Article (Scientific journals)
Modified wavelet variation for the Hermite processes
Loosveldt, Laurent; Tudor, Ciprian A.
2025In Electronic Journal of Statistics, 19 (2025), p. 2411–2455
Peer Reviewed verified by ORBi
 

Files


Full Text
25-EJS2390.pdf
Publisher postprint (504.26 kB) Creative Commons License - Attribution, ShareAlike
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Hermits process; Multiple Wiener-Itô integrals; Wavelet analysis; Stein-Malliavin calculus; Asymptotic normality; Central limit theorem; Self-similarity; Hurst parameter estimation; Strong consistency
Abstract :
[en] We define an asymptotically normal wavelet-based strongly consistent estimator for the Hurst parameter of any Hermite processes. This estimator is obtained by considering a modified wavelet variation in which coefficients are wisely chosen to be, up to negligeable remainders, independent. We use Stein-Malliavin calculus to prove that this wavelet variation satisfies a multidimensional Central Limit Theorem, with an explicit bound for the Wasserstein distance.
Disciplines :
Mathematics
Author, co-author :
Loosveldt, Laurent  ;  Université de Liège - ULiège > Département de mathématique > Probabilités - Analyse stochastique
Tudor, Ciprian A.
Language :
English
Title :
Modified wavelet variation for the Hermite processes
Publication date :
13 May 2025
Journal title :
Electronic Journal of Statistics
eISSN :
1935-7524
Publisher :
Institute of Mathematical Statistics, United States - Ohio
Volume :
19 (2025)
Pages :
2411–2455
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 11 March 2024

Statistics


Number of views
150 (10 by ULiège)
Number of downloads
58 (5 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi