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Abstract: This paper provides a comprehensive and systematic review of fault localization methods
based on artificial intelligence (AI) in power distribution networks described in the literature. The
review is organized into several sections that cover different aspects of the methods proposed. It first
discusses the advantages and disadvantages of various techniques used, including neural networks,
fuzzy logic, and reinforcement learning. The paper then compares the types of input and output data
generated by these algorithms. The review also analyzes the data-gathering systems, including the
sensors and measurement equipment used to collect data for fault diagnosis. In addition, it discusses
fault type and DG considerations, which, together with the data-gathering systems, determine the
applicability range of the methods. Finally, the paper concludes with a discussion of future trends
and research gaps in the field of AI-based fault location methods. Highlighting the advantages,
limitations, and requirements of current AI-based methods, this review can serve the researchers
working in the field of fault location in power systems to select the most appropriate method based
on their distribution system and requirements, and to identify the key areas for future research.

Keywords: fault location; artificial intelligence; power distribution networks

1. Introduction

Following to a short-circuit fault in distribution networks, the fault should be lo-
cated and isolated before restoring the supply. A fast and accurate fault location method
can help to improve the continuity of supply considerably. In general, the distribution-
network fault location methods can be categorized into impedance-based methods, state
estimation-based methods, traveling wave-based methods, and artificial intelligence-based
(AI-based) methods.

The impedance-based methods determine the location of faults by measuring the
apparent impedance seen from one or more measurement points. These methods estimate
the fault location by comparing the measured impedance for the probable fault paths in the
network with the measured one [1–5]. These methods can provide fault location estimations
with acceptable accuracy, although they might estimate several candidate locations in the
networks with several laterals. They require detailed data about the network topology, line
impedances, and loads and are, hence, very sensitive to network-model inaccuracies.

State estimation-based methods consider a fault as bad data and try to locate it using
the data collected from different measurement points of the network [6–8]. Similar to the
impedance-based methods, these techniques need the distribution-network data. While
they are less sensitive to input data inaccuracies, they can only be applied to networks with
considerable measurement infrastructures.

Traveling wave-based methods estimate the fault location by calculating the sweep
duration of the wave traveling from the measurement point to the fault location [9–12].
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These methods are practically applicable to long transmission lines. However, their appli-
cation to distribution networks with short line sections demands very high measurement
sampling frequency which is not practical. Moreover, the application of these methods to
networks with various laterals is challenging.

AI-based methods can be trained in off-line procedures to make fast online estimations
of the fault location or faulted section. These methods need a considerable amount of
training data which can be based on historical records or be generated in a simulation
process. Research show these methods are less sensitive to noise in input data and con-
siderably more accurate in comparison to the other methods. However, they suffer from
challenges in practical applications where big data needs to be used and analyzed in detail.
This review surveys the AI-based fault location methods, discusses the advantages and
disadvantages of recently published methods, and highlights the corresponding challenges
to be considered in future studies.

AI-based algorithms are widely used in various fault diagnosis applications. In [13],
an artificial neural network (ANN) based on ACO-DWT is developed for fault identification
and classification in HVDC networks. In [14], a method combining attention mechanism
and long short-term memory (LSTM) is proposed to investigate tool condition monitoring
in milling applications. A tangent hyperbolic fuzzy entropy measure-based method for
determining the most sensitive frequency band to easily identify defective components in
an axial piston pump is proposed by [15].

Although there are review papers on fault location methods for distribution net-
works [16,17], it is essential to highlight that AI-based approaches require specific consider-
ations that distinguish them from other methods. These considerations encompass tailored
training requirements, distinct analysis models, and unique factors to consider regarding
their outputs, such as generalization capability. In this context, the primary focus and
the contribution of this paper is to provide a comprehensive review specifically dedicated
to AI-based fault location approaches in power distribution networks. By concentrating
on this specific subject, it aims to emphasize the distinct characteristics and challenges
associated with the application of AI techniques in fault location in this domain.

