DNA ligase IV; anaplastic thyroid cancer; chemotherapy; homology directed repair; non-homologous end joining; single-cell RNA-seq; Cancer Research; Oncology
Abstract :
[en] [en] BACKGROUND: Although the incidence of anaplastic thyroid carcinoma (ATC) is low (2.5% of thyroid cancer cases), this cancer has a very poor prognosis (survival rates < 5 months) and accounts for 14-39% of deaths. Conventional therapies based on surgery in combination with radiotherapy or chemotherapy showed limited effectiveness primarily due to the robust and protective DNA damage response in thyroid cancer cells.
METHODS: We used single-cell transcriptomic data from patients with different subtypes of thyroid cancer to study expression of genes involved in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Then, we investigated the mechanisms of DNA damage and repair in anaplastic (C643 and Hth74) and papillary (TPC-1) thyroid cancer cell lines. The effect of caffeine (inhibitor of ATM and ATR) and UCN-01 (CHK1 inhibitor) was evaluated in cell cycle progression of thyroid cancer cells after γ-radiation or doxorubicin treatment. The DNA damage response was monitored after staining of phosphorylated γ-H2AX and 53BP1. Reporter plasmids were used to determine the efficacy of double-strand DNA breaks (DSBs) repair by HR and NHEJ in thyroid cancer cells. We evaluated the combination of selective inhibition of the DNA ligase IV by SCR7 and doxorubicin on cellular apoptosis and tumor growth in xenograft murine models of anaplastic thyroid cancer.
RESULTS: Single-cell RNA-Seq showed that NHEJ- and HR-related genes are expressed in ATC and PTC patients. We showed that ATC cells undergo mitosis in the presence of unrepaired DNA damage caused by γ-radiation and doxorubicin treatment. To proliferate and survive, these cells efficiently repair DNA lesions using homologous recombination (HR) and non-homologous end joining (NHEJ). The combination of SCR7 with doxorubicin, significantly increased apoptosis and impaired ATC tumor growth in a xenograft mouse model compared to doxorubicin monotherapy.
CONCLUSION: This study shows the therapeutic value of the combination of a DNA ligase IV inhibitor and DNA-damaging agents (doxorubicin and/or γ-radiation) for the treatment of anaplastic thyroid cancer.
Disciplines :
Oncology
Author, co-author :
Sriramareddy, Sathya Neelature ✱; Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium ; Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
Jamakhani, Majeed ✱; Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium ; Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
Vilanova Mana, Lea ; Université de Liège - ULiège > GIGA > GIGA Cancer - Cellular and Molecular Epigenetics
Brossel, Hélène; Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium ; Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
Staumont, Bernard; Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Liège, Belgium ; Molecular Biology (TERRA), University of Liege, Gembloux, Belgium
Hamaïdia, Malik ; Université de Liège - ULiège > Département GxABT > Microbial technologies
✱ These authors have contributed equally to this work.
Language :
English
Title :
Selective inhibition of DNA ligase IV provides additional efficacy to the treatment of anaplastic thyroid cancer.
