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Selective inhibition of DNA ligase
IV provides additional efficacy to
the treatment of anaplastic
thyroid cancer
Sathya Neelature Sriramareddy1,2†, Majeed Jamakhani1,2†,
Léa Vilanova1,2, Hélène Brossel1,2, Bernard Staumont1,2

and Malik Hamaidia1,2*

1Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA),
University of Liège, Liège, Belgium, 2Molecular Biology (TERRA), University of Liege,
Gembloux, Belgium
Background: Although the incidence of anaplastic thyroid carcinoma (ATC) is

low (2.5% of thyroid cancer cases), this cancer has a very poor prognosis (survival

rates < 5 months) and accounts for 14–39% of deaths. Conventional therapies

based on surgery in combination with radiotherapy or chemotherapy showed

limited effectiveness primarily due to the robust and protective DNA damage

response in thyroid cancer cells.

Methods: We used single-cell transcriptomic data from patients with different

subtypes of thyroid cancer to study expression of genes involved in homologous

recombination (HR) and non-homologous end joining (NHEJ) pathways. Then,

we investigated the mechanisms of DNA damage and repair in anaplastic (C643

and Hth74) and papillary (TPC-1) thyroid cancer cell lines. The effect of caffeine

(inhibitor of ATM and ATR) and UCN-01 (CHK1 inhibitor) was evaluated in cell

cycle progression of thyroid cancer cells after g‐radiation or doxorubicin

treatment. The DNA damage response was monitored after staining of

phosphorylated g-H2AX and 53BP1. Reporter plasmids were used to determine

the efficacy of double-strand DNA breaks (DSBs) repair by HR and NHEJ in

thyroid cancer cells. We evaluated the combination of selective inhibition of the

DNA ligase IV by SCR7 and doxorubicin on cellular apoptosis and tumor growth

in xenograft murine models of anaplastic thyroid cancer.

Results: Single-cell RNA-Seq showed that NHEJ- and HR-related genes are

expressed in ATC and PTC patients. We showed that ATC cells undergomitosis in

the presence of unrepaired DNA damage caused by g‐radiation and doxorubicin

treatment. To proliferate and survive, these cells efficiently repair DNA lesions

using homologous recombination (HR) and non-homologous end joining

(NHEJ). The combination of SCR7 with doxorubicin, significantly increased

apoptosis and impaired ATC tumor growth in a xenograft mouse model

compared to doxorubicin monotherapy.
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Conclusion: This study shows the therapeutic value of the combination of a DNA

ligase IV inhibitor and DNA-damaging agents (doxorubicin and/or g-radiation) for
the treatment of anaplastic thyroid cancer.
KEYWORDS

anaplastic thyroid cancer, DNA ligase IV, homology directed repair, non-homologous
end joining, radiotherapy, chemotherapy, single-cell RNA-seq
Introduction

Accounting for approximately 1% of newly diagnosed cancer

cases, the incidence of thyroid cancer has increased over the past 3

decades by >5% per year (1–4). Thyroid cancers originate either

from the follicular epithelium or from neuroendocrine C cells (i.e.,

follicular and medullary thyroid cancer, respectively). Follicular

thyroid cancer can be subdivided into well-differentiated (WDTC),

poorly differentiated (PDTC), and anaplastic (ATC) thyroid cancers

(5). WDTC, which accounts for 90% of cases, includes papillary

(PTC) and follicular (FTC) thyroid cancers. With long-term

survival rates of 75-90%, the prognosis of medullary and WDTC

thyroid cancers is relatively good (6–10). However, a significant

proportion (10-35%) of patients relapse and lose the ability to

uptake radioiodine-131 in tumors (5, 11–14). The main treatment

for ATC and relapsingWDTC includes surgery, cytotoxic treatment

(e.g., doxorubicin or cisplatin), and external beam radiation therapy

(EBRT). Therapies that target cancer cells carrying the BRAFV600E

mutation (dabrafenib/trametinib) have been recently approved for

ATC but are associated with significant toxicities (15, 16). Although

frequent in PTC, other genomic modifications, such as RET/PTC

rearrangement, are uncommon in ATC. With median survival rates

varying from 9 weeks to 5 months (5, 11–13, 17, 18), ATC is highly

lethal and requires more efficient therapies.

Radiation therapy and topoisomerase inhibitors (e.g.,

doxorubicin) mainly induce DNA double-strand breaks (DSBs)

in tumors. A critical component of radio resistance and
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chemoresistance is the ability of cancer cells to repair DNA

damage. Indeed, DSBs initiate signaling and repair pathways

orchestrated by sensors, transducers, and effectors of the DNA

damage response (DDR) (19–21). DSBs induced by ionizing

radiation and topoisomerase inhibitors can be repaired by

homologous recombination (HR) and non-homologous end

joining (NHEJ). HR is error-free repair pathway and requires

DNA pairing with a homologous chromatid that is only available

in late S and G2 phases of the cell cycle. However, NHEJ pathway

can be initiated outside S and G2 phase and require a limited

sequence homology. The NHEJ is initiated by the Ku70/Ku80

complex, which interacts with DSBs and recruits other

components of the repair pathway, including the DNA-dependent

protein kinase catalytic subunit (DNA-PKcs), endonuclease

Artemis, DNA ligase IV, X-ray repair cross-complementing

protein 4 (XRCC4) and polymerases m and l (Pol m and Pol l)
(22). Upon recruitment to the DSB, DNA-PKcs undergoes

