VQ family genes; clear graphical presentation; gymnosperms; large-scale identification; molecular and evolutionary features; Plant Proteins; Amino Acids; Gene Expression Regulation, Plant; Plants/metabolism; Amino Acids/metabolism; Phylogeny; Plant Proteins/metabolism; Cycadopsida/genetics; Cycadopsida/metabolism; Cycadopsida; Plants; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic Chemistry; General Medicine
Abstract :
[en] VQ motif-containing (VQ) proteins are a class of transcription regulatory cofactors widely present in plants, playing crucial roles in growth and development, stress response, and defense. Although there have been some reports on the member identification and functional research of VQ genes in some plants, there is still a lack of large-scale identification and clear graphical presentation of their basic characterization information to help us to better understand this family. Especially in gymnosperms, the VQ family genes and their evolutionary relationships have not yet been reported. In this study, we systematically identified 2469 VQ genes from 56 plant species, including bryophytes, gymnosperms, and angiosperms, and analyzed their molecular and evolutionary features. We found that amino acids are only highly conserved in the VQ domain, while other positions are relatively variable; most VQ genes encode relatively small proteins and do not have introns. The GC content in Poaceae plants is the highest (up to 70%); these VQ proteins can be divided into nine subgroups. In particular, we analyzed the molecular characteristics, chromosome distribution, duplication events, and expression levels of VQ genes in three gymnosperms: Ginkgo biloba, Taxus chinensis, and Pinus tabuliformis. In gymnosperms, VQ genes are classified into 11 groups, with highly similar motifs in each group; most VQ proteins have less than 300 amino acids and are predicted to be located in nucleus. Tandem duplication is an important driving force for the expansion of the VQ gene family, and the evolutionary processes of most VQ genes and duplication events are relatively independent; some candidate VQ genes are preliminarily screened, and they are likely to be involved in plant growth and stress and defense responses. These results provide detailed information and powerful references for further understanding and utilizing the VQ family genes in various plants.
Disciplines :
Agriculture & agronomy
Author, co-author :
Tian, Jinfu ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech ; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
Zhang, Jiahui ; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Morikawa K. Shiina T. Murakami S. Toyoshima Y. Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana FEBS Lett. 2002 514 300 304 10.1016/S0014-5793(02)02388-8
Yuan G. Qian Y. Ren Y. Guan Y. Wu X. Ge C. Ding H. The role of plant-specific VQ motif-containing proteins: An ever-thickening plot Plant Physiol. Biochem. 2021 159 12 16 10.1016/j.plaphy.2020.12.005
Zhang L. Wang K. Han Y. Yan L. Zheng Y. Bi Z. Zhang X. Zhang X. Min D. Genome-wide analysis of the VQ motif-containing gene family and expression profiles during phytohormones and abiotic stresses in wheat (Triticum aestivum L.) BMC Genom. 2022 23 292 10.1186/s12864-022-08519-3
