1
Wickham, H., François, R., Henry, L., Müller, K., Vaughan, D. (2023a). dplyr: a grammar of data manipulation
Wickham, H., Vaughan, D., Girlich, M. (2023b). tidyr: tidy messy data
W. Willett J. Rockström B. Loken M. Springmann T. Lang S. Vermeulen et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems The Lancet 2019 393 447 492 10.1016/S0140-6736(18)31788-4
X. Zhang E. Davidson D. Mauzerall et al. Managing nitrogen for sustainable development Nature 2015 528 51 59 2015Natur.528..51Z 1:CAS:528:DC%2BC2MXhvVOqs7fJ 10.1038/nature15743 26595273