From the perspective of input and output variables, each AI-based method is a map-
ping from inputs to outputs. The input variables are electrical data including voltage,
current, or frequency, and each method may use one or more of these variables. The output
is fault location in the form fault distance or variables indicating the fault distance such
as the reactance from fault point to the main substation. In this context, the type of input
data and the data-gathering system is important because it determines the applicability of
a method. Dealing with fault type and the presence of distributed generation (DG) units as-
signs the applicability level of each method. Table 1 compares the published research in this
field based on different perspectives. In the first column, papers are compared in terms of
the utilized AI method, where most proposed methods use ANNs as their main algorithm.
The second and third columns compare the papers in terms of input/output variables. The
fourth column presents the data-collecting system and the feature of the processed data.
The considered fault types are shown in the fifth column and the DG inclusion is given in
the sixth column. All these terms are explained in detail in the following sections.

Table 1. Comparison of recent papers in the field of artificial intelligence-based fault location approaches.

Ref Method Input
Variables

Output
Variables

Measurement Points/Measurement
Feature

Fault
Type DG

[18] SVM\ANN
Current,

Voltage, and
Frequency

Fault reactance to
the main sub

Main Substation/
Main frequency features All No

[10] ANN Voltage Fault distance to
the main sub

Main Substation/
High-frequency features

extracted by Wavelet
SLG No
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Table 1. Cont.

Ref Method Input
Variables

Output
Variables

Measurement Points/Measurement
Feature

Fault
Type DG

[19] ANN/fuzzy Current and
Voltage

Fault type and
distance

to the main sub

Not specified/
High-frequency features

extracted by Wavelet
ALL Yes

[20] ANN/fuzzy Voltage Fault distance to
the main sub

Sparse measurement/
High-frequency features

extracted by Wavelet
SLG Yes

[21] ANN Current
Fault distance,

section, and
resistance

Not specified/
High-frequency features

extracted by Wavelet
All No

[22] ANN/fuzzy Current and
Voltage

Fault distance to
the main sub

Main Substation/
High-frequency features SLG No

[23] ANN Current and
Voltage

Fault type and
distance

to the main sub

Main Substation/
High-frequency features

extracted by FFT
All No

[24] ANFIS Current Faulted zone
Main Substation/

High-frequency features
extracted by Wavelet

All No

[25] ANN Current
Fault type and
distance to the

main sub and DGs

Main Substation and DGs/
Main frequency features All Yes

[26]
Data

mining
(KNN)

Current and
Voltage

Fault detection,
type

and section

Not specified/
High-frequency features

extracted by Wavelet
All Yes

[27]
KNN,

Random
Forest, ANN

Current and
Voltage Faulted line

Main Substation/
High-frequency features

extracted by Wavelet
All Yes

[28] SVM\ANN Current and
Voltage Faulted line

All buses measurement/
High-frequency features

extracted by Wavelet
LLL Yes

[29] DNN Current and
Voltage

Fault detection,
section, and

location to the main
sub

All buses measurement/
Main frequency features All Yes

[30] ANN Current and
Voltage

Fault location to
the main sub

All buses measurement/
Main frequency features

SLG
and
LLL

Yes

[31] ANN Voltage Fault type
and nearest bus

Measurement in all
end users/

Main frequency features
All No

[32] GCM Current and
Voltage Faulted bus Sparse measurement/

Main frequency features All No

[33] Deep RL
All nodes

voltage and
DGs real power

Faulted bus All buses/
Main frequency features LLL No

[34] ANN Current Fault location to
the main sub

Sending feeder/
High-frequency features

extracted by Wavelet
All No

[35] ANN Current
faulted phase and

distance to the
main sub

Sparse measurement/
High-frequency features

extracted by Wavelet
All Yes

[36] KNN/fuzzy Voltage Nearest bus Sparse measurement/
Main frequency features All No

[37]
PSO/SVM/

Extreme
Learning

Current Fault distance to
the main sub

All laterals/
High-frequency features
extracted by S-transform

All No

[38] ANN Current Fault distance to
the main sub

Distributed generation terminals/
High-frequency features extracted by

Wavelet
All Yes
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Table 1. Cont.