autophosphorylation and activates Artemis, which then degrades

DNA ends to produce short overhangs (≤4 nucleotides) between the

strands that facilitate end joining. Upon activation by XRCC4, DNA

ligase IV initiates end joining by transferring AMP to the 5′ end of

one of the strands at the DSB. Covalent DNA ligation further

requires the removal of AMP by aprataxin. Pol m polymerizes short

regions of microhomology for subsequent base pairing in a

template‐independent manner. Pol l primarily promotes the

ligation of terminally compatible overhangs that require fill-in

synthesis (22). XRCC4-like factor (XLF) stimulates the ligation of

short incompatible 3′ overhangs, while the paralog of XRCC4 and

XLF (PAXX) promotes the joining of blunt ends. Therefore, NHEJ

is the predominant mechanism to process most ionizing radiation-

induced DSBs in thyroid cancer cells. However, NHEJ is error-

prone process that can be responsible of genome instability or

chromothripsis in response to DNA damaging therapies. These

genomic rearrangements can increase thyroid cancer aggressiveness

via the loss of a tumor suppressor gene and/or oncogene

ampl ificat ion (23) . Therapeut ic approaches that use

pharmacological inhibitors targeting tyrosine kinase receptors

(TKIs), BRAF V600E, Mitogen-activated kinases, mTOR,

anaplastic lymphoma kinase, tropomyosin receptor kinases are

proposed to reduce radio- and chemoresistance of thyroid cancer

(14). Another strategy to increase tumor sensitivity to DNA

damaging agents is to interfere DSBs repair pathways via the use
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of selective inhibitors of PARP superfamily (e.g. Niraparib,

Olaparib), DNA-PKcs (e.g. NU7441, M3814 or Nedisertib,

AZD7648, M9831 or VX-984, KU-0060648), CHK1 (e.g. GDC-

0575, MK-8776, Prexasertib), ATM (AZD0156, M3541), ATR

(Ceralasertib, Berzosertib), WEE1 (Adavosertib) and DNA ligase

IV (SCR7, NU7026) (24, 25). In this context, the objective of this

study is (i) to evaluate the regulation of cell cycle and DSB repair

activity (ii) to explore the therapeutic potential of DNA ligase IV

selective inhibition after treatment of anaplastic thyroid cancer cells

(C643 and Hth74) with conventional DNA damaging agents used

for the treatment of thyroid cancer.
Methods

Cell cultures

Thyroid cancer cell lines C643 and Hth74 (anaplastic thyroid

cancer) and TPC-1 (papillary thyroid cancer), provided by Karin

Forsberg Nilsson (Uppsala University, Sweden), were grown in

Dulbecco’s modified Eagle’s medium (DMEM) containing 100 units

per ml penicillin, 100 mg/ml streptomycin and 10% fetal bovine

serum (FBS). Cells were maintained at 37°C in a humidified

incubator containing a 5% CO2 atmosphere.
Cell cycle analysis

Thyroid cancer cells were seeded in 6-well plates (200,000 cells

per well). Twenty-four hours later, the cells were g-irradiated and/or
incubated with checkpoint inhibitors (Sigma–Aldrich): UCN‐01

(7-hydroxystaurosporin) resuspended in DMSO and caffeine

(1,3,7-trimethylxanthine) dissolved in DMEM by heating (80°C)

for 2 hours. After 24 hours, the cells were trypsinized and fixed in

300 μL of PBS-10% FBS and 700 μL of chilled ethanol. Following

fixation overnight at -20°C, cells were incubated with RNase A

solution (50 μg/mL in PBS with 0.1% Tween 20 (Sigma–Aldrich) for

30 minutes at 37°C. After suspension in propidium iodide (PI, 20

μg/L, Sigma–Aldrich), fluorescence was analyzed with a

FACSCalibur flow cytometer (BD Biosciences) using BD

CellQuest Pro software.
Mitotic trap assay

Three hours after g-irradiation and/or incubation with UCN-01

or caffeine, thyroid cells were treated with 50 nM of Taxol (Bristol-

Myers Squibb). After 16 hours of culture, cells were trypsinized,

resuspended in PBS containing 10% FBS, and fixed overnight in

70% ethanol at -20°C. After removing ethanol, cells were labeled for

2 hours with an antibody specific for histone H3 phospho‐Ser10

(Cell Signaling Technology, #9701, 1/200) and an anti-mouse

immunoglobulin Alexa-488-conjugate (Invitrogen, 1/1000). After

RNase A digestion and PI labeling, fluorescence was analyzed with a

FACScanto II flow cytometer (BD Biosciences).
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Confocal microscopy

Ce l l s s e eded on cove r s l i p s were fixed w i th 4%

paraformaldehyde, permeabilized with 0.1% Triton X-100 for 10

minutes, and incubated with 5% bovine serum albumin (BSA). Cells

were then labeled for 2 hours with primary antibodies specific for

phospho-H2AX (Cell Signaling Technology, #2577, 1/400) or

53BP1 (Abcam, AB172580, 1/200). After nuclear staining with

DAPI (Sigma), the cells were visualized with a Leica SP5 confocal

microscope. Simultaneously, a similar experiment was conducted in

parallel to analyze the mean fluorescence intensity of phospho-

H2AX by FACScanto II flow cytometry.
Immunoblotting

At different times (2, 5, or 24 hours) after 10 Gy g-irradiation,
cells were lysed on ice with RIPA buffer (150 mM sodium chloride,