Lamartina L Grani G Durante C Borget I Filetti S Schlumberger M. Follow-up of differentiated thyroid cancer – what should (and what should not) be done. Nat Rev Endocrinol (2018) 14:538–51. doi: 10.1038/s41574-018-0068-3
Molinaro E Romei C Biagini A Sabini E Agate L Mazzeo S et al. Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol (2017) 13:644–60. doi: 10.1038/nrendo.2017.76
Kuo JH Chabot JA Lee JA. Breast cancer in thyroid cancer survivors: An analysis of the Surveillance, Epidemiology, and End Results-9 database. Surgery (2016) 159:23–9. doi: 10.1016/j.surg.2015.10.009
Bible KC Kebebew E Brierley J Brito JP Cabanillas ME Clark TJ et al. 2021 American thyroid association guidelines for management of patients with anaplastic thyroid cancer. Thyroid (2021) 31:337–86. doi: 10.1089/thy.2020.0944
Gu L Sun W. MiR-539 inhibits thyroid cancer cell migration and invasion by directly targeting CARMA1. Biochem Biophys Res Commun (2015) 464:1128–33. doi: 10.1016/j.bbrc.2015.07.090
Nagaiah G Hossain A Mooney CJ Parmentier J Remick SC. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol (2011) 2011:542358. doi: 10.1155/2011/542358
Gandhi M Evdokimova V Nikiforov YE. Mechanisms of chromosomal rearrangements in solid tumors: The model of papillary thyroid carcinoma. Mol Cell Endocrinol (2010) 321:36–43. doi: 10.1016/j.mce.2009.09.013
Pellegriti G Frasca F Regalbuto C Squatrito S Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol (2013) 2013:. doi: 10.1155/2013/965212
Xing M Haugen BR Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. Lancet (2013) 381:1058–69. doi: 10.1016/S0140-6736(13)60109-9
Chintakuntlawar AV Foote RL Kasperbauer JL Bible KC. Diagnosis and management of anaplastic thyroid cancer. Endocrinol Metab Clin North Am (2019) 48:269–84. doi: 10.1016/j.ecl.2018.10.010
Hoang JK Nguyen XV Davies L. Overdiagnosis of thyroid cancer. Answers to five key questions. Acad Radiol (2015) 22:1024–9. doi: 10.1016/j.acra.2015.01.019
Tsumagari K Abd Elmageed ZY Sholl AB Friedlander P Abdraboh M Xing M et al. Simultaneous suppression of the MAP kinase and NF-κB pathways provides a robust therapeutic potential for thyroid cancer. Cancer Lett (2015) 368:46–53. doi: 10.1016/j.canlet.2015.07.011
Gao X Wu X Zhang X Hua W Zhang Y Maimaiti Y et al. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer. Biochem Biophys Res Commun (2016) 469:679–85. doi: 10.1016/j.bbrc.2015.12.008
Fullmer T Cabanillas ME Zafereo M. Novel therapeutics in radioactive iodine-resistant thyroid cancer. Front Endocrinol (Lausanne) (2021) 12:720723. doi: 10.3389/fendo.2021.720723
Crispo F Notarangelo T Pietrafesa M Lettini G Storto G Sgambato A et al. Braf inhibitors in thyroid cancer: Clinical impact, mechanisms of resistance and future perspectives. Cancers (Basel) (2019) 11. doi: 10.3390/cancers11091388
Bonhomme B Godbert Y Perot G Al Ghuzlan A Bardet S Belleannée G et al. Molecular pathology of anaplastic thyroid carcinomas: A retrospective study of 144 cases. Thyroid (2017) 27:682–92. doi: 10.1089/thy.2016.0254
Gustavsson B Hermansson A Andersson A-C Grimelius L Bergh J Westermark B et al. Decreased growth rate and tumor formation of human anaplastic thyroid carcinoma cells transfected with a human thyrotropin receptor cDNA in NMRI nude mice treated with propylthiouracil. Mol Cell Endocrinol (1996) 121:143–51. doi: 10.1016/0303-7207(96)03859-2
Neff RL Farrar WB Kloos RT Burman KD. Anaplastic thyroid cancer. Endocrinol Metab Clin North Am (2008) 37:525–38. doi: 10.1016/j.ecl.2008.02.003
Bartek J Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell (2003) 3:421–9. doi: 10.1016/S1535-6108(03)00110-7
Jackson SP Bartek J. The DNA-damage response in human biology and disease. Nature (2010) 461:1071–8. doi: 10.1038/nature08467.The
Pearl LH Schierz AC Ward SE Al-lazikani B Pearl FMG. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer (2015) 15:166–80. doi: 10.1038/nrc3891
