[en] The idea of a systematic digital representation of the entire known human pathophysiology, which we could call the Virtual Human Twin, has been around for decades. To date, most research groups focused instead on developing highly specialised, highly focused patient-specific models able to predict specific quantities of clinical relevance. While it has facilitated harvesting the low-hanging fruits, this narrow focus is, in the long run, leaving some significant challenges that slow the adoption of digital twins in healthcare. This position paper lays the conceptual foundations for developing the Virtual Human Twin (VHT). The VHT is intended as a distributed and collaborative infrastructure, a collection of technologies and resources (data, models) that enable it, and a collection of Standard Operating Procedures (SOP) that regulate its use. The VHT infrastructure aims to facilitate academic researchers, public organisations, and the biomedical industry in developing and validating new digital twins in healthcare solutions with the possibility of integrating multiple resources if required by the specific context of use. Healthcare professionals and patients can also use the VHT infrastructure for clinical decision support or personalised health forecasting. As the European Commission launched the EDITH coordination and support action to develop a roadmap for the development of the Virtual Human Twin, this position paper is intended as a starting point for the consensus process and a call to arms for all stakeholders.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Viceconti, Marco
De Vos, Maarten
Mellone, Sabato
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Language :
English
Title :
Position paper From the digital twins in healthcare to the Virtual Human Twin: a moon-shot project for digital health research.
Publication date :
11 October 2023
Journal title :
IEEE Journal of Biomedical and Health Informatics
ISSN :
2168-2194
eISSN :
2168-2208
Publisher :
Institute of Electrical and Electronics Engineers, Us
Volume :
PP
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
HE - 101088919 - INSTant CARMA - In Silico Trials for Cartilage Regenerative Medicine Applications
"Unmet health care needs statistics, " 2022. Accessed: Dec. 24, 2022. [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index. php?title=Unmet_health_care_needs_statistics
P. Hunter, P. Robbins, and D. Noble, "The IUPS human physiome project, " Pflugers Archiv, vol. 445, no. 1, pp. 1-9, 2002, doi: 10.1007/s00424-002-0890-1.
"The human genome project, " Genome.gov., 2022. Accessed: Dec. 24, 2022. [Online]. Available: https://www.genome.gov/human-genomeproject
J. W. Fenner et al., "The EuroPhysiome, STEP and a roadmap for the virtual physiological human, " Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci., vol. 366, no. 1878, pp. 2979-2999, Sep. 2008, doi: 10.1098/rsta.2008.0089.
C. A. Taylor, T. A. Fonte, and J. K. Min, "Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flowreserve: Scientific basis, " J. Amer. College Cardiol., vol. 61, no. 22, pp. 2233-2241, 2013, doi: 10.1016/j.jacc.2012.11.083.
STEP Consortium, "Seeding the EuroPhysiome: A roadmap to the virtual physiological human, " VPH Institute, Brussels, Belgium, 2007. [Online]. Available: http://www.vph-institute.org/upload/step-vph-roadmapprinted-3_5192459539f3c.pdf
P. Hunter et al., "A vision and strategy for the virtual physiological human in 2010 and beyond, " Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci., vol. 368, no. 1920, pp. 2595-2614, 2010, doi: 10.1098/rsta.2010.0048.
M. Viceconti and P. Hunter, "The virtual physiological human: Ten years after, " Annu. Rev. Biomed. Eng., vol. 18, pp. 103-123, Aug. 2016, doi: 10.1146/annurev-bioeng-110915-114742.
M. Viceconti, A. Henney, and E. Morley-Fletcher, "In silico clinical trials: How computer simulation will transform the biomedical industry, " Int. J. Clin. Trials, vol. 3, pp. 37-46, 2016, doi: 10.18203/2349-3259. ijct20161408.
M. W. Grieves, "Virtually intelligent product systems: Digital and physical twins, " vol. 7, pp. 175-200, 2019, doi: 10.2514/5.9781624105654. 0175.0200.
T. G. Buchman, "The digital patient: Predicting physiologic dynamics with mathematical models, " Crit. Care Med., vol. 37, no. 3, pp. 1167-1168, Mar. 2009, doi: 10.1097/CCM.0b013e3181987bbc.
P. Bhattacharya, Q. Li, D. Lacroix, V. Kadirkamanathan, and M. Viceconti, "A systematic approach to the scale separation problem in the development of multiscale models, " PLoS One, vol. 16, no. 5, 2021, Art. no. e0251297, doi: 10.1371/journal.pone.0251297.
B. de M. Quintela, S. Hervas-Raluy, J. M. Garcia-Aznar, D. Walker, K. Y. Wertheim, and M. Viceconti, "A theoretical analysis of the scale separation in a model to predict solid tumour growth, " J. Theor. Biol., vol. 547, 2022, Art. no. 111173, doi: 10.1016/j.jtbi.2022.111173.
G. Liesbet et al., "White paper: The role of artificial intelligence within in silico medicine, " Zenodo, 2022. [Online]. Available: https://doi.org/10. 5281/zenodo.8064147
M. Yetisgen-Yildiz, I. Solti, and F. Xia, "Using Amazon s Mechanical Turk for annotating medical named entities, " in Proc. AMIA Annu. Symp., 2010, Art. no. 1316.
J. Borgdorff et al., "Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment, " J. Comput. Sci., vol. 5, no. 5, pp. 719-731, Sep. 2014, doi: 10.1016/j.jocs.2014.04.004.
A. Sotiras, C. Davatzikos, and N. Paragios, "Deformable medical image registration: A survey, " IEEE Trans. Med. Imag., vol. 32, no. 7, pp. 1153-1190, Jul. 2013, doi: 10.1109/TMI.2013.2265603.
G. Stamatakos et al., "Computational horizons in cancer (CHIC): Developing meta-and hyper-multiscale models and repositories for In Silico oncology-A brief technical outline of the project, " in Proc. 6th Int. Adv. Res. Workshop Silico Oncol. Cancer Investigation, 2014, pp. 1-5, doi: 10.1109/iarwisoci.2014.7034630.
D. Tartarini, K. Duan, N. Gruel, D. Testi, D. Walker, and M. Viceconti, "The VPH hypermodelling framework for cancer multiscale models in the clinical practice, " in Proc. 6th Int. Adv. Res.Workshop Silico Oncol. Cancer Investigation -CHIC ProjectWorkshop, 2014, pp. 1-4, doi: 10.1109/IARWISOCI. 2014.7034642.
B. J. Fregly et al., "Grand challenge competition to predict in vivo knee loads, " J. Orthopaedic Res., vol. 30, no. 4, pp. 503-513, Apr. 2012, doi: 10.1002/jor.22023.
Y. Sun et al., "Multi-site infant brain segmentation algorithms: The iSeg-2019 challenge, " IEEE Trans. Med. Imag., vol. 40, no. 5, pp. 1363-1376, May 2021, doi: 10.1109/TMI.2021.3055428.
J. Hirvasniemi et al., "The KNee OsteoArthritis prediction (KNOAP2020) challenge: An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images, " Osteoarthritis Cartilage, vol. 31, no. 1, pp. 115-125, 2023, doi: 10.1016/j.joca.2022.10.001.
M. Ajelli et al., "The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation, " Epidemics, vol. 22, pp. 3-12, Mar. 2018, doi: 10.1016/j.epidem.2017.09.001.
P. Ezanno et al., "The African swine fever modelling challenge: Model comparison and lessons learnt, " Epidemics, vol. 40, Sep. 2022, Art. no. 100615, doi: 10.1016/j.epidem.2022.100615.