artificial intelligence; fault location; power distribution networks; Data gathering systems; Fault localization; Fuzzy-Logic; Input datas; Localization method; Location method; Neural-networks; Power distribution network; Reinforcement learnings; Systematic Review; Renewable Energy, Sustainability and the Environment; Fuel Technology; Engineering (miscellaneous); Energy Engineering and Power Technology; Energy (miscellaneous); Control and Optimization; Electrical and Electronic Engineering; Building and Construction
Abstract :
[en] This paper provides a comprehensive and systematic review of fault localization methods based on artificial intelligence (AI) in power distribution networks described in the literature. The review is organized into several sections that cover different aspects of the methods proposed. It first discusses the advantages and disadvantages of various techniques used, including neural networks, fuzzy logic, and reinforcement learning. The paper then compares the types of input and output data generated by these algorithms. The review also analyzes the data-gathering systems, including the sensors and measurement equipment used to collect data for fault diagnosis. In addition, it discusses fault type and DG considerations, which, together with the data-gathering systems, determine the applicability range of the methods. Finally, the paper concludes with a discussion of future trends and research gaps in the field of AI-based fault location methods. Highlighting the advantages, limitations, and requirements of current AI-based methods, this review can serve the researchers working in the field of fault location in power systems to select the most appropriate method based on their distribution system and requirements, and to identify the key areas for future research.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Rezapour, Hamed ; Centre of Excellence for Power System Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Jamali, Sadegh; Centre of Excellence for Power System Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Bahmanyar, Alireza ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Smart grids
Language :
English
Title :
Review on Artificial Intelligence-Based Fault Location Methods in Power Distribution Networks
Publication date :
2023
Journal title :
Energies
ISSN :
1996-1073
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Krishnathevar R. Ngu E.E. Generalized Impedance-Based Fault Location for Distribution Systems IEEE Trans. Power Deliv. 2012 27 449 451 10.1109/TPWRD.2011.2170773
Salim R.H. Salim K.C.O. Bretas A.S. Further Improvements on Impedance-Based Fault Location for Power Distribution Systems IET Gener. Transm. Distrib. 2011 5 467 478 10.1049/iet-gtd.2010.0446
Gabr M.A. Ibrahim D.K. Ahmed E.S. Gilany M.I. A New Impedance-Based Fault Location Scheme for Overhead Unbalanced Radial Distribution Networks Electr. Power Syst. Res. 2017 142 153 162 10.1016/j.epsr.2016.09.015
Ferreira G.D. Gazzana D.S. Bretas A.S. Netto A.S. A Unified Impedance-Based Fault Location Method for Generalized Distribution Systems Proceedings of the 2012 IEEE Power and Energy Society General Meeting San Diego, CA, USA 22–26 July 2012 10.1109/PESGM.2012.6345512
Personal E. García A. Parejo A. Larios D.F. Biscarri F. León C. A Comparison of Impedance-Based Fault Location Methods for Power Underground Distribution Systems Energies 2016 9 1022 10.3390/en9121022
Usman M.U. Omar Faruque M. Validation of a PMU-Based Fault Location Identification Method for Smart Distribution Network with Photovoltaics Using Real-Time Data IET Gener. Transm. Distrib. 2018 12 5824 5833 10.1049/iet-gtd.2018.6245
Gholami M. Abbaspour A. Moeini-Aghtaie M. Fotuhi-Firuzabad M. Lehtonen M. Detecting the Location of Short-Circuit Faults in Active Distribution Network Using PMU-Based State Estimation IEEE Trans. Smart Grid 2020 11 1396 1406 10.1109/TSG.2019.2937944
Jamali S. Bahmanyar A. Bompard E. Fault Location Method for Distribution Networks Using Smart Meters Measurement 2017 102 150 157 10.1016/j.measurement.2017.02.008