Jiang S.Y. Sevugan M. Ramachandran S. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses BMC Genom. 2018 19 342 10.1186/s12864-018-4733-7
Cheng Y. Zhou Y. Yang Y. Chi Y.J. Zhou J. Chen J.Y. Wang F. Fan B. Shi K. Zhou Y.H. et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors Plant Physiol. 2012 159 810 825 10.1104/pp.112.196816
Kim D.Y. Kwon S.I. Choi C. Lee H. Ahn I. Park S.R. Bae S.C. Lee S.C. Hwang D.J. Expression analysis of rice VQ genes in response to biotic and abiotic stresses Gene 2013 529 208 214 10.1016/j.gene.2013.08.023
Garrido-Gala J. Higuera J.J. Muñoz-Blanco J. Amil-Ruiz F. Caballero J.L. The VQ motif-containing proteins in the diploid and octoploid strawberry Sci. Rep. 2019 9 4942 10.1038/s41598-019-41210-4
Bari R. Jones J.D. Role of plant hormones in plant defence responses Plant Mol. Biol. 2009 69 473 488 10.1007/s11103-008-9435-0
Glazebrook J. Chen W. Estes B. Chang H.S. Nawrath C. Métraux J.P. Zhu T. Katagiri F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping Plant J. 2003 34 217 228 10.1046/j.1365-313X.2003.01717.x
Tuteja N. Abscisic Acid and abiotic stress signaling Plant Signal. Behav. 2007 2 135 138 10.4161/psb.2.3.4156
Roychoudhury A. Paul S. Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress Plant Cell Rep. 2013 32 985 1006 10.1007/s00299-013-1414-5 23508256
Khoso M.A. Hussain A. Ritonga F.N. Ali Q. Channa M.M. Alshegaihi R.M. Meng Q. Ali M. Zaman W. Brohi R.D. et al. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants Front. Plant Sci. 2022 13 1039329 10.3389/fpls.2022.1039329 36426143
Wani S.H. Anand S. Singh B. Bohra A. Joshi R. WRKY transcription factors and plant defense responses: Latest discoveries and future prospects Plant Cell Rep. 2021 40 1071 1085 10.1007/s00299-021-02691-8 33860345
Pitzschke A. Schikora A. Hirt H. MAPK cascade signalling networks in plant defence Curr. Opin. Plant Biol. 2009 12 421 426 10.1016/j.pbi.2009.06.008 19608449
Taj G. Agarwal P. Grant M. Kumar A. MAPK machinery in plants: Recognition and response to different stresses through multiple signal transduction pathways Plant Signal. Behav. 2010 5 1370 1378 10.4161/psb.5.11.13020 20980831
Perochon A. Aldon D. Galaud J.P. Ranty B. Calmodulin and calmodulin-like proteins in plant calcium signaling Biochimie 2011 93 2048 2053 10.1016/j.biochi.2011.07.012
Perruc E. Charpenteau M. Ramirez B.C. Jauneau A. Galaud J.P. Ranjeva R. Ranty B. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings Plant J. 2004 38 410 420 10.1111/j.1365-313X.2004.02062.x
Yan C. Fan M. Yang M. Zhao J. Zhang W. Su Y. Xiao L. Deng H. Xie D. Injury Activates Ca2+/Calmodulin-Dependent Phosphorylation of JAV1-JAZ8-WRKY51 Complex for Jasmonate Biosynthesis Mol. Cell 2018 70 136 149.e7 10.1016/j.molcel.2018.03.013
Pecher P. Eschen-Lippold L. Herklotz S. Kuhle K. Naumann K. Bethke G. Uhrig J. Weyhe M. Scheel D. Lee J. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of ‘VQ-motif’-containing proteins to regulate immune responses New Phytol. 2014 203 592 606 10.1111/nph.12817
Weyhe M. Eschen-Lippold L. Pecher P. Scheel D. Lee J. Ménage à trois: The complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins Plant Signal. Behav. 2014 9 e29519 10.4161/psb.29519
Luo M. Dennis E.S. Berger F. Peacock W.J. Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis Proc. Natl. Acad. Sci. USA 2005 102 17531 17536 10.1073/pnas.0508418102 16293693
