3D printing; chitosan; degradability; dental pulp stem cells; pNIPAM
Abstract :
[en] While available treatments have addressed a variety of complications in the dentoalveolar region, associated challenges have resulted in exploration of tissue engineering techniques. Often, scaffold biomaterials with specific properties are required for such strategies to be successful, development of which is an active area of research. This study focuses on the development of a copolymer of poly (N-isopropylacrylamide) (pNIPAM) and chitosan, used for 3D printing of scaffolds for dentoalveolar regeneration. The synthesized material was characterized by Fourier transform infrared spectroscopy, and the possibility of printing was evaluated through various printability tests. The rate of degradation and swelling was analyzed through gravimetry, and surface morphology was characterized by scanning electron microscopy. Viability of dental pulp stem cells seeded on the scaffolds was evaluated by live/dead analysis and DNA quantification. The results demonstrated successful copolymerization, and three formulations among various synthesized formulations were successfully 3D printed. Up to 35% degradability was confirmed within 7 days, and a maximum swelling of approximately 1200% was achieved. Furthermore, initial assessment of cell viability demonstrated biocompatibility of the developed scaffolds. While further studies are required to achieve the tissue engineering goals, the present results tend to indicate that the proposed hydrogel might be a valid candidate for scaffold fabrication serving dentoalveolar tissue engineering through 3D printing.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Salar Amoli, Mehdi; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium. ; OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
Anand, Resmi; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium. ; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium.
EzEldeen, Mostafa ; OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium. ; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium. ; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), 3000 Leuven, Belgium.
Jacobs, Reinhilde; OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium. ; Department of Dental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
Bloemen, Veerle ; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium. ; Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, 3000 Leuven, Belgium.
Language :
English
Title :
Development of 3D Printed pNIPAM-Chitosan Scaffolds for Dentoalveolar Tissue Engineering.
Hanif A. Qureshi S. Sheikh Z. Rashid H. Complications in implant dentistry Eur. J. Dent. 2017 11 135 140 10.4103/ejd.ejd_340_16 28435381
EzEldeen M. Wyatt J. Al-Rimawi A. Coucke W. Shaheen E. Lambrichts I. Willems G. Politis C. Jacobs R. Use of CBCT Guidance for Tooth Autotransplantation in Children J. Dent. Res. 2019 98 406 413 10.1177/0022034519828701 30786806
Na S. Zhang H. Huang F. Wang W. Ding Y. Li D. Jin Y. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet J. Tissue Eng. Regen. Med. 2016 10 261 270 10.1002/term.1686
Khodakaram-Tafti A. Mehrabani D. Shaterzadeh-Yazdi H. Zamiri B. Omidi M. Tissue Engineering in Maxillary Bone Defects World J. Plast. Surg. 2018 7 3 11
Abou Neel E.A. Chrzanowski W. Salih V.M. Kim H.-W. Knowles J.C. Tissue engineering in dentistry J. Dent. 2014 42 915 928 10.1016/j.jdent.2014.05.008
Chen F.-M. Zhang J. Zhang M. An Y. Chen F. Wu Z.-F. A review on endogenous regenerative technology in periodontal regenerative medicine Biomaterials 2010 31 7892 7927 10.1016/j.biomaterials.2010.07.019 20684986
Kim N.R. Lee D.H. Chung P.-H. Yang H.-C. Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009 108 e94 e100 10.1016/j.tripleo.2009.07.031
Brown A. Zaky S. Ray H. Sfeir C. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction Acta Biomater. 2015 11 543 553 10.1016/j.actbio.2014.09.008
Fu Q. Ren H. Zheng C. Zhuang C. Wu T. Qin J. Wang Z. Chen Y. Qi N. Improved osteogenic differentiation of human dental pulp stem cells in a layer-by-layer-modified gelatin scaffold J. Biomater. Appl. 2018 33 477 487 10.1177/0885328218799162