Xie L. Luo L. Li Y. Zhang Y. Cao Y. A Traveling Wave-Based Fault Location Method Employing VMD-TEO for Distribution Network IEEE Trans. Power Deliv. 2020 35 1987 1998 10.1109/TPWRD.2019.2959188
Pourahmadi-Nakhli M. Safavi A.A. Path Characteristic Frequency-Based Fault Locating in Radial Distribution Systems Using Wavelets and Neural Networks IEEE Trans. Power Deliv. 2011 26 772 781 10.1109/TPWRD.2010.2050218
Chen R. Yin X. Yin X. Li Y. Lin J. Computational Fault Time Difference-Based Fault Location Method for Branched Power Distribution Networks IEEE Access 2019 7 181972 181982 10.1109/ACCESS.2019.2959427
Jianwen Z. Hui H. Yu G. Yongping H. Shuping G. Jianan L. Single-Phase Ground Fault Location Method for Distribution Network Based on Traveling Wave Time-Frequency Characteristics Electr. Power Syst. Res. 2020 186 106401 10.1016/j.epsr.2020.106401
Jawad R.S. Abid H. HVDC Fault Detection and Classification with Artificial Neural Network Based on ACO-DWT Method Energies 2023 16 1064 10.3390/en16031064
Zheng G. Chen W. Qian Q. Kumar A. Sun W. Zhou Y. TCM in Milling Processes Based on Attention Mechanism-Combined Long Short-Term Memory Using a Sound Sensor under Different Working Conditions Int. J. Hydromechatron. 2022 5 243 259 10.1504/IJHM.2022.125090
Zhou Y. Kumar A. Parkash C. Vashishtha G. Tang H. Glocawz A. Dong A. Xiang J. Development of Entropy Measure for Selecting Highly Sensitive WPT Band to Identify Defective Components of an Axial Piston Pump Appl. Acoust. 2023 203 109225 10.1016/j.apacoust.2023.109225
De La Cruz J. Gómez-Luna E. Ali M. Vasquez J.C. Guerrero J.M. Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends Energies 2023 16 2280 10.3390/en16052280
Mahmoud M.M.A.S. Qurbanov Z. Review of Fuzzy and ANN Fault Location Methods for Distribution Power System in Oil and Gas Sectors IFAC-PapersOnLine 2018 51 263 267 10.1016/j.ifacol.2018.11.298
Thukaram D. Khincha H.P. Vijaynarasimha H.P. Artificial Neural Network and Support Vector Machine Approach for Locating Faults in Radial Distribution Systems IEEE Trans. Power Deliv. 2005 20 710 721 10.1109/TPWRD.2005.844307
Rafinia A. Moshtagh J. A New Approach to Fault Location in Three-Phase Underground Distribution System Using Combination of Wavelet Analysis with ANN and FLS Int. J. Electr. Power Energy Syst. 2014 55 261 274 10.1016/j.ijepes.2013.09.011
Chen X. Yin X. Deng S. A Novel Method for SLG Fault Location in Power Distribution System Using Time Lag of Travelling Wave Components IEEJ Trans. Electr. Electron. Eng. 2017 12 45 54 10.1002/tee.22334
Dashtdar M. Dashti R. Shaker H.R. Distribution Network Fault Section Identification and Fault Location Using Artificial Neural Network Proceedings of the 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE) Istanbul, Turkey 3–5 May 2018 273 278 10.1109/ICEEE2.2018.8391345
Chunju F. Li K.K. Chan W.L. Weiyong Y. Zhaoning Z. Application of Wavelet Fuzzy Neural Network in Locating Single Line to Ground Fault (SLG) in Distribution Lines Int. J. Electr. Power Energy Syst. 2007 29 497 503 10.1016/j.ijepes.2006.11.009
Aslan Y. Yağan Y.E. Artificial Neural-Network-Based Fault Location for Power Distribution Lines Using the Frequency Spectra of Fault Data Electr. Eng. 2017 99 301 311 10.1007/s00202-016-0428-8
Mora J.J. Carrillo G. Pérez L. Fault Location in Power Distribution Systems Using Anfis Nets and Current Patterns Proceedings of the 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, TDC’06 Caracas, Venezuela 15–18 August 2006 10.1109/TDCLA.2006.311428
Javadian S.A.M. Nasrabadi A.M. Haghifam M.R. Rezvantalab J. Determining Fault’s Type and Accurate Location in Distribution Systems with DG Using MLP Neural Networks Proceedings of the 2009 International Conference on Clean Electrical Power, ICCEP 2009 Capri, Italy 9–11 June 2009 284 289 10.1109/ICCEP.2009.5212044
Manohar M. Koley E. Ghosh S. Reliable Protection Scheme for PV Integrated Microgrid Using an Ensemble Classifier Approach with Real-Time Validation IET Sci. Meas. Technol. 2018 12 200 208 10.1049/iet-smt.2017.0270