Wang A. Garcia D. Zhang H. Feng K. Chaudhury A. Berger F. Peacock W.J. Dennis E.S. Luo M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis Plant J. 2010 63 670 679 10.1111/j.1365-313X.2010.04271.x 20545893
Lei R. Ma Z. Yu D. WRKY2/34-VQ20 Modules in Arabidopsis thaliana Negatively Regulate Expression of a Trio of Related MYB Transcription Factors During Pollen Development Front. Plant Sci. 2018 9 331 10.3389/fpls.2018.00331 29616054
Pan J. Wang H. Hu Y. Yu D. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination Plant J. 2018 95 529 544 10.1111/tpj.13969 29771466
Li Y. Jing Y. Li J. Xu G. Lin R. Arabidopsis VQ Motif-Containing Protein29 represses seedling deetiolation by interacting with phytochrome-interacting factor1 Plant Physiol. 2014 164 2068 2080 10.1104/pp.113.234492 24569844
Hu Y. Chen L. Wang H. Zhang L. Wang F. Yu D. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance Plant J. 2013 74 730 745 10.1111/tpj.12159 23451802
Cheng X. Wang Y. Xiong R. Gao Y. Yan H. Xiang Y. A Moso bamboo gene VQ28 confers salt tolerance to transgenic Arabidopsis plants Planta 2020 251 99 10.1007/s00425-020-03391-5 32318830
Ding H. Yuan G. Mo S. Qian Y. Wu Y. Chen Q. Xu X. Wu X. Ge C. Genome-wide analysis of the plant-specific VQ motif-containing proteins in tomato (Solanum lycopersicum) and characterization of SlVQ6 in thermotolerance Plant Physiol. Biochem. 2019 143 29 39 10.1016/j.plaphy.2019.08.019
Gayubas B. Castillo M.C. Ramos S. León J. Enhanced meristem development, tolerance to oxidative stress and hyposensitivity to nitric oxide in the hypermorphic vq10-H mutant in AtVQ10 gene Plant Cell Environ. 2023 46 3445 3463 10.1111/pce.14685
Lai Z. Li Y. Wang F. Cheng Y. Fan B. Yu J.Q. Chen Z. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense Plant Cell 2011 23 3824 3841 10.1105/tpc.111.090571
Andreasson E. Jenkins T. Brodersen P. Thorgrimsen S. Petersen N.H. Zhu S. Qiu J.L. Micheelsen P. Rocher A. Petersen M. et al. The MAP kinase substrate MKS1 is a regulator of plant defense responses EMBO J. 2005 24 2579 2589 10.1038/sj.emboj.7600737 15990873
Petersen K. Qiu J.L. Lütje J. Fiil B.K. Hansen S. Mundy J. Petersen M. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function PLoS ONE 2010 5 e14364 10.1371/journal.pone.0014364 21203436
Fiil B.K. Petersen M. Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression Plant Signal. Behav. 2011 6 1425 1427 10.4161/psb.6.10.16759 21900742
Ali M.R.M. Uemura T. Ramadan A. Adachi K. Nemoto K. Nozawa A. Hoshino R. Abe H. Sawasaki T. Arimura G.I. The Ring-Type E3 Ubiquitin Ligase JUL1 Targets the VQ-Motif Protein JAV1 to Coordinate Jasmonate Signaling Plant Physiol. 2019 179 1273 1284 10.1104/pp.18.00715 30573672
Hao Z. Tian J. Fang H. Fang L. Xu X. He F. Li S. Xie W. Du Q. You X. et al. A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism Cell Rep. 2022 40 111235 10.1016/j.celrep.2022.111235
Liu H. Wang X. Wang G. Cui P. Wu S. Ai C. Hu N. Li A. He B. Shao X. et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution Nat. Plants 2021 7 748 756 10.1038/s41477-021-00933-x
Xiong X. Gou J. Liao Q. Li Y. Zhou Q. Bi G. Li C. Du R. Wang X. Sun T. et al. The Taxus genome provides insights into paclitaxel biosynthesis Nat. Plants 2021 7 1026 1036 10.1038/s41477-021-00963-5 34267359