1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris pH

8.0) containing protease and phosphatase inhibitors: Halt Protease

Inhibitor Cocktail (Thermo Fisher Scientific) and 1 mM

phenylmethanesulfonyl fluoride (PMSF) (Sigma). After SDS‐

polyacrylamide gel electrophoresis (SDS–PAGE), proteins were

transferred onto a nitrocellulose membrane and blocked for 1

hour with 5% BSA (Sigma–Aldrich) in TBS (Tris Buffered Saline)

supplemented with 0.1% Tween 20. Proteins were labeled overnight

at 4°C with antibodies directed against g-H2AX (Cell Signaling

Technology, #2577, 1/1000) or tubulin (Sigma, SAB4500087, 1/

1000). After washing with TBS-Tween (0.1%), membranes were

incubated with horseradish peroxidase (HRP)-conjugated

secondary anti-rabbit antibody (Cell Signaling Technology, #7074,

1/1000) for 1 hour at room temperature. Luminescence was

revealed with HRP substrate (Pierce ECL Western Blotting

Substrate, Thermo Scientific) using a CCD camera (ImageQuant

LAS4000 mini, GE Healthcare Life Sciences) and analyzed with

ImageJ software.
Quantification of DNA repair efficiency

The quantification of DSB repair by HR and NHEJ was based

on plasmid reporters provided by Vera Gorbunova (University of

Rochester, USA)37. The GFP-Pem1 vector contains a GFP open

reading frame interrupted by a 3 Kb intron from the Pem1 gene. In

the NHEJ sensor, the Pem1 intron contains an additional

adenoviral exon that is flanked by inverted HindIII/I-SceI

restriction sites. Endonuclease cleavage leads to nonpalindromic

incompatible DNA ends that are repaired by NHEJ. Cleavage of the

adenoviral exon, transfection into cells, and repair by NHEJ restore

GFP expression. In the HR reporter, the first exon of GFP-Pem1 has

a 22 bp deletion flanked by I-SceI/HindIII/inverted I-SceI

restriction sites. Due to the deletion, NHEJ repair of the restricted

plasmid does not restore GFP expression. The HR reporter contains

a second copy of the GFP first exon lacking an ATG. HR between
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the deleted and ATG-mutated copy of GFP by gene conversion

restores green fluorescence.

The HR and NHEJ reporter plasmids were digested overnight

with I-SceI (VWR) and purified by gel electrophoresis using the

QIAGEN gel extraction kit. Linearized plasmid (2 mg) was

transfected with Lipofectamine (Thermo Fisher Scientific) into

thyroid cancer cell lines together with 0.5 mg of pHcRed

(Clontech). After 48 hours of culture under DNA-damaging

conditions, cells were analyzed by flow cytometry. The efficiencies

of HR and NHEJ pathways were calculated as ratios of GFP and

HcRed fluorescence.
Analysis of apoptosis

TPC-1, C643, and Hth74 cells were cultivated for 48 hours in 6-

well plates (105/well) in the presence of SCR7 (Xcess Bioscience),

RI-1 (Axon MedChem), and/or doxorubicin (Sigma Aldrich, 200

nM). Cells were harvested, washed in cold PBS, suspended in 100

mL of binding buffer (PE Annexin V Apoptosis Detection Kit, BD

Pharmingen), and labeled with 5 mL of Annexin-V FITC + 7-AAD

for 15 minutes in the dark. For the analysis of genomic DNA

fragmentation, 105 cells were washed twice in 10% FBS-PBS,

resuspended in 300 mL of 10% FBS-PBS, and fixed with 700 mL
chilled ethanol (100%) at -20°C. After overnight fixation, cells were

recovered by centrifugation, washed twice, treated with RNase A

(20 mg/ml) for 30 min, and stained for 10 min with PI (50 mg/ml).

Fluorescence was analyzed with 585/42 filters in a FACSCalibur

(Becton Dickinson).
Mouse models

Animal experimentation was approved by the Ethical Committee

for the use of laboratory animals at the University of Liège (case

number 14-1736) and performed according to the Federation of

Laboratory Animal Science Association (FELASA) guidelines. The

triple transgenic NOD. Cg-Prkdcscid Il2rgtm1Wjl Tg (CMV-IL3, CSF2,

KITLG)1Eav/MloySzJ mice, also called NSG-SGM3 mice (provided

by animal facility LA2610359), were inoculated subcutaneously into

the right and left flanks with 2.106 C643 or Hth74 cells. A total of 200

μL medium suspension containing 50% v/v Matrigel (Basement

Membrane Matrix, Corning) was injected in each flank using a

27G needle. Once the average tumor volume reached 50 mm³,

mice were randomized into 6 groups (n=5) to minimize weight

and tumor size differences. Mice were mock-treated (vehicle) or

injected intraperitoneally with doxorubicin (twice per week at 0.5 mg/

kg) and/or SCR7 (10 mg/kg twice a week). Tumors were measured

biweekly with a digital caliper, and tumor volume was estimated by

using the formula (p x length x width2)/6.
scRNA-Seq data processing

The publicly available scRNA-Seq data from 10 ATC tumors, 7

PTC tumors and 6 adjacent normal thyroid tissues with the GEO
Frontiers in Oncology 04
accession number GSE193581 were used for our study (26). Raw

data composed of approximately 71,831 cells were filtered by using

quality metrics (percentage of mitochondrial genes) with Scanpy

(version 1.9.3). Single cells that had fewer than 200 genes or more

than 6,000 genes detected were removed. Doublets were removed

from each sample (Scrublet, version=0.2.3). Approximately 40,070

cells passed the quality control. The count matrix was log

normalized and Z transformed (scanpy, version 1.9.3). The batch

effect was evaluated and corrected (scanorama, version 1.7.3). The

scanorama-corrected data were clustered by using the Elbow

method, and 30 principal components were retained to determine

the number of clusters (k) by using the k-means clustering

algorithm. The k-mean value of 10 was used for our study.