Ref Method Input
Variables

Output
Variables

Measurement Points/Measurement
Feature

Fault
Type DG

[39] ANN Current and
Voltage Faulted zone Main Substation/

Main frequency features SLG No

[40] ANN/KNN Current and
Voltage

Faulted line and
Fault location to the
main sub and DGs

Main Substation, DGs
and Microgrids/

Main frequency features
All Yes

[41] ANN
Current and
Voltage and
Real Power

Fault distance to
the main sub

Main Substation/
Main frequency features All No

[42] ANN Current and
Voltage

Fault distance to
the main sub

Main Substation/
Main frequency extracted by DFT All Yes

[43] ANN Current and
Voltage

Fault distance to
the main sub

Main Substation/
Main frequency extracted by FFT All Yes

[44] ANN Current and
Voltage Faulty section Main Substation/

Main frequency features All No

[45] SVM Current and
Voltage Faulted zone Main Substation/

Main frequency features All No

[46] SVM Current and
Voltage

Faulted Section,
fault type, fault
impedance, and

fault distance to the
nearest nodes

Main Substation and DG terminals/
Main frequency

features
All Yes

[47] SVM Current and
Voltage Faulted zone All substations/

Not specified

SLG
and
LLL

No

[48] SVM Voltage Faulted zone All DG terminals/
Not specified LLL Yes

[49] CNN Current and
Voltage

Fault type, faulted
section, and exact

location of the fault

Main substation and all
laterals/ High-frequency

features
ALL No

[50] CNN Current and
Voltage

Fault distance to
the

measurement point

Main substation and all
laterals/ High-frequency

features
ALL Yes

This paper is organized as the following: Section 2 discusses the papers in terms of
the utilized method. Section 3 describes the papers in terms of input/output variables.
Section 4 explains the data-gathering systems. Section 5 discusses fault types and Section 6
discusses DG consideration. Finally, Section 7 presents some concluding remarks, research
gaps, and future trends.

2. AI-Based Methods

The application process of AI-based methods is illustrated in Figure 1. The first step of
applications is to choose the input variables which comprehend the network condition. In
the second step, the features of voltage or current are adopted by using transforms such
as Wavelet, Stockwell, and Fast Fourier to generate informative features. Some features
are based on high-frequency spectra of signals, and some are based on the fundamental
frequency spectrum of the signal such as the root mean square (RMS) value of the funda-
mental signal. Finally, in the last step, the main algorithm analyzes the input features and
gives an estimation of the fault location as the output. In the following, some of the main
algorithms employed by the AI-based fault location methods are discussed in details and
discussions about each of these steps are provided in their corresponding sections.
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2.1. Artificial Neural Networks (ANNs)

ANN is the most used AI-based algorithm in the field of fault location due to its flexi-
bility and high precision [10,18–23,25,27,28,30–35,38–44]. ANNs are a class of supervised
regression algorithms that can be used as a prediction tool. The training procedure of
ANNs is based on a series of experienced samples of the system. In a fault location method,
the training samples are formed of tuples including inputs (e.g., current or voltage features)
and outputs (e.g., fault distance or fault reactance). The training data is often adopted from
simulations because this data is extracted from the fault condition, and it is not possible to
apply several faults on real-world systems to generate data. However, there might be a
record of previous fault signals; ANN needs a large amount of data in different network
conditions and fault situations, and the recorded data are often insufficient.

An ANN is simply constructed of different layers. There are three types of layers in
ANNs: the first as the input layer, the last as the output layer, and hidden layers in between.
The input layer connects the input variables (features) to the neurons in the first hidden
layer. The hidden layers construct a network connection from the input layer to the output
layer and the output layer contains a number of neurons (equal to the number of outputs)
connected to the last hidden layer. Figure 2 shows a typical example of an ANN.
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In an ANN, each neuron acts based on its activation function as Equation (1):

y(x, w) = f (x) = f
(
∑ wixi

)
, (1)

where y, x, and w are the output, input, and corresponding weights of the neuron.
The activation function is dependent on the type of the ANN and most papers pro-

posed hyperbolic tangent. The number of hidden layers and the number of neurons in each
hidden layer is modified based on the experience of the designer depending on the size
and complexity of the problem. After determining the type of the network and the number
of neurons, the weights should be determined within a training process [51].