Chang HHY Pannunzio NR Adachi N Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol (2017) 18:495–506. doi: 10.1038/nrm.2017.48
Cortés-Ciriano I Lee JJK Xi R Jain D Jung YL Yang L et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet (2020) 52:331–41. doi: 10.1038/s41588-019-0576-7
Boeckman HJ Trego KS Turchi JJ. Cisplatin sensitizes cancer cells to ionizing radiation via inhibition of nonhomologous end joining. Mol Cancer Res (2005) 3:277–285. doi: 10.1158/1541-7786.MCR-04-0032
Feng W Smith CM Simpson DA Gupta GP. Targeting non-homologous and alternative end joining repair to enhance cancer radiosensitivity. Semin Radiat Oncol (2022) 32:29–41. doi: 10.1016/j.semradonc.2021.09.007
Lu L Wang JR Henderson YC Bai S Yang J Hu M et al. Anaplastic transformation in thyroid cancer revealed by single-cell transcriptomics. J Clin Invest (2023) 133. doi: 10.1172/JCI169653
Lee JJ Foukakis T Hashemi J Grimelius L Heldin NE Wallin G et al. Molecular cytogenetic profiles of novel and established human anaplastic thyroid carcinoma models. Thyroid (2007) 17:289–301. doi: 10.1089/thy.2006.0246
Schweppe RE Klopper JP Korch C Pugazhenthi U Benezra M Knauf JA et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab (2008) 93:4331–41. doi: 10.1210/jc.2008-1102
Landa I Pozdeyev N Korch C Marlow LA Smallridge RC Copland JA et al. Comprehensive genetic characterization of human thyroid cancer cell lines: A validated panel for preclinical studies. Clin Cancer Res (2019) 25:3141–51. doi: 10.1158/1078-0432.CCR-18-2953
Seluanov A Mao Z Gorbunova V. Analysis of DNA double-strand break (DSB) repair in mammalian cells. J Vis Exp (2010) 43:2002. doi: 10.3791/2002
Budke B Logan HL Kalin JH Zelivianskaia AS Cameron W Miller LL et al. RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res (2012) 40:7347–57. doi: 10.1093/nar/gks353
Srivastava M Nambiar M Sharma S Karki SS Goldsmith G Hegde M et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell (2012) 151:1474–87. doi: 10.1016/j.cell.2012.11.054
Lord C. The DNA damage response and cancer therapy. Nature (2012) 481:287–94. doi: 10.1038/nature10760
Lee JW Wernicke AG. Risk and survival outcomes of radiation-induced CNS tumors. J Neurooncol (2016) 129:15–22. doi: 10.1007/s11060-016-2148-3
Seo YS Ko IO Park H Jeong YJ Park JA Kim KS et al. Radiation-induced changes in tumor vessels and microenvironment contribute to therapeutic resistance in glioblastoma. Front Oncol (2019) 9:1259. doi: 10.3389/fonc.2019.01259
Yang Y Luo J Chen X Yang Z Mei X Ma J et al. CDK4/6 inhibitors: A novel strategy for tumor radiosensitization. J Exp Clin Cancer Res (2020) 39. doi: 10.1186/s13046-020-01693-w
Petroni G Buqué A Yamazaki T Bloy N Di Liberto M Chen-Kiang S et al. Radiotherapy delivered before CDK4/6 inhibitors mediates superior therapeutic effects in ER+breast cancer. Clin Cancer Res (2021) 27:1855–63. doi: 10.1158/1078-0432.CCR-20-3871
Kim YM Jeong IH Pyo H. Celecoxib enhances the radiosensitizing effect of 7-hydroxystaurosporine (UCN-01) in human lung cancer cell lines. Int J Radiat Oncol Biol Phys (2012) 83:e399–407. doi: 10.1016/j.ijrobp.2012.01.001
Mack PC Jones AA Gustafsson MH Gandara DR Gumerlock PH Goldberg Z. Enhancement of radiation cytotoxicity by UCN-01 in non-small cell lung carcinoma cells. Radiat Res (2004) 162:623–634. doi: 10.1667/RR3253
Sinn B Tallen G Schroeder G Grassl B Schulze J Budach V et al. Caffeine confers radiosensitization of PTEN-deficient Malignant glioma cells by enhancing ionizing radiation-induced G1 arrest and negatively regulating akt phosphorylation. Mol Cancer Ther (2010) 9:480–8. doi: 10.1158/1535-7163.MCT-09-0498
Landa I Ibrahimpasic T Boucai L Sinha R Knauf JA Shah RH et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest (2016) 126:1052–66. doi: 10.1172/JCI85271
Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Med (2016) 14. doi: 10.1186/s12916-016-0559-9
Kawabe T. G 2 checkpoint abrogators as anticancer drugs Minireview G 2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther (2004), 513–9.