Jamali S. Ranjbar S. Bahmanyar A. Identification of Faulted Line Section in Microgrids Using Data Mining Method Based on Feature Discretisation Int. Trans. Electr. Energy Syst. 2020 30 e12353 10.1002/2050-7038.12353
Lin H. Sun K. Tan Z.H. Liu C. Guerrero J.M. Vasquez J.C. Adaptive Protection Combined with Machine Learning for Microgrids IET Gener. Transm. Distrib. 2019 13 770 779 10.1049/iet-gtd.2018.6230
Sapountzoglou N. Lago J. De Schutter B. Raison B. A Generalizable and Sensor-Independent Deep Learning Method for Fault Detection and Location in Low-Voltage Distribution Grids Appl. Energy 2020 276 115299 10.1016/j.apenergy.2020.115299
Bakkar M. Bogarra S. Córcoles F. Aboelhassan A. Wang S. Iglesias J. Artificial Intelligence-Based Protection for Smart Grids Energies 2022 15 4933 10.3390/en15134933
Usman M.U. Ospina J. Faruque M.O. Fault Classification and Location Identification in a Smart Distribution Network Using ANN Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM) Portland, OR, USA 5–10 August 2018 10.1109/PESGM.2018.8586471
Chen K. Hu J. Zhang Y. Yu Z. He J. Fault Location in Power Distribution Systems via Deep Graph Convolutional Networks IEEE J. Sel. Areas Commun. 2020 38 119 131 10.1109/JSAC.2019.2951964
Li M. Zhang H. Ji T. Wu Q.H. Fault Identification in Power Network Based on Deep Reinforcement Learning CSEE J. Power Energy Syst. 2022 8 721 731 10.17775/CSEEJPES.2020.04520
Shafiullah M. Abido M.A. Al-Hamouz Z. Wavelet-Based Extreme Learning Machine for Distribution Grid Fault Location IET Gener. Transm. Distrib. 2017 11 4256 4263 10.1049/iet-gtd.2017.0656
Lout K. Aggarwal R.K. Current Transients Based Phase Selection and Fault Location in Active Distribution Networks with Spurs Using Artificial Intelligence Proceedings of the 2013 IEEE Power & Energy Society General Meeting Vancouver, BC, Canada 21–25 July 2013 10.1109/PESMG.2013.6672428
Majidi M. Etezadi-Amoli M. Fadali M.S. A Novel Method for Single and Simultaneous Fault Location in Distribution Networks IEEE Trans. Power Syst. 2015 30 3368 3376 10.1109/TPWRS.2014.2375816
Shafiullah M. Abido M.A. Abdel-Fattah T. Distribution Grids Fault Location Employing ST Based Optimized Machine Learning Approach Energies 2018 11 2328 10.3390/en11092328
Ray P. Mishra D. Artificial Intelligence Based Fault Location in a Distribution System Proceedings of the 2014 International Conference on Information Technology, ICIT 2014 Bhubaneswar, India 22–24 December 2014 18 23 10.1109/ICIT.2014.10
Barra P.H.A. Pessoa A.L.D.S. Menezes T.S. Santos G.G. Coury D.V. Oleskovicz M. Fault Location in Radial Distribution Networks Using ANN and Superimposed Components Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America) Gramado, Brazil 15–18 September 2019 10.1109/ISGT-LA.2019.8895335
Jamali S. Bahmanyar A. Ranjbar S. Hybrid Classifier for Fault Location in Active Distribution Networks Prot. Control Mod. Power Syst. 2020 5 17 10.1186/s41601-020-00162-y
Dehghani F. Nezami H. A New Fault Location Technique on Radial Distribution Systems Using Artificial Neural Network IET Conf. Publ. 2013 2013 13712520 10.1049/CP.2013.0697/CITE/REFWORKS
Aslan Y. An Alternative Approach to Fault Location on Power Distribution Feeders with Embedded Remote-End Power Generation Using Artificial Neural Networks Electr. Eng. 2012 94 125 134 10.1007/s00202-011-0218-2
Aslan Y. Yagan Y.E. ANN Based Fault Location for Medium Voltage Distribution Lines with Remote-End Source Proceedings of the 2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE) Bucharest, Romania 30 June–2 July 2016 10.1109/ISFEE.2016.7803203
Mohamed E.A. Rao N.D. Artificial Neural Network Based Fault Diagnostic System for Electric Power Distribution Feeders Electr. Power Syst. Res. 1995 35 1 10 10.1016/0378-7796(95)00990-6
Gutierrez-Gallego J. Perez-Londoño S. Mora-Florez J. Efficient Adjust of a Learning Based Fault Locator for Power Distribution Systems Proceedings of the 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA) São Paulo, Brazil 8–10 November 2010 774 779 10.1109/TDC-LA.2010.5762972