There are different methods to calculate the optimized weights; Levenberg–Marquardt,
backpropagation, and evolutionary algorithms (GA, PSO, ACO, etc.) are examples of
these methods.

In addition to the fully connected ANNs, there are other novel neural networks
such as conventional neural networks (CNNs) and recurrent neural networks (RNNs).
The key components of a CNN include convolutional layers, pooling layers, and fully
connected layers (basic ANN). In the convolutional layers, the network applies a set
of filters to the input sample, producing a set of feature maps that highlight different
aspects of the sample. The pooling layers downsample the feature maps, reducing their
dimensionality and creating a more compact representation of the image. Finally, the fully
connected layers use the features extracted by the convolutional and pooling layers to
make predictions or classifications [32,52–54]. In fault location applications, first, a signal-
to-image transform is performed to create images from recorded fault data appropriate for
the convolutional process, and, then, the exact fault location is investigated by the fully
connected ANN [49,50].

RNNs are a type of neural network that are designed to work with sequential data.
Unlike fully connected neural networks that process inputs in a single pass, RNNs process
inputs in a sequential manner, while also maintaining a hidden state that captures informa-
tion from previous inputs. The key feature of RNNs is their ability to capture and learn
temporal dependencies in sequential data. This is achieved by using recurrent connections
that allow the network to pass information from one time step to the next. The hidden state
of the network at each time step is a function of the current input and the previous hidden
state, allowing the network to maintain a memory of past inputs [55–57].

2.2. Support Vector Machine (SVM)

SVM is a powerful tool for handling classification and regression problems [18]. This
method determines hyperplanes for separating different classes. For example, in a two-
dimension two-class problem, the SVM method determines the line separating the classes,
as shown in Figure 3 [58,59].

For more complex systems, SVM adds an extra feature to the samples (maps the
problem into a higher dimensional space) and proposes a hyperplane in the D-dimensional
space [60]. In fault location applications, SVM is used as a regression tool to estimate the
output value (fault location here). While SVM is a tool for linear systems, however, it can
be applied to nonlinear problems using the kernel trick [28]. SVM maps inputs to outputs
using the following equation:

y(x) = wT ϕ(x) =
D

∑
i=0

wi]ϕi(x) (2)

where y is the output, x is the input, w = [w0, w1, . . . , wD]
T is the weight vector and

ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕD(x)] is the basis function.
To solve the problem, a loss function (Lε(y(x), β)) is defined as below.

Lε(y(x), β) =

{
0, i f |β− y(x)| < ε

|β− y(x)| − ε, i f |β− y(x)| ≥ ε
(3)
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where ε is a threshold for the loss function and β is the target value of the training sample
x. Minimizing Equation (4) is the main task of the SVM can be handled using different
optimization methods.

E =
1
N

N

∑
j=1

Lε

(
yj(x), β j

)
(4)

where N is the number of the training samples.
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2.3. K-Nearest Neighbor

KNN is a simple supervised machine-learning algorithm for both objectives of regres-
sion and classification. In fault location applications, KNN is used for both classification
and regression purposes, faulted line section and fault type detection are of the classification
applications, and determination of fault location is of the regression applications [26,36].
In this method, the test sample is assigned to the nearest classes depending on the value
of K, e.g., if K equals to 1, the sample will be assigned to the first nearest neighbor and
if the K equals to 3, the sample will be assigned to the class that is more repeated in the
three closest neighbors. Figure 4 shows an example to assign a sample (green square) into
two classes; if k equals to 1 (dashed red circle) the sample assigns to class 2 (blue triangles)
and if k equals to 3, (solid red circle) the sample assigns to class 1 (orange circles). In some
applications, the sample is assigned using weights based on the distance of the sample to
the class samples.