Wang Q Fan S Eastman A Worland PJ Sausville EA O’Connor PM. UCN-01: A potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst (1996) 88:956–65. doi: 10.1093/jnci/88.14.956
Monks A Harris ED Vaigro-Wolff A Hose CD Connelly JW Sausville EA. UCN-01 enhances the in vitro toxicity of clinical agents in human tumor cell lines. Invest New Drugs (2000) 18:95–107. doi: 10.1023/A:1006313611677
Petersen L Hasvold G Lukas J Bartek J Syljuåsen RG. P53-dependent G1 arrest in 1st or 2nd cell cycle may protect human cancer cells from cell death after treatment with ionizing radiation and Chk1 inhibitors. Cell Prolif (2010) 43:365–71. doi: 10.1111/j.1365-2184.2010.00685.x
Doai M Watanabe N Takahashi T Taniguchi M Tonami H Iwabuchi K et al. Sensitive immunodetection of radiotoxicity after iodine-131 therapy for thyroid cancer using γ-H2AX foci of DNA damage in lymphocytes. Ann Nucl Med (2013) 27:233–8. doi: 10.1007/s12149-012-0678-0
Eberlein U Scherthan H Bluemel C Peper M Lapa C Buck AK et al. DNA damage in peripheral blood lymphocytes of thyroid cancer patients after radioiodine therapy. J Nucl Med (2015) 57:173–80. doi: 10.2967/jnumed.115.164814
Nakazawa Y Saenko V Rogounovitch T Suzuki K Mitsutake N Matsuse M et al. Reciprocal paracrine interactions between normal human epithelial and mesenchymal cells protect cellular DNA from radiation-induced damage. Int J Radiat Oncol Biol Phys (2008) 71:567–77. doi: 10.1016/j.ijrobp.2007.10.036
Castedo M Perfettini JL Roumier T Andreau K Medema R Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene (2004) 23:2825–37. doi: 10.1038/sj.onc.1207528
Vitale I Galluzzi L Castedo M Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol (2011) 12:385–92. doi: 10.1038/nrm3115
Vakifahmetoglu H Olsson M Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ (2008) 15:1153–62. doi: 10.1038/cdd.2008.47
Huang RX Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther (2020) 5. doi: 10.1038/s41392-020-0150-x
Mimitou EP Symington LS. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J (2010) 29:3358–3369. doi: 10.1038/emboj.2010.193
Van Der Burg M Van Dongen JJM Van Gent DC. DNA-PKcs deficiency in human: Long predicted, finally found. Curr Opin Allergy Clin Immunol (2009) 9:503–9. doi: 10.1097/ACI.0b013e3283327e41
Hosoi Y Watanabe T Nakagawa K Matsumoto Y Enomoto A Morita A et al. Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer. Int J Oncol (2004) 25:461–468. doi: 10.3892/ijo.25.2.461
Damia G. Targeting DNA-PK in cancer. Mutat Res - Fundam Mol Mech Mutagenesis (2020) 821. doi: 10.1016/j.mrfmmm.2020.111692
Xie R Cheng L Huang M Huang L Chen Z Zhang Q et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer. Cancer Res (2023) 83:1666–83. doi: 10.1158/0008-5472.CAN-22-2233
Assis J. Ovarian cancer and DNA repair: DNA ligase IV as a potential key. World J Clin Oncol (2013) 4:14–24. doi: 10.5306/wjco.v4.i1.14
Jun S Jung YS Suh HN Wang W Kim MJ Oh YS et al. LIG4 mediates Wnt signaling-induced radio resistance. Nat Commun (2016) 7. doi: 10.1038/ncomms10994