Agrawal R. Thukaram D. Identification of Fault Location in Power Distribution System with Distributed Generation Using Support Vector Machines Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT) Washington, DC, USA 24–27 February 2013 10.1109/ISGT.2013.6497853
Shakya D. Singh S.N. SVM Based Fault Location and Classification Using Fuzzy Classifier for PQ Monitoring Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century PES, Pittsburgh, PA, USA 20–24 July 2008 10.1109/PES.2008.4596247
Forouzesh A. Golsorkhi M.S. Savaghebi M. Baharizadeh M. Support Vector Machine Based Fault Location Identification in Microgrids Using Interharmonic Injection Energies 2021 14 2317 10.3390/en14082317
Yu Y. Li M. Ji T. Wu Q.H. Fault Location in Distribution System Using Convolutional Neural Network Based on Domain Transformation CSEE J. Power Energy Syst. 2021 7 472 484 10.17775/CSEEJPES.2020.01620
Shi X. Xu Y. A Fault Location Method for Distribution System Based on One-Dimensional Convolutional Neural Network Proceedings of the 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS) Shenyang, China 29–31 July 2021 333 337 10.1109/ICPICS52425.2021.9524222
Kenji S. Artificial Neural Networks-Architectures and Applications BoD–Books on Demand Norderstedt, Germany 2013 9535109359
O’Shea K. Nash R. An Introduction to Convolutional Neural Networks Int. J. Res. Appl. Sci. Eng. Technol. 2015 10 943 947 10.22214/ijraset.2022.47789
Gu J. Wang Z. Kuen J. Ma L. Shahroudy A. Shuai B. Liu T. Wang X. Wang G. Cai J. et al. Recent Advances in Convolutional Neural Networks Pattern Recognit. 2018 77 354 377 10.1016/j.patcog.2017.10.013
Li Z. Liu F. Yang W. Peng S. Zhou J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects IEEE Trans. Neural Netw. Learn. Syst. 2022 33 6999 7019 10.1109/TNNLS.2021.3084827
Salehinejad H. Sankar S. Barfett J. Colak E. Valaee S. Recent Advances in Recurrent Neural Networks arXiv 2017 1801.01078
Lin F. Zhang Y. Wang K. Wang J. Zhu M. Parametric Probabilistic Forecasting of Solar Power with Fat-Tailed Distributions and Deep Neural Networks IEEE Trans. Sustain. Energy 2022 13 2133 2147 10.1109/TSTE.2022.3186517
Wang K. Zhang Y. Lin F. Wang J. Zhu M. Nonparametric Probabilistic Forecasting for Wind Power Generation Using Quadratic Spline Quantile Function and Autoregressive Recurrent Neural Network IEEE Trans. Sustain. Energy 2022 13 1930 1943 10.1109/TSTE.2022.3175916
Ripley B.D. Neural Networks and Related Methods for Classification J. R. Stat. Soc. Ser. B Stat. Methodol. 1994 56 409 437 10.1111/j.2517-6161.1994.tb01990.x
Kaufman L. Solving the Quadratic Programming Problem Arising in Support Vector Classification Advances in Kernel Methods MIT Press Cambridge, MA, USA 2022 147 167
Salat R. Osowski S. Accurate Fault Location in the Power Transmission Line Using Support Vector Machine Approach IEEE Trans. Power Syst. 2004 19 979 986 10.1109/TPWRS.2004.825883
Hamoud G. Chen R.L. Bradley I. Risk Assessment of Power Systems SCADA Proceedings of the 2003 IEEE Power Engineering Society General Meeting Toronto, ON, Canada 13–17 July 2003 volume 2 758 764 10.1109/PES.2003.1270402
Mahmood A. Javaid N. Razzaq S. A Review of Wireless Communications for Smart Grid Renew. Sustain. Energy Rev. 2015 41 248 260 10.1016/j.rser.2014.08.036
Cheng P. Wang L. Zhen B. Wang S. Feasibility Study of Applying LTE to Smart Grid Proceedings of the 2011 IEEE First International Workshop on Smart Grid Modeling and Simulation (SGMS) Brussels, Belgium 17 October 2011 108 113 10.1109/SGMS.2011.6089018
Du J. Qian M. Research and Application on LTE Technology in Smart Grids Proceedings of the 7th International Conference on Communications and Networking in China, CHINACOM 2012 Kunming, China 8–10 August 2012 76 80 10.1109/CHINACOM.2012.6417452
Kumar S. Udaykumar R.Y. IEEE 802.16-2004(WiMAX) Protocol for Grid Control Center and Aggregator Communication in V2G for Smart Grid Application Proceedings of the 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC 2013 Madurai, India 26–28 December 2013 10.1109/ICCIC.2013.6724272