The main disadvantage of KNN is its slow response in high-dimension problems. To
overcome this issue, the research used KNN in conjunction with ANNs [27,40]. In these
methods, KNN processes the outputs of ANN to improve efficiency and the precision of
ANN. Furthermore, this technique reduces the number of KNN input variables that are
independent of the network structure and size.
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2.4. Deep Reinforcement Learning

Deep learning is inspired by the evolution of mammals’ brains. In this method, an
agent is trained based on its experiences where actions with rewards registered as good
choices and actions with harm registered as unfavorable choices and the agent chooses
its next action trying to maximize its reward. Favorable or unfavorable conditions are
determined depending on the agent and the environment, e.g., for a mammal, finding
food is a favorable situation, and falling from a cliff is unfavorable. In optimization or
classification applications, favorability is determined by the operator. For example, for
a can gatherer robot, finding new cans is a situation with pleasure, and losing battery is
not encouraging.

The fundamentals of deep learning are based on reinforcement Q-learning. Q-learning
is an efficient optimization tool for solving multistage problems. In each stage of the
problem, the next stage (state) is a function of the present stage and the chosen action is
based on the following:

xk+1 = f (xk, ak) (5)

where xk is the present state, ak is the chosen action, and xk+1 is the next state.
In this method, each state-action tuple (xk, ak) has a related Q-value and the agent

in each state chooses the action with maximum Q-value and reaches the next state. The
Q-values are in relation to rewards or penalties the agent gained during its training process
(experiences). Q-value for each state action is dependent on its immediate reward and
those it might gain in the following next states based on the following equation:

Qn+1(xk, ak) = Qn(xk, ak) + α[g(xk, ak, xk+1)

+γ·arg max
α′∈Axk+1

(Qn(xk+1, a′))−Qn(xk, ak)],
(6)

where n is the number of the training iteration, g(xk, ak, xk+1) is the immediate reward, α is
the training rate, and γ is the discount factor. Qn(xk+1, a′) is dependent to the situation of
the next state representing what the agent will experience.
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Due to the curse of dimensionality, determining Qn(xk+1, a′) is not an easy job in
high dimension or continuous problems and needs high calculation efforts. To cope with
this problem, deep neural networks are hired as a regression tool to estimate Qn(xk+1, a′)
for each state-action tuple. The training procedure of DNNs can be performed by using
batch-constrained sets of data, including agent experiences, that simulate the behavior of
the agent and responses of the environment.

In fault location applications, the agent should be able to classify the fault type and
determine the fault location. Hence, the agent should be trained as a tool for regression
and classification applications. The input variables can be voltage or current features and
the output variables are fault type (e.g., the line to ground (LG), line to line (LL), line to line
to ground (LLG), three phase (LLL)), and fault location (a continuous value).

In [29], the authors developed a deep neural network-based (DNN-based) method
for fault location and identification in low-voltage grids that is topology independent and
can also localize high-impedance faults. In [33], the authors presented a DRL algorithm
for fault diagnosis applications that is goal-oriented and independent of a large amount of
labelled data.

3. Input/Output Variables

The input variables can help to identify the behavior of the system. During fault
incidence, the voltages and currents of the network are affected by the network condition
and fault characteristics, including fault distance, fault resistance, and fault type. The
optimization or regression algorithms should be able to determine fault characteristics
based on the recorded signals. As mentioned before, applied algorithms need a preprocess-
ing procedure called feature extraction that extracts single or multiple features from fault
signals (voltage-time or current-time curves).

In comparison to voltage signals, current signals are more instructive because current
signals are directly related to the load and the condition of the network. However, in some
types of networks, such as islanded microgrids or inverter-based distribution networks,
voltage fluctuations are significant during faults and voltage features may present valuable
information about fault characteristics. Hence, some papers use current features, some
voltage features, and some features extracted from both signals. Generally, it is better to use
features of both current and voltage signals to be able to consider the different conditions
of the networks and different types of networks.