Clusters were automatically annotated for different cell types

(CellTypist, version 1.5.2). Epithelial cells from k-mean clusters

were extracted to perform differential gene expression between

ATC, PTC and adjacent normal thyroid tissues (normal cells)

within the epithelial cluster. Differential gene expression was

performed by using the Wilcoxon rank sum test (scanpy, version

1.9.3) of 3 groups of ATC, PTC and normal cells.
Statistical analysis

Statistical relevance was determined using GraphPad Prism 8.

The Shapiro–Wilk test was used to determine the normality of

distribution, and the F test was used to determine the equality of

variances. Means within a dataset with equal variance were

compared by 1-way ANOVA followed by Tukey’s multiple-

comparisons test. Statistical significance between non-Gaussian

paired distributions was calculated using the nonparametric

Friedman’s test followed by Dunn’s multiple-comparisons test.

The analysis of tumor growth was performed using 2-way

ANOVA and Bonferroni’s post-tests. Survival curves were

compared by using a log-rank test (c2). For Western blot and

imaging data, statistical analysis was performed using the

nonparametric Friedman’s test followed by Dunn’s multiple-

comparisons test. Data were considered statistically significant (*),

very statistically significant (**), and highly statistically significant

(***) at P < 0.05, P < 0.01, and P < 0.001, respectively.
Results

NHEJ- and HR-related genes are
differentially expressed in ATC and
PTC tumors

We used a publicly available dataset of single-cell

transcriptomes from 10 ATC tumors, 7 PTC tumors, and 6

adjacent normal thyroid tissues (GSE193581) to determine the

expression of genes involved in NHEJ and HR pathways. A total

of 40 070 cells out of 71 831 passed the quality control and were

investigated for further analyses. We performed k-mean clustering

(k-mean value 10) and automated identification of 10 major cell

types found in the tumor microenvironment (Figures 1A, B). The
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differential gene expression was investigated from the epithelial

cluster because both normal thyroid cells and tumor cells are of

epithelial origin (Figure 1C, Supplementary Table). We determined

the differential expression of genes highly involved in NHEJ and HR

pathways (KEGG references: K10980 and map03440, respectively)

in tumors (PTC and ATC) and normal thyroid tissues (NORM).

NHEJ- (XRCC6, XRCC5, PRKDC) and HR‐ (SSBP1, SEM1, RPA2,

RPA3)-related genes were found to be expressed in both normal

follicular and thyroid cancer cells. The mean expression of NHEJ-

related genes (XRCC6, XRCC5, PRKDC) decreased in ATC

epithelial cells compared to normal thyroid and PTC cells. The

fraction of cells expressing HR-related genes (SSBP1, SEM1, RPA2,

RPA3) was reduced but with a similar mean expression compared to

normal cells and PTC (Figures 1D, E). These data suggest that both

the HR and NHEJ pathways exist in ATC and cooperate and/or

compete for DSB repair.
Frontiers in Oncology 05
These results show that HR- and NHEJ-related genes are

expressed by PTC and ATC cells from patients.
Cell cycle checkpoint inhibitors abrogate
G2/M arrest in g−irradiated thyroid
cancer cells

To determine optimal experimental conditions, the cytotoxicity

of checkpoint kinase inhibitors (caffeine, UCN-01) and g-radiation
was evaluated in 3 cell lines pertaining to different histological

subtypes of thyroid cancer: C643, Hth74 (anaplastic) and TPC-1

(papillary) cells (27–29). Cells were cultivated for 24 hours in the

presence of increasing concentrations of caffeine (an inhibitor of

ATM and ATR: 0.5 mM-5 mM) or UCN-01 (an inhibitor of CHK1:

0-100 nM) and/or after g‐radiation (0-10 Gy). Based on the dose–
B

C

D

E

A

FIGURE 1

NHEJ- and HR-related genes are differentially expressed in ATC and PTC tumors. (A) The publicly available scRNA-Seq data from 10 ATC tumors, 7
PTC tumors, and 6 adjacent normal thyroid tissues with the GEO accession number GSE193581 were used for our study (26). Raw data composed of
approximately 71,831 cells were filtered by using quality metrics, and approximately 40,070 cells passed the quality control. The scanorama-
corrected data were clustered using the Elbow method, and 30 principal components were retained to determine the number of clusters (k) by
using the k-means clustering algorithm (k-mean value 10). The k-mean value of 10 was used for our study. (B) Clusters were automatically
annotated for different cell types by using CellTypist (version 1.5.2). (C) Clustering of cells expressing epithelial markers. (D, E) Plot showing mean
expression in group and fraction of expressing cells within the epithelial cells cluster of genes involved in HR and NHEJ pathways. The differential
gene expression was performed using scanpy (version 1.9.3) and the Wilcoxon rank sum test for 3 groups: ATC, PTC, and normal cells.
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response relationship (Supplementary Figure 1), subtoxic

concentrations were selected for further analyses (i.e., 50 nM for

UCN-01 and 2.5 mM for caffeine).

To investigate checkpoint control, the 3 cell lines were exposed

to 10 Gy of g-irradiation (IR) and analyzed by flow cytometry

(Figure 2A). After 24 hours, C643 cells accumulated in G2/M

(arrows on Figure 2B), indicating that checkpoint control

prevented entry into mitosis. DNA damage resulting from g-
irradiation blocked mitosis in C643 (78%), TPC-1 (43%), and

Hth74 (44%) cells (Figure 2C, Supplementary Figures 2, 3). In the

presence of caffeine, the percentages of g-irradiated cells in G2/M

were reduced to 39%, 21%, and 32% in C643, TPC-1, and Hth74

cells, respectively (Figure 2C, Supplementary Figures 2, 3). A similar

effect was obtained with another checkpoint inhibitor (UCN-01),

although less efficiently in TPC‐1 cells. Under these conditions,

apoptosis evaluated by DNA fragmentation (sub-G1 peak)

and polyploidy (>G2/M) remained negligible (Figure 2D,

Supplementary Figures 2–4).