Liu Y. Wang S. Li L. Yang T. Dong S. Wei T. Wu S. Liu Y. Gong Y. Feng X. et al. The Cycas genome and the early evolution of seed plants Nat. Plants 2022 8 389 401 10.1038/s41477-022-01129-7
Niu S. Li J. Bo W. Yang W. Zuccolo A. Giacomello S. Chen X. Han F. Yang J. Song Y. et al. The Chinese pine genome and methylome unveil key features of conifer evolution Cell 2022 185 204 217.e14 10.1016/j.cell.2021.12.006
Fu F. Song C. Wen C. Yang L. Guo Y. Yang X. Shu Z. Li X. Feng Y. Liu B. et al. The Metasequoia genome and evolutionary relationship among redwoods Plant Commun. 2023 4 100643 10.1016/j.xplc.2023.100643
Xu K. Wang P. Genome-wide identification and expression analysis of the VQ gene family in Cucurbita pepo L PeerJ 2022 10 e12827 10.7717/peerj.12827 35116202
Wang Y. Tang H. Debarry J.D. Tan X. Li J. Wang X. Lee T.H. Jin H. Marler B. Guo H. et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity Nucleic Acids Res. 2012 40 e49 10.1093/nar/gkr1293
Jiao Y. Wickett N.J. Ayyampalayam S. Chanderbali A.S. Landherr L. Ralph P.E. Tomsho L.P. Hu Y. Liang H. Soltis P.S. et al. Ancestral polyploidy in seed plants and angiosperms Nature 2011 473 97 100 10.1038/nature09916 21478875
Li Z. Baniaga A.E. Sessa E.B. Scascitelli M. Graham S.W. Rieseberg L.H. Barker M.S. Early genome duplications in conifers and other seed plants Sci. Adv. 2015 1 e1501084 10.1126/sciadv.1501084 26702445
Pedrosa A.M. Martins C.d.P.S. Gonçalves L.P. Costa M.G. Late Embryogenesis Abundant (LEA) Constitutes a Large and Diverse Family of Proteins Involved in Development and Abiotic Stress Responses in Sweet Orange (Citrus sinensis L. Osb.) PLoS ONE 2015 10 e0145785 10.1371/journal.pone.0145785
Eulgem T. Rushton P.J. Robatzek S. Somssich I.E. The WRKY superfamily of plant transcription factors Trends Plant Sci. 2000 5 199 206 10.1016/S1360-1385(00)01600-9 10785665
Dong Q. Zhao S. Duan D. Tian Y. Wang Y. Mao K. Zhou Z. Ma F. Structural and functional analyses of genes encoding VQ proteins in apple Plant Sci. 2018 272 208 219 10.1016/j.plantsci.2018.04.029 29807593
Lan X. Wang X. Tao Q. Zhang H. Li J. Meng Y. Shan W. Activation of the VQ Motif-Containing Protein Gene VQ28 Compromised Nonhost Resistance of Arabidopsis thaliana to Phytophthora Pathogens Plants 2022 11 858 10.3390/plants11070858
Kumari A. Kaladhar V.C. Yadav N. Singh P. Reddy K. Gupta K.J. Nitric oxide regulates mitochondrial biogenesis in plants Plant Cell Environ. 2023 46 2492 2506 10.1111/pce.14637
Suzuki N. Rivero R.M. Shulaev V. Blumwald E. Mittler R. Abiotic and biotic stress combinations New Phytol. 2014 203 32 43 10.1111/nph.12797
Kim K.D. El Baidouri M. Abernathy B. Iwata-Otsubo A. Chavarro C. Gonzales M. Libault M. Grimwood J. Jackson S.A. A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean Plant Physiol. 2015 168 1433 1447 10.1104/pp.15.00408 26149573
Li N. Li X. Xiao J. Wang S. Comprehensive analysis of VQ motif-containing gene expression in rice defense responses to three pathogens Plant Cell Rep. 2014 33 1493 1505 10.1007/s00299-014-1633-4 24871256
Mourier T. Jeffares D.C. Eukaryotic intron loss Science 2003 300 1393 10.1126/science.1080559 12775832
Adams K.L. Wendel J.F. Polyploidy and genome evolution in plants Curr. Opin. Plant Biol. 2005 8 135 141 10.1016/j.pbi.2005.01.001 15752992
Rensing S.A. Gene duplication as a driver of plant morphogenetic evolution Curr. Opin. Plant Biol. 2014 17 43 48 10.1016/j.pbi.2013.11.002 24507493