Zafar M. Najeeb S. Khurshid Z. Vazirzadeh M. Zohaib S. Najeeb B. Sefat F. Potential of Electrospun Nanofibers for Biomedical and Dental Applications Materials 2016 9 73 10.3390/ma9020073 28787871
Groll J. Burdick J.A. Cho D.W. Derby B. Gelinsky M. Heilshorn S.C. Jüngst T. Malda J. Mironov V.A. Nakayama K. et al. A definition of bioinks and their distinction from biomaterial inks Biofabrication 2018 11 013001 10.1088/1758-5090/aaec52 30468151
Zaszczyńska A. Moczulska-Heljak M. Gradys A. Sajkiewicz P. Advances in 3D Printing for Tissue Engineering Materials 2021 14 3149 10.3390/ma14123149 34201163
Rajabi M. McConnell M. Cabral J. Ali M.A. Chitosan hydrogels in 3D printing for biomedical applications Carbohydr. Polym. 2021 260 117768 10.1016/j.carbpol.2021.117768
Do A.-V. Khorsand B. Geary S.M. Salem A.K. 3D Printing of Scaffolds for Tissue Regeneration Applications Adv. Healthc. Mater. 2015 4 1742 1762 10.1002/adhm.201500168
Cubo-Mateo N. Rodríguez-Lorenzo L.M. Design of Thermoplastic 3D-Printed Scaffolds for Bone Tissue Engineering: Influence of Parameters of “Hidden” Importance in the Physical Properties of Scaffolds Polymers 2020 12 1546 10.3390/polym12071546
Ma H. Feng C. Chang J. Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy Acta Biomater. 2018 79 37 59 10.1016/j.actbio.2018.08.026
Lee J.-H. Kim H.-W. Emerging properties of hydrogels in tissue engineering J. Tissue Eng. 2018 9 2041731418768285 10.1177/2041731418768285
Erisken C. Kalyon D.M. Zhou J. Kim S.G. Mao J.J. Viscoelastic Properties of Dental Pulp Tissue and Ramifications on Biomaterial Development for Pulp Regeneration J. Endod. 2015 41 1711 1717 10.1016/j.joen.2015.07.005 26321063
Browning M.B. Cereceres S.N. Luong P.T. Cosgriff-Hernandez E.M. Determination of the in vivo degradation mechanism of PEGDA hydrogels J. Biomed. Mater. Res. Part A 2014 102 4244 4251 10.1002/jbm.a.35096
Stoleru E. Dumitriu R.P. Ailiesei G.-L. Yilmaz C. Brebu M. Synthesis of Bioactive Materials by In Situ One-Step Direct Loading of Syzygium aromaticum Essential Oil into Chitosan-Based Hydrogels Gels 2022 8 225 10.3390/gels8040225
Zarandona I. Bengoechea C. Álvarez-Castillo E. de la Caba K. Guerrero A. Guerrero P. 3D Printed Chitosan-Pectin Hydrogels: From Rheological Characterization to Scaffold Development and Assessment Gels 2021 7 175 10.3390/gels7040175
Salar Amoli M. Anand R. EzEldeen M. Amorim P.A. Geris L. Jacobs R. Bloemen V. The development of a 3D printable chitosan-based copolymer with tunable properties for dentoalveolar regeneration Carbohydr. Polym. 2022 289 119441 10.1016/j.carbpol.2022.119441
Kim H.-L. Jung G.-Y. Yoon J.-H. Han J.-S. Park Y.-J. Kim D.-G. Zhang M. Kim D.-J. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering Mater. Sci. Eng. C 2015 54 20 25 10.1016/j.msec.2015.04.033
Lai J.-Y. Luo L.-J. Chitosan-g-poly(N-isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration Eur. J. Pharm. Biopharm. 2017 113 140 148 10.1016/j.ejpb.2016.11.038
Bao H. Li L. Leong W.C. Gan L.H. Thermo-Responsive Association of Chitosan-graft-Poly(N-isopropylacrylamide) in Aqueous Solutions J. Phys. Chem. B 2010 114 10666 10673 10.1021/jp105041z
Kim H. Witt H. Oswald T.A. Tarantola M. Adhesion of Epithelial Cells to PNIPAm Treated Surfaces for Temperature-Controlled Cell-Sheet Harvesting ACS Appl. Mater. Interfaces 2020 12 33516 33529 10.1021/acsami.0c09166 32631046
Lapeyre V. Ancla C. Catargi B. Ravaine V. Glucose-responsive microgels with a core–shell structure J. Colloid Interface Sci. 2008 327 316 323 10.1016/j.jcis.2008.08.039 18804779
Brunelle A.R. Horner C.B. Low K. Ico G. Nam J. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells Acta Biomater. 2018 66 166 176 10.1016/j.actbio.2017.11.020 29128540
Ribeiro C.A. Martins M.V.S. Bressiani A.H. Bressiani J.C. Leyva M.E. de Queiroz A.A.A. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering Mater. Sci. Eng. C 2017 81 156 166 10.1016/j.msec.2017.07.048 28887960
Gialouri A. Saravanou S.F. Loukelis K. Chatzinikolaidou M. Pasparakis G. Bouropoulos N. Thermoresponsive Alginate-Graft-pNIPAM/Methyl Cellulose 3D-Printed Scaffolds Promote Osteogenesis In Vitro Gels 2023 9 984 10.3390/gels9120984
Patenaude M. Hoare T. Injectable, Degradable Thermoresponsive Poly(N-isopropylacrylamide) Hydrogels ACS Macro Lett. 2012 1 409 413 10.1021/mz200121k