From the perspective of required devices for data registration, current-based ap-
proaches are more complicated due to higher fluctuations of fault current signals that make
current transformers (CTs) more expensive in comparison to voltage transformers (PTs)
that record voltage signals. Note that during a fault incidence, the current magnitude may
increase to multiple times the nominal current while voltage signals are either reduced, or
in some rare cases, increased less than the

√
3 times the nominal voltage. Hence, choosing

the input variables is a trade-off between cost and precision.
Output variables in fault location applications are selected to give an estimation of the

exact location or the fault area. In most of the published research, the distance to the fault
from the main substation or a variable representing the distance such as fault reactance is
calculated. The main idea of these approaches is inspired by the impedance-based methods
that estimate the fault location based on the measured impedance during fault incidence.
Determining fault impedance is helpful in the estimation of fault location but it may cause
a multiple-location estimation. Due to the presence of different laterals in the network, two
or more locations may show an equivalent impedance. Figure 5 shows such a condition
that different fault locations are estimated for a single estimated fault impedance (e.g., Z1,
Z2, and Z3 are three estimated impedances for three different fault cases).
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To cope with this issue, the research proposed fault location estimation from different
locations in addition to the main substation. DG terminals are suitable candidates for being
chosen as an additional locator point because DGs often have metering devices at their
interface point. Figure 6 shows a multiterminal fault location scheme that determines the
fault location from different points (main substation and DG terminals) and determines the
exact location by analyzing the estimated fault impedances from all terminals.
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4. Data-Gathering System

A data-gathering system, which may include one or multiple metering devices, sends
recorded fault signals to the network processor. Recent fault location methods are mostly
based on multiple metering devices where data from different locations of the network are
gathered by a communicational system. The communication links connect the metering
devices (installed on power-network elements) to the main processor unit (distribution
control center), as shown in Figure 7.
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The communication system may be a wireless network or a wire-based network. Wire-
based supervisory control and data acquisition (SCADA) systems are widely used in power
system applications [61]; however, other types of architectures such as mobile cellular
data [62–64] and WiMAX [65–67] are also proposed in some approaches. The IEEE 802.16
Standard defines requirements and means for the replacement of conventional wire-based
networks with wireless broadband networks.

There are three main types of data-collecting devices in power systems known as
smart meters (SM), intelligent electronic devices (IEDs), and phasor measurement units
(PMUs). SMs are mostly used for energy-management purposes and do not record the high-
frequency features of the fault signals but they can be exploited to estimate the network
loads [8]. IEDs are intelligent programmable elements that can record, process, and transmit
information over a communication network. IEDs have different applications in power
networks including protection, control, monitoring, and measurement [68]. IEC 61850
proposes a process bus communication network between process-level equipment and bay-
level IEDs used for power systems protection and control. PMUs measure synchronized
phasors. Synchronization of PMUs can be achieved either by internal clocks or external
clocks (e.g., GPS) [69]. The sampling rate of PMUs is high enough to record voltage
and current features needed for protection purposes [70]. In [71], a real-time protection
approach for microgrids based on the distributed dynamic state estimation using PMUs
is proposed. In [72], a supervisory protection framework based on PMUs is developed
that performs feature extraction techniques for speedy classifiers. PMUs are used in the
transmission voltage level while µPMUs are developed for distribution networks [73–75].

In terms of the required measurements, there are generally two classes of fault lo-
cation techniques. The first class, such as impedance-based fault location methods rely
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on fundamental frequency phasor of recorded voltages and currents. The second class
comprises techniques such as travelling-wave-based fault location methods which rely on
recorded fault waveforms and often extract high-frequency information and features. In
AI-based methods, both classes are used; e.g., Refs. [29–32] rely on fundamental frequency
measurements and [19–22] rely on high-frequency measurements. The required input
measurement is a key factor in determining the prerequisite infrastructure to implement
each of the fault location methods.