These data thus suggest that checkpoint inhibitors allow g-
irradiated thyroid cells to escape G2/M arrest and enter the

G1 phase.
g−Irradiated thyroid cells undergo mitosis
in the presence of caffeine and UCN-01

To confirm that g-irradiated cells underwent effective mitosis in

the presence of checkpoint inhibitors, C643 cells were labeled for

histone 3 phosphoserine 10 (H3pSer10) and analyzed for their

DNA content by flow cytometry (Figure 2E). g-Irradiation
increased the percentages of G2/M cells but did not significantly

modify H3pSer10 labeling (4%). In contrast, the spindle inhibitor

Taxol increased the percentages of H3pSer10-positive cells from 4%

(control) to 41% (Figures 2F, G). Since Taxol inhibits the

cytokinesis of mitotic cells, it is estimated that a significant

proportion of C643 cells re-entered G1 after 24 hours. In the

presence of UCN-01 and Taxol, 23% of g-irradiated C643 cells

were positive for H3pSer10. Checkpoint abrogation by UCN-01

thus allowed a significant proportion of g-irradiated cells to undergo
mitosis (20%, the difference between 23% and 3%) (Figures 2F, G).

Similar conclusions were drawn using doxorubicin, a

chemotherapeutic compound used in patients with advanced

thyroid cancer (Figure 2H). It thus appears that when cell cycle

checkpoints are inhibited by UCN-01, C643 cells divide during the

24-hour period despite being g-irradiated. These conclusions were
extended to another cell line (Hth74) treated with caffeine

(Supplementary Figure 5).
g−Irradiation is genotoxic to anaplastic
thyroid cancer cells

Data from Figure 2 show that a significant proportion of g-
irradiated cells survive and undergo mitosis in the presence of

checkpoint inhibitors. To evaluate the extent of DNA damage, cells
Frontiers in Oncology 06
were stained for Ser139 phosphorylation of H2AX (g-H2AX). As

shown in panel A of Figure 3, g-irradiation induced a rapid increase

of g-H2AX foci in C643 cells, indicating the onset of DNA damage.

The maximum number of g-H2AX foci enumerated at 2 hours

gradually decreased at 5 and 24 hours post-irradiation. Similar

observations were confirmed by measuring the mean intensity of

fluorescence (Figure 3B) and by immunoblotting (Figures 3C, D).

Finally, another marker of DNA damage repair, 53BP1, further

validated the conclusions (Figures 3E, F).

Taken together, these results show that, as expected, a g-
irradiation dose of 10 Gy induces significant damage, suggesting

that thyroid cancer cells can efficiently repair their DNA in response

to g-irradiation.
DNA double-strand breaks are efficiently
repaired in thyroid cancer cells

The efficiency of these 2 repair pathways was quantified using

GFP-based reporter vectors in C643, TPC-1, and Hth74 cells. In these

systems, functional GFP is expressed when a DSB (created in vitro by

the I-SceI endonuclease) is repaired in cellulo by HR or NHEJ

(Figure 4A). Flow cytometry data were normalized to an internal

control (pHcRed) to eliminate variations in transfection efficiencies.

Absolute rates of DNA repair efficiency were calculated based on the

ratio between the number of GFP+ cells generated by the HR and

NHEJ reporters and the number of HcRed+ cells. Relative repair

efficiencies were obtained by normalizing these ratios with a control

GFP plasmid. As predicted, C643, TPC-1, and Hth74 cells efficiently

repaired the DNA lesions induced by g-irradiation using both HR

and NHEJ pathways (Figures 4B–G). Repair efficiencies significantly

increased in most experimental settings after g-irradiation except for

NHEJ in TPC-1 cells and HR in Hth74 and TPC-1 cells. Similar

conclusions were obtained with another DNA-damaging agent

(doxorubicin), except for HR in C643 and TPC-1 cells.

These results show that thyroid cells are able to actively repair

genomic lesions by HR and NHEJ.
Inhibition of double-strand break repair
induces apoptosis of thyroid
carcinoma cells

Since thyroid cancer cells require efficient DNA repair, we

evaluated the effect of NHEJ and HR inhibitors in the presence of

agents inducing DSBs, such as doxorubicin. RI-1 is a small molecule

that inhibits the central recombination protein RAD51 involved in

the gene conversion pathway of HR (RI-1) (31). SCR7 interferes

with the binding of DNA ligase IV (LIG4) to DNA and thereby

inhibits NHEJ (32). The pro-apoptotic effect of these 2 inhibitors on

thyroid cell lines was evaluated by Annexin V and 7-AAD labeling.