Patras G. Qiao G.G. Solomon D.H. On the mechanism of background silver staining during sodium dodecyl sulphate-polyacrylamide gel electrophoresis Electrophoresis 1999 20 2039 2045 10.1002/(SICI)1522-2683(19990701)20:10<2039::AID-ELPS2039>3.0.CO;2-X
Lee J.W. Jung M.C. Park H.D. Park K.D. Ryu G.H. Synthesis and characterization of thermosensitive chitosan copolymer as a novel biomaterial J. Biomater. Sci. Polym. Ed. 2004 15 1065 1079 10.1163/1568562041526496
Chen J.-P. Cheng T.-H. Thermo-Responsive Chitosan-graft-poly(N-isopropylacrylamide) Injectable Hydrogel for Cultivation of Chondrocytes and Meniscus Cells Macromol. Biosci. 2006 6 1026 1039 10.1002/mabi.200600142
Cheaburu-Yilmaz C.N. Yilmaz O. Aydin Kose F. Bibire N. Chitosan-Graft-Poly(N-Isopropylacrylamide)/PVA Cryogels as Carriers for Mucosal Delivery of Voriconazole Polymers 2019 11 1432 10.3390/polym11091432
Duan C. Zhang D. Wang F. Zheng D. Jia L. Feng F. Liu Y. Wang Y. Tian K. Wang F. et al. Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting Int. J. Pharm. 2011 409 252 259 10.1016/j.ijpharm.2011.02.050 21356283
Qi M. Li G. Yu N. Meng Y. Liu X. Synthesis of thermo-sensitive polyelectrolyte complex nanoparticles from CS-g-PNIPAM and SA-g-PNIPAM for controlled drug release Macromol. Res. 2014 22 1004 1011 10.1007/s13233-014-2134-6
Eslahi N. Abdorahim M. Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions Biomacromolecules 2016 17 3441 3463 10.1021/acs.biomac.6b01235 27775329
Zou G. Shen J. Duan P. Xia X. Chen R. Jin B. Temperature-Sensitive Poly(N-isopropylacrylamide)/Konjac Glucomannan/Graphene Oxide Composite Membranes with Improved Mechanical Property, Swelling Capability, and Degradability Int. J. Polym. Sci. 2018 2018 7906747 10.1155/2018/7906747
You R. Xu Y. Liu G. Liu Y. Li X. Li M. Regulating the degradation rate of silk fibroin films through changing the genipin crosslinking degree Polym. Degrad. Stab. 2014 109 226 232 10.1016/j.polymdegradstab.2014.07.029
Dimida S. Barca A. Cancelli N. De Benedictis V. Raucci M.G. Demitri C. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features Int. J. Polym. Sci. 2017 2017 8410750 10.1155/2017/8410750
Martinez M.V. Molina M. Barbero C.A. Poly(N-isopropylacrylamide) Cross-Linked Gels as Intrinsic Amphiphilic Materials: Swelling Properties Used to Build Novel Interphases J. Phys. Chem. B 2018 122 9038 9048 10.1021/acs.jpcb.8b07625
Felfel R.M. Gideon-Adeniyi M.J. Zakir Hossain K.M. Roberts G.A.F. Grant D.M. Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends Carbohydr. Polym. 2019 204 59 67 10.1016/j.carbpol.2018.10.002
Anand R. Salar Amoli M. Huysecom A.-S. Amorim P.A. Agten H. Geris L. Bloemen V. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing Biomed. Mater. 2022 17 045027 10.1088/1748-605X/ac78b8
Loh Q.L. Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size Tissue Eng. Part B Rev. 2013 19 485 502 10.1089/ten.teb.2012.0437
Franke D. Gerlach G. Studies on porosity in poly($N$-isopropylacrylamide) hydrogels for fast-responsive piezoresistive microsensors J. Sens. Sens. Syst. 2021 10 93 100 10.5194/jsss-10-93-2021
Yan L.-P. Wang Y.-J. Ren L. Wu G. Caridade S.G. Fan J.-B. Wang L.-Y. Ji P.-H. Oliveira J.M. Oliveira J.T. et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications J. Biomed. Mater. Res. Part A 2010 95 465 475 10.1002/jbm.a.32869 20648541
Wei D. Xiao W. Sun J. Zhong M. Guo L. Fan H. Zhang X. A biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly J. Mater. Chem. B 2015 3 2753 2763 10.1039/C5TB00129C 32262404
Sanzari I. Buratti E. Huang R. Tusan C.G. Dinelli F. Evans N.D. Prodromakis T. Bertoldo M. Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applications Sci. Rep. 2020 10 6126 10.1038/s41598-020-63228-9 32273560
Liu N. Zhou M. Zhang Q. Zhang T. Tian T. Ma Q. Xue C. Lin S. Cai X. Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway Cell Prolif. 2018 51 e12435 10.1111/cpr.12435 29341308
Hilkens P. Gervois P. Fanton Y. Vanormelingen J. Martens W. Struys T. Politis C. Lambrichts I. Bronckaers A. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells Cell Tissue Res. 2013 353 65 78 10.1007/s00441-013-1630-x 23715720