5. Fault Type

Short circuit faults are the main reason for power outages in electrical networks. They
are mainly categorized into four main types: LG, LL, LLG, and LLL. Fault analysis at the
transmission level is usually limited to these four types. However, due to its imbalance and
asymmetry, at the distribution level, the mentioned fault types constitute 10 combinations
for the three phases to be studied. The fault type has a considerable effect on the fault
location analysis. For example, Figure 8 compares the fault current path for LG and LL
faults. For an LG fault, the fault current flows to the fault point and then bypasses to the
ground, whilst for an LL fault, the fault current flows to the fault point through one phase
and returns through another. This considerable difference in the fault current passage
leads to considerable differences in the measured network variables and hence in the fault
location method inputs. The AI-based methods address this problem with two distinct
approaches. The first method involves training individual AI models for each specific
fault type, which may result in more accurate estimations but requires the use of a fault
classifier prior to implementing the AI. The second method involves training a single AI
model to estimate the fault location for all fault types, which may be easier to train but
could potentially result in lower estimation accuracy.

Energies 2023, 16, x FOR PEER REVIEW 13 of 19 
 

 

  
(a) (b) 

Figure 8. Fault current path in 3-phase RST system: (a) an LG fault and (b) an LL fault. 

As can be seen in Table 1, a considerable number of the proposed AI-based fault loca-
tion methods only focus on a single type of short-circuit faults. For the others, a prepro-
cessing for fault type identification is often necessary. In distribution networks, discrimina-
tion of short-circuit fault types is not very complicated because the current flowing through 
the faulted phase or phases will increase following the fault occurance. However, in un-
grounded or weakly-grounded networks, and distribution networks with multiple DGs, the 
increment in the short-circuit fault current might be minor, making the fault detection and 
fault type identification challenging. There are several research studies of fault detection 
and type identification in such networks [76–79]. 

6. Presence of DG Units 
Integration of DG units into power distribution networks causes critical challenges to 

the distribution network protection and fault location. These critical challenges are as fol-
lows [80–84]: 
• Dynamics and variations of fault current magnitude: smart grids (especially microgrids) 

can operate both in grid-connected and isolated modes. In grid-connected mode, the 
fault current magnitude is much greater due to the high short-circuit power of the up-
per grid. On the other hand, the type of DG units also affects the fault current contri-
bution. Inverter-interfaced DG units contribute to fault currents up to 1.5 times of their 
nominal current while synchronous generators can generate fault currents about 5 
times their nominal current. These challenges cause fault current magnitude variations 
which make the fault location and protection challenging; 

• Loss of selectivity: In cases of placement of a DG unit close to the main substation, the 
DG unit may contribute to the fault current of a fault occurred in a parallel feeder. Fig-
ure 9 shows such a condition that, due to the fault current contribution of DG, relay R1 
may operate faster than R2 which is not necessary and is known as maloperation. The 
operation of R1 will trigger the fault location process for its downstream feeder which 
might lead to misleading results; 

 
Figure 9. Maloperation of over-current protection relays (R1 & R2) in the presence of DG units. 

Figure 8. Fault current path in 3-phase RST system: (a) an LG fault and (b) an LL fault.

As can be seen in Table 1, a considerable number of the proposed AI-based fault
location methods only focus on a single type of short-circuit faults. For the others, a
preprocessing for fault type identification is often necessary. In distribution networks,
discrimination of short-circuit fault types is not very complicated because the current
flowing through the faulted phase or phases will increase following the fault occurance.
However, in ungrounded or weakly-grounded networks, and distribution networks with
multiple DGs, the increment in the short-circuit fault current might be minor, making the
fault detection and fault type identification challenging. There are several research studies
of fault detection and type identification in such networks [76–79].

6. Presence of DG Units

Integration of DG units into power distribution networks causes critical challenges
to the distribution network protection and fault location. These critical challenges are as
follows [80–84]:

• Dynamics and variations of fault current magnitude: smart grids (especially microgrids)
can operate both in grid-connected and isolated modes. In grid-connected mode, the
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fault current magnitude is much greater due to the high short-circuit power of the
upper grid. On the other hand, the type of DG units also affects the fault current
contribution. Inverter-interfaced DG units contribute to fault currents up to 1.5 times
of their nominal current while synchronous generators can generate fault currents
about 5 times their nominal current. These challenges cause fault current magnitude
variations which make the fault location and protection challenging;