Laverty D.M. Morrow D.J. Best R. Crossley P.A. Telecommunications for Smart Grid: Backhaul Solutions for the Distribution Network Proceedings of the IEEE PES General Meeting, PES 2010 Minneapolis, MN, USA 25–29 July 2010 10.1109/PES.2010.5589563
Gungor V.C. Lu B. Hancke G.P. Opportunities and Challenges of Wireless Sensor Networks in Smart Grid IEEE Trans. Ind. Electron. 2010 57 3557 3564 10.1109/TIE.2009.2039455
Strasser T. Andren F. Stifter M. A Test and Validation Approach for the Standard-Based Implementation of Intelligent Electronic Devices in Smart Grids Holonic and Multi-Agent Systems for Manufacturing HoloMAS 2011, Lecture Notes in Computer Science Springer Berlin/Heidelberg, Germany 2011 Volume 6867 50 61 10.1007/978-3-642-23181-0_5
Phadke A.G. Synchronized Phase Measurement in Power System IEEE Comput. Appl. Power 1993 6 10 15 10.1109/67.207465
Paramo G. Bretas A. Meyn S. Research Trends and Applications of PMUs Energies 2022 15 5329 10.3390/en15155329
Choi S. Meliopoulos A.P.S. Effective Real-Time Operation and Protection Scheme of Microgrids Using Distributed Dynamic State Estimation IEEE Trans. Power Deliv. 2017 32 504 514 10.1109/TPWRD.2016.2580638
Biswal M. Brahma S.M. Cao H. Supervisory Protection and Automated Event Diagnosis Using PMU Data IEEE Trans. Power Deliv. 2016 31 1855 1863 10.1109/TPWRD.2016.2520958
Zhang Y. Wang J. Khodayar M.E. Graph-Based Faulted Line Identification Using Micro-PMU Data in Distribution Systems IEEE Trans. Smart Grid 2020 11 3982 3992 10.1109/TSG.2020.2988349
Dusabimana E. Yoon S.G. A Survey on the Micro-Phasor Measurement Unit in Distribution Networks Electronics 2020 9 305 10.3390/electronics9020305
Von Meier A. Stewart E. McEachern A. Andersen M. Mehrmanesh L. Precision Micro-Synchrophasors for Distribution Systems: A Summary of Applications IEEE Trans. Smart Grid 2017 8 2926 2936 10.1109/TSG.2017.2720543
Alwash S.F. Ramachandaramurthy V.K. Mithulananthan N. Fault-Location Scheme for Power Distribution System with Distributed Generation IEEE Trans. Power Deliv. 2015 30 1187 1195 10.1109/TPWRD.2014.2372045
Santos G.G. Menezes T.S. Barra P.H.A. Vieira J.C.M. An Efficient Fault Diagnostic Approach for Active Distribution Networks Considering Adaptive Detection Thresholds Int. J. Electr. Power Energy Syst. 2022 136 107663 10.1016/j.ijepes.2021.107663
Pignati M. Zanni L. Romano P. Cherkaoui R. Paolone M. Fault Detection and Faulted Line Identification in Active Distribution Networks Using Synchrophasors-Based Real-Time State Estimation IEEE Trans. Power Deliv. 2017 32 381 392 10.1109/TPWRD.2016.2545923
Mohammadi F. Nazri G.A. Saif M. A Fast Fault Detection and Identification Approach in Power Distribution Systems Proceedings of the 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET 2019) Istanbul, Turkey 26–27 August 2019 10.1109/PGSRET.2019.8882676
Walling R.A. Saint R. Dugan R.C. Burke J. Kojovic L.A. Summary of Distributed Resources Impact on Power Delivery Systems IEEE Trans. Power Deliv. 2008 23 1636 1644 10.1109/TPWRD.2007.909115
Mozina C.J. A Tutorial on the Impact of Distributed Generation (DG) on Distribution Systems Proceedings of the 2008 61st Annual Conference for Protective Relay Engineers College Station, TX, USA 1–3 April 2008 591 609 10.1109/CPRE.2008.4515083
Eissa M.M. Protection Techniques with Renewable Resources and Smart Grids—A Survey Renew. Sustain. Energy Rev. 2015 52 1645 1667 10.1016/j.rser.2015.08.031
Manditereza P.T. Bansal R. Renewable Distributed Generation: The Hidden Challenges–A Review from the Protection Perspective Renew. Sustain. Energy Rev. 2016 58 1457 1465 10.1016/j.rser.2015.12.276
Shih M.Y. Conde A. Leonowicz Z. Martirano L. An Adaptive Overcurrent Coordination Scheme to Improve Relay Sensitivity and Overcome Drawbacks Due to Distributed Generation in Smart Grids IEEE Trans. Ind. Appl. 2017 53 5217 5228 10.1109/TIA.2017.2717880
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.