Each inhibitor used alone had only a minor effect on the survival of

C643, TPC-1, and Hth74 cells (Figures 5A–C). Similarly, RI-1 was

inefficient in significantly increasing doxorubicin-induced apoptosis

in C643 and TPC-1 cells. In contrast, SCR7 combined with
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FIGURE 2

Thyroid cancer C643 cells bypass the mitotic checkpoint induced by g−irradiation in the presence of UCN-01 or caffeine. (A) Thyroid carcinoma cells
(C643) were g-irradiated with 10 Gy and/or cultivated with caffeine (2.5 mM) or UCN-01 (50 nM). After 24 hours, the cells were fixed and
permeabilized with ethanol and labeled with propidium iodide. (B) The cell cycle profiles were analyzed by flow cytometry and histograms indicating
the fluorescent profile of propidium iodide (PI) corresponding to cell DNA content (x-axis) and the cell count (y-axis). (C, D) Histogram showing
percentages of cells in G2/M and sub-G1 calculated from 4 independent experiments. (E) Mitotic trap assay. Three hours after g-irradiation (IR),
UCN-01 (50 nM, UCN-01), and/or caffeine (2.5 mM, Caff), C643 thyroid cells were incubated with taxol at 50 nM. Sixteen hours later, the cells were
fixed and permeabilized with ethanol. Cells were stained with a histone 3 anti-phosphoserine 10 (H3pSer10) antibody and PI and analyzed by flow
cytometry. (F) Histogram and dot plot indicating on the x-axis fluorescence associated with PI (DNA content) and on the y-axis the fluorescence
associated with staining of anti-H3pSer10. (G) Histogram indicating the percentage of H3pSer10-positive cells from three independent experiments.
(H) C643 cells were analyzed for the staining of H3pSer10 and PI as described in panel A except that doxorubicin (500 nm) was used instead of g-
irradiation. Each bar represents the mean +/- SD. Statistical significance was determined by one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparisons test. Data were considered statistically significant (*), very statistically significant (**), and highly statistically significant
(***) at P < 0.05, P < 0.01, and P < 0.001, respectively.
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doxorubicin efficiently promoted apoptosis of C643 and TPC-1

cells (Figures 5A, B). However, the combination of doxorubicin

with selective inhibitors did not significantly affect the apoptosis of

Hth74 cells (Figure 5C). The onset of apoptosis evaluated by

Annexin-V and 7-AAD labeling was confirmed by measuring
Frontiers in Oncology 08
DNA fragmentation (sub-G1 peak) in different cell lines

(Supplementary Figure 6).

Taken together, these results demonstrate that apoptosis can be

induced in thyroid cells by a combination of a DSB-inducing agent

and inhibitors of DNA repair.
B

C D

E
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A

FIGURE 3

g−Irradiation is genotoxic to thyroid cancer cells. (A) At 0, 2, 5, and 24 hours post-irradiation, C643 cells were analyzed by confocal microscopy after
labeling with an anti-g-H2AX antibody and an Alexa Fluor 488 conjugate (green fluorescence). Nuclei were stained with DAPI (blue fluorescence).
(B) C643 cells were treated as described in panel A and analyzed by flow cytometry. The mean fluorescence intensities (MFI) of g-H2AX foci were
normalized to the control arbitrarily set to 100. Data represent the means of three independent experiments. Statistical significance was determined
by using the nonparametric Friedman test followed by Dunn’s multiple comparisons. (C) Immunoblot analysis of g-irradiated C643 cells labeled with
antibodies directed against g-H2AX and tubulin. (D) Quantification of immunoblot luminescence intensities normalized to mock calculated from 3
independent experiments. Statistical significance was determined by using the nonparametric Friedman test followed by Dunn’s multiple
comparisons. (E) Cells were g-irradiated and analyzed by confocal microscopy after labeling with an anti-53BP1 antibody and an Alexa Fluor 488
conjugate (green fluorescence). Nuclei were stained with DAPI (blue fluorescence). (F) 53BP1 foci were quantified at 0-24 hours post-irradiation
from 3 independent experiments. Each bar represents the mean +/- SD. Statistical significance was determined by using the nonparametric
Friedman test followed by Dunn’s multiple comparisons. The data represent the means of three independent experiments. Data were considered
statistically significant (*) at P < 0.05.
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Inhibition of DNA repair impairs tumor
growth in mouse models

Since the pro-apoptotic activity of SCR7 in combination with

doxorubicin depends on the cell type, its therapeutic potential was

evaluated in 2 mouse models of ATC. Immunodeficient NSG‐

SGM3 mice were inoculated subcutaneously with anaplastic C643

and Hth74 thyroid cancer cells. Once the tumor reached a mean

volume of 50 mm³, mice were injected twice per week with SCR7

(10 mg/kg) or/and doxorubicin (0.5 mg/kg) (Figure 6A). When

used as a single agent, doxorubicin showed no antitumor activity

compared to the vehicle (Figures 6B, C, E, F). In contrast, the

combination of SCR7 with doxorubicin reduced tumor growth and

prolonged the survival of C643-inoculated mice (Figures 6B–D).
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The combination of SCR7 and doxorubicin caused a minor tumor

reduction but significantly increased Hth74-inoculated mice

survival compared to doxorubicin alone (Figures 6E–G).

We conclude that the inhibition of DNA ligase IV increased the

control of tumor growth after doxorubicin treatment in xenograft

murine models of ATC.
Discussion

Thyroid tumors are commonly treated by radiotherapy by using

radioactive iodine (RAI) to cause double-strand breaks (DSBs) (20,

21, 33). The elevated number of DSBs destroys the genome integrity

of cancer cells and causes their elimination. However, non-
B C D

E F G

A

FIGURE 4

ATC and PTC cells efficiently repair DNA double-strand breaks caused by g-irradiation and doxorubicin. (A) Reporter constructs for the analysis of
DNA DSB repair by NHEJ and HR as described in (30). C643, Hth74, and TPC-1 cells were transfected with HR or NHEJ reporter plasmids. DNA
double-strand breaks were induced by g-irradiation or treatment with doxorubicin (300 nM). (B–G) Quantification of HR and NHEJ repair efficiencies
was based on GFP reporter plasmids and calculated as described in the Materials and Methods. The data represent quantification from n>4
independent experiments. Each bar represents the mean +/- SD. Statistical significance was determined by one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparisons test. Data were considered statistically significant (*), and very statistically significant (**), at P < 0.05, and
P < 0.01 respectively.
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homologous end joining (NHEJ) and homologous recombination

(HR), 2 representative DSB repair pathways, are effective in

maintaining genetic information and favor thyroid cancer

resistance to therapies using DNA damaging factors.