• Loss of selectivity: In cases of placement of a DG unit close to the main substation, the
DG unit may contribute to the fault current of a fault occurred in a parallel feeder.
Figure 9 shows such a condition that, due to the fault current contribution of DG, relay
R1 may operate faster than R2 which is not necessary and is known as maloperation.
The operation of R1 will trigger the fault location process for its downstream feeder
which might lead to misleading results;
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• Blindness: As shown in Figure 10, in the cases of fault occurring at the end of a feeder
containing a DG unit, the magnitude of fault current seen by the feeder relay is
decreased due to DG impedance. The reduction of fault current magnitudes results in
underestimation of fault current, and the relay may not act to isolate the fault.
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In this condition, the fault current magnitude in the absence of DG unit is:

I f eeder =
Vth

Znet + Zline
(7)

Whilst in the presence of DG unit, it becomes:

I f eeder =
Vth

Znet +
Zline·Znet

Zgen
+ Zline

(8)

where I f eeder, Znet, Zline, and Zgen are the current seen by the feeder relay, upper grid
impedance (short circuit impedance), feeder impedance, and DG impedance, respectively.

Comparing the equations clearly shows the effect of DG units on the underestimation
of the fault current at the protection point, resulting in the so-called protection blind-
ness. This underestimation might hinder protection-system reaction and subsequent fault
location. Moreover, it might affect the estimation accuracy if not considered.

7. Conclusions

Based on the literature review of AI-based fault location methods, this paper presented
a comprehensive analysis of the advantages and disadvantages of various AI techniques
proposed in the literature considering the types of input data required, the outputs gener-
ated, the data-gathering systems employed, fault type, and DG considerations. A detailed
review and comparisons are presented to highlight the requirements and the research gaps
in the field of AI-based fault location methods.

In general, the required input data, measurements, and the data-gathering infras-
tructure are the most important factors determining the applicability of each of the fault
location methods for a specific distribution system. In terms of the output special care
should be taken to the fact that just having an estimation of the distance to fault from a
single measurement point might lead to multiple fault locations estimation in the branched
structure of the distribution networks. Then, methods of estimating the faulty point or
giving an estimation of the fault zone, together with the distance, are more desirable.

The review also highlights that a considerable number of proposed AI-based fault
location methods focus on a single type of short-circuit faults which limits their application
range. Although some have proposed training a single AI model to cover all fault types,
this approach may result in lower estimation accuracy. Alternatively, separate AI models
could be trained for each fault type but this would necessitate preprocessing for fault type
identification.

In addition, the paper highlights that the integration of DGs into power distribution
networks poses critical challenges to the distribution network protection and fault location,
including dynamics and variations of fault current magnitude, loss of selectivity, and
blindness. Considering the effect of DGs in the fault locator design will, of course, help to
have a more reliable estimation. On the other hand, it often requires a more sophisticated
measurement and data-gathering system. Such methods often require measurements with
fault signal recorders with higher sampling rates than the most common ones in practice
(e.g., smart meters), and a reliable communication capable of handling high amount of
recorded signals.

The prominent obstacle associated with AI-based fault location algorithms pertains to
their reliability in the training process. For instance, impedance-based techniques employ
relevant equations that can be applied across various network typologies, whereas AI-
based approaches necessitate tailored training procedures for each network individually.
Furthermore, AI-based methods are perceived as less transparent than other methods,
particularly impedance-based techniques.

In general, the presented comparisons were aimed to provide valuable insights for
researchers working in the field of fault location in power systems to select the most
appropriate method based on their distribution system and requirements and to identify
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the key areas for future research. Further research is necessary in two directions. The first is
to address the critical challenges caused by the integration of DGs into power distribution
networks and to develop more accurate and robust AI-based fault location methods that
can handle multiple types of short-circuit faults in such networks. It should be noted that
distinct categories of DG units exert diverse effects on the condition of short-circuit faults.
Therefore, it is recommended that forthcoming approaches take into account the presence
of various types of DGs in their investigations. The other direction is to design such
methods to be able to be implemented with the minimum infrastructural investments. The
infrastructural investments encompass both the type of data-acquisition tools (recording
devices) and their location.
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