Willoughby CE Jiang Y Thomas HD Willmore E Kyle S Wittner A et al. Selective DNA-pkcs inhibition extends the therapeutic index of localized radiotherapy and chemotherapy. J Clin Invest (2020) 130:258–271. doi: 10.1172/JCI127483
Yin M Liao Z Liu Z Wang LE O’Reilly M Gomez D et al. Genetic variants of the nonhomologous end joining gene LIG4 and severe radiation pneumonitis in non-small cell lung cancer patients treated with definitive radiotherapy. Cancer (2012) 118:e537–43. doi: 10.1002/cncr.26214
Gomes BC Silva SN Azevedo AP Manita I Gil OM Ferreira TC et al. The role of common variants of non-homologous end-joining repair genes XRCC4, LIG4 and Ku80 in thyroid cancer risk. Oncol Rep (2010) 24:1079–85. doi: 10.3892/or-00000958
Riballo E Doherty AJ Dai Y Stiff T Oettinger MA Jeggo PA et al. Cellular and biochemical impact of a mutation in DNA ligase IV conferring clinical radiosensitivity. J Biol Chem (2001) 276:31124–32. doi: 10.1074/jbc.M103866200
Critchlow SE Bowater RP Jackson SP. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol (1997) 7:588–98. doi: 10.1016/S0960-9822(06)00258-2
Saquib M Ansari MI Johnson CR Khatoon S Kamil Hussain M Coop A. Recent advances in the targeting of human DNA ligase I as a potential new strategy for cancer treatment. Eur J Med Chem (2019) 182. doi: 10.1016/j.ejmech.2019.111657
Greco GE Matsumoto Y Brooks RC Lu Z Lieber MR Tomkinson AE. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair (Amst) (2016) 43:18–23. doi: 10.1016/j.dnarep.2016.04.004
Gkotzamanidou M Terpos E Bamia C Munshi NC Dimopoulos MA Souliotis VL. DNA repair of myeloma plasma cells correlates with clinical outcome: The effect of the nonhomologous end-joining inhibitor SCR7. Blood (2016) 128:1214–1225. doi: 10.1182/blood-2016-01-691618
Manjunath M Choudhary B Raghavan SC. SCR7, a potent cancer therapeutic agent and a biochemical inhibitor of nonhomologous DNA end-joining. Cancer Rep (2021) 4. doi: 10.1002/cnr2.1341
Szakács G Paterson JK Ludwig JA Booth-Genthe C Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discovery (2006) 5:219–34. doi: 10.1038/nrd1984
Zhang S Liu X Bawa-Khalfe T Lu LS Lyu YL Liu LF et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med (2012) 18, 1639–42. doi: 10.1038/nm.2919
Favreau-Lessard AJ Blaszyk H Jones MA Sawyer DB Pinz IM. Systemic and cardiac susceptibility of immune compromised mice to doxorubicin. Cardio-Oncology (2019) 5. doi: 10.1186/s40959-019-0037-6
Philpott C Tovell H Frayling IM Cooper DN Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genomics (2017) 11. doi: 10.1186/s40246-017-0109-3
Brossel H Fontaine A Hoyos C Jamakhani M Willems M Hamaidia M et al. Activation of DNA damage tolerance pathways may improve immunotherapy of mesothelioma. Cancers (Basel) (2021) 13. doi: 10.3390/cancers13133211
Hamaidia M Gazon H Hoyos C Hoffmann GB Louis R Duysinx B et al. Inhibition of EZH2 methyltransferase decreases immunoediting of mesothelioma cells by autologous macrophages through a PD-1-dependent mechanism. JCI Insight (2019) 4. doi: 10.1172/jci.insight.128474