Radiotherapy and chemotherapy resistance have been shown to

lead to cancer relapse and poor prognosis of cancer patients (34,

35). The identification of DSB repair inhibitors is urgently needed to

improve the outcomes of these therapies. In principle, inhibition of

cell cycle checkpoint kinases is thus predicted to ameliorate

radiosensitization (36–39).

In this context, we evaluated the effect of 2 checkpoint

inhibitors, caffeine (a methylxanthine alkaloid) and UCN-01 (an

indolocarbazole ATP analog), on thyroid cancer cell lines (38–40).

We used C643, Hth-74 and TPC-1 cell lines cells that are

respectively characterized by HRAS mutation, NF1 mutation and

RET/PTC1 rearrangement (29). HRAS and NF1 mutations are

commonly detected in ATC (respectively 10-20% and 9% of ATC

tumors) (41, 42). These cells are also found to be mutated for TP53

gene (29). Previous studies showed that both UCN-01 and caffeine

increased the sensitivity of tumor cells to chemotherapy (cisplatin,

camptothecin, doxorubicin) and g-radiation (43–46). Our present

study shows that despite successful checkpoint abrogation, g-
radiation in combination with caffeine or UCN-01 has a minor

effect on cell survival. We observed that a significant fraction of

thyroid cancer cells resumed the cell cycle and survived, thus

extending observations in different cancer types (47–49). When

thyroid tumor cells are released from G2 arrest by checkpoint

inhibitors, cells have the possibility either to repair DNA damage

before entering mitosis or to undergo polyploidy. If cells bypass the

mitotic checkpoint without repairing DNA lesions, they undergo

mitotic catastrophe and cell death due to improper segregation of

fragmented chromosomes (50–52). Unexpectedly, we did not

observe significant levels of micronuclei or polyploidy in any of

the treatment combinations (Supplementary Figures 2, 3). In the

absence of apoptosis, mitotic catastrophe, or polyploidy, we

hypothesized that thyroid cancer cells may bypass mitotic

checkpoints and survive. Using a mitotic trap assay, we

demonstrated that a significant proportion of cells successfully

underwent mitosis in the presence of caffeine or UCN-01

(Figure 2, Supplementary Figure 5). The kinetics of g-H2AX and

53BP1 labeling indicated that double-strand DNA lesions induced

by irradiation are rapidly resolved (Figure 4), consistent with other

reports (47–49).

We used publicly available scRNA-seq data to analyze the

expression of key genes involved in the HR and NHEJ pathways

(26). NHEJ- (XRCC6, XRCC5, PRKDC) and HR- (SSBP1, SEM1,

RPA2, RPA3) related genes are expressed by both normal follicular

and thyroid cancer cells. NHEJ-related genes are more highly

expressed in PTC than in ATC. However, the level of HR-related

gene expression is similar between PTC and ATC. These data suggest

that both HR and NHEJ pathways exist in ATC and cooperate and/or

compete for DSB repair in patients. We observed that the DSB repair

capacity using HR and NHEJ globally increased after g-radiation or
B

C

A

FIGURE 5

Inhibition of double-strand break repair induces apoptosis of thyroid
carcinoma cells. (A) C643, (B) TPC-1 and (C) Hth74 74 cells were
treated with LIG4 inhibitor (SCR7; 200 µM) or RAD51 inhibitor (RI-1;
100 µM) and/or doxorubicin (200 nM, Dox). After 48 hours,
apoptotic cells were labeled with Annexin V FITC and 7AAD and
analyzed by flow cytometry. The data represent the mean from 3
independent experiments. Each bar represents the mean +/- SD.
Statistical significance was determined by one-way analysis of
variance (ANOVA) followed by Tukey’s multiple comparisons test.
Data were considered statistically significant (*), and very statistically
significant (**) at P < 0.05, and P < 0.01, respectively.
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doxorubicin treatment in ATC and PTC cells. HR requires a template

and numerous enzymes and can perform an error-free DDR

compared to NHEJ (53). Template-independent NHEJ is

predominant and can lead to mutations (error-prone) in genes

involved in negative regulation of the cell cycle, thus promoting

therapy resistance. NHEJ is initiated by XRCC5 (Ku80) and XRCC6

(Ku70), which directly interact with DSB ends (54). DSB ends are

protected by DNA-dependent protein kinase (DNA-PKcs) before

ligation by the XRCC4-XLF complex and DNA ligase IV (LIG4)
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(Figure 7) (53). Mutations and/or the loss of factors directly involved

in the NHEJ pathway have been associated with increased sensitivity

to DNA-damaging agents (55). The use of selective inhibitors of

NHEJ repair is a groundbreaking therapeutic approach to promote

genome instability by minimizing the dose of chemotherapy and

radiation therapy. In fact, overexpression of DNA-PKcs, LIG4 and

XRCC4 is correlated with poor prognosis in several cancer types, such

as esophageal cancer, colorectal cancer, bladder cancer, ovarian

cancer, and hepatocellular cancer (56–60). Targeting DNA-PKcs
B C D

E F G

A

FIGURE 6

SCR7 combined with doxorubicin inhibits tumor growth in a thyroid carcinoma xenograft mouse model. (A) Tumor growth of C643 and Hth74
thyroid carcinoma cells was evaluated after subcutaneous injection in immunocompromised NSG3GS mice in each flank. Mice were treated
intraperitoneally with PBS, doxorubicin (0.5 mg/kg twice a week, Dox), or SCR7 (10 mg/kg twice a week). (B, E) Graph indicating the mean tumor
volume (mm3) measured bi-weekly over the time from n=5 mice. (C, F) Histogram showing the mean area under individual tumor growth curves
(AUCs). Statistical significance was determined by the nonparametric Kruskal–Wallis test followed by Dunn’s multiple comparisons. (D, G) represent
the corresponding survival curves. Statistical significance was determined by performing a chi-square log-rank (Mantel–Cox) test. Each bar
represents the mean +/- SEM. Data were considered statistically significant (*), and highly statistically significant (***) at P < 0.05, and
P < 0.001, respectively.
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catalytic activity with potent selective inhibitors (NU7441 and KU-

0060648) to increase efficacy of radiotherapy was extensively

evaluated in pre-clinical and clinical trials (NCT02516813,

NCT03770689, NCT04555577, NCT04533750, and NCT03907969)

(61). However, the use of DNA ligase IV inhibitors for cancer

sensitization to DNA damaging agents is poorly exploited (53). It

has been shown that patients with homozygous mutations in DNA

ligase IV are characterized by hyper-radiosensitivity (62–64). scRNA-

seq analysis showed reduced expression of the LIG4 gene at the

mRNA level in normal follicular thyroid cells and thyroid cancer

cells, but its activity is tightly regulated at the protein level by XRCC4

and DNA-PKcs (65). Furthermore, the DNA ligase IV is detected at

protein level in 50% of thyroid cancer patients (https://

www.proteinatlas.org/ENSG00000174405-LIG4/pathology) thus

making DNA ligase IV an attractive target to develop new

antiproliferative agents. The first generation of DNA ligase IV

inhibitors (L189, IC50 value 5+/- 2μM) showed low inhibition

efficacy and specificity compared to SCR7 inhibitor (32, 66).

Recently, it has been shown that SCR7 can also inhibit the DNA

ligase IIIa/XRCC1 (67). The combination therapy of SCR7 and
Frontiers in Oncology 12
chemotherapy was shown to enhance melphalan cytotoxicity in

patients with multiple myeloma (68). Doxorubicin when

administered with SCR7 showed an increased efficacy in cervical

cancer compared to monotreatment (69). In this report, we evaluated

the combination therapy SCR7/doxorubicin for the treatment

of thyroid cancer. Doxorubicin monotherapy showed effective

control of ATC growth in patients when used in the initial stages.

However, repeated administration of doxorubicin is commonly

associated with cancer drug resistance and adverse effects (e.g.

cardiotoxicity, stomatitis, bone marrow aplasia) (70, 71). NSG

immunocompromised mice were shown to be sensitive to

doxorubicin therapy and resulted in gastrointestinal and hepatic

injuries and cardiotoxicity (72). Our preclinical study was

conducted by a well-tolerated dose of doxorubicin (0.5 mg/kg,

twice a week) which represents 1/8 the dose of studies using

xenograft models (72). We showed that the combination of a low

dose of doxorubicin with SCR7 significantly increased cell apoptosis

and enhanced tumor control in C643 xenograft model. The drug

resistance associated with Hth74 cells is not understood and is

probably caused by the presence of NF1 and TP53 mutations (73).
FIGURE 7

A model showing tumor control after the combination of a selective LIG4 inhibitor (SCR7) and doxorubicin in a mouse xenograft model of anaplastic
thyroid cancer. Treatment with doxorubicin causes double-strand DNA breaks (DSBs) which are rapidly repaired by the non-homologous end-
joining pathway (NHEJ). NHEJ is initiated by the recruitment of the Ku complex composed of Ku70 and Ku80 to double-strand DNA ends. Once
attached, DNA-PKcs is recruited for the protection of DNA ends and the formation of the DNA-PK holoenzyme. DNA-PK activates the XRCC4-LIG4-
XLF complex for the final ligation of DNA ends. Once repaired, thyroid cancer cells resume the cell cycle, causing tumor progression. The
combination of doxorubicin and selective inhibitor of DNA ligase IV (SCR7) reduced tumor growth by impairing the NHEJ repair pathway of DSBs
caused by doxorubicin. The accumulation of DSBs causes cell death and tumor regression.
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Our data showed an increased sensitivity of TPC-1 cells (RET/PTC1

rearrangement) to doxorubicin in presence of the DNA ligase IV

inhibitor in vitro. The therapeutic potential of the DNA ligase IV

inhibitor should need further validation on thyroid cancer cell lines

characterized by different cancer genetic drivers (e.g. BRAF p.V600,

NRAS p.Q61K) (29). A broader panel of cell lines, in particular

BRAFV600E positive ATCs (e.g. 8505C, SW1736), would increase

the relevance of the study. By increasing DSBs, the combination

therapy doxorubicin/SCR7 can be used to increase the tumor

mutational burden thereby supporting anti-tumor immunity (74,

75). We showed that the administration of SCR7 and doxorubicin

offers a promising strategy for the treatment of papillary and

anaplastic thyroid cancer.
Conclusions

Taken together, this evidence suggests that SCR7 is a promising

candidate to reduce thyroid cancer resistance to multimodal

therapy. Of note, adequate timing and dosage of combination

therapy is required to prevent therapy-related secondary cancers.

While new inhibitors are becoming available and are currently

evaluated in clinical trials, our results support the proof-of-concept

of a strategy interfering with NHEJ repair in advanced

thyroid cancer.
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