Kaltenegger E. Leng S. Heyl A. The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway BMC Evol. Biol. 2018 18 76 10.1186/s12862-018-1153-x 29843594
Chen L. Wu L. Yang L. Yu H. Huang P. Wang Y. Yao R. Zhang M. TcJAV3-TcWRKY26 Cascade Is a Missing Link in the Jasmonate-Activated Expression of Taxol Biosynthesis Gene DBAT in Taxus chinensis Int. J. Mol. Sci. 2022 23 13194 10.3390/ijms232113194
Bolser D.M. Staines D.M. Perry E. Kersey P.J. Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomic Data Methods Mol. Biol. 2017 1533 1 31 10.1007/978-1-4939-6658-5_1
Goodstein D.M. Shu S. Howson R. Neupane R. Hayes R.D. Fazo J. Mitros T. Dirks W. Hellsten U. Putnam N. et al. Phytozome: A comparative platform for green plant genomics Nucleic Acids Res. 2012 40 D1178 D1186 10.1093/nar/gkr944
Mistry J. Chuguransky S. Williams L. Qureshi M. Salazar G.A. Sonnhammer E.L.L. Tosatto S.C.E. Paladin L. Raj S. Richardson L.J. et al. Pfam: The protein families database in 2021 Nucleic Acids Res. 2021 49 D412 D419 10.1093/nar/gkaa913
Potter S.C. Luciani A. Eddy S.R. Park Y. Lopez R. Finn R.D. HMMER web server: 2018 update Nucleic Acids Res. 2018 46 W200 W204 10.1093/nar/gky448 29905871
Letunic I. Khedkar S. Bork P. SMART: Recent updates, new developments and status in 2020 Nucleic Acids Res. 2021 49 D458 D460 10.1093/nar/gkaa937 33104802
Marchler-Bauer A. Derbyshire M.K. Gonzales N.R. Lu S. Chitsaz F. Geer L.Y. Geer R.C. He J. Gwadz M. Hurwitz D.I. et al. CDD: NCBI’s conserved domain database Nucleic Acids Res. 2015 43 D222 D226 10.1093/nar/gku1221 25414356
Gasteiger E. Gattiker A. Hoogland C. Ivanyi I. Appel R.D. Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis Nucleic Acids Res. 2003 31 3784 3788 10.1093/nar/gkg563 12824418
Voorrips R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs J. Hered. 2002 93 77 78 10.1093/jhered/93.1.77 12011185
Thumuluri V. Almagro Armenteros J.J. Johansen A.R. Nielsen H. Winther O. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models Nucleic Acids Res. 2022 50 W228 W234 10.1093/nar/gkac278 35489069
Nguyen Ba A.N. Pogoutse A. Provart N. Moses A.M. NLStradamus: A simple Hidden Markov Model for nuclear localization signal prediction BMC Bioinform. 2009 10 202 10.1186/1471-2105-10-202 19563654
Horton P. Park K.J. Obayashi T. Fujita N. Harada H. Adams-Collier C.J. Nakai K. WoLF PSORT: Protein localization predictor Nucleic Acids Res. 2007 35 W585 W587 10.1093/nar/gkm259
Bailey T.L. Johnson J. Grant C.E. Noble W.S. The MEME Suite Nucleic Acids Res. 2015 43 W39 W49 10.1093/nar/gkv416
Chen C. Chen H. Zhang Y. Thomas H.R. Frank M.H. He Y. Xia R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data Mol. Plant 2020 13 1194 1202 10.1016/j.molp.2020.06.009
Katoh K. Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability Mol. Biol. Evol. 2013 30 772 780 10.1093/molbev/mst010 23329690
Price M.N. Dehal P.S. Arkin A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments PLoS ONE 2010 5 e9490 10.1371/journal.pone.0009490 20224823
Letunic I. Bork P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation Nucleic Acids Res. 2021 49 W293 W296 10.1093/nar/gkab301 33885785
Kovach A. Wegrzyn J.L. Parra G. Holt C. Bruening G.E. Loopstra C.A. Hartigan J. Yandell M. Langley C.H. Korf I. et al. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences BMC Genom. 2010 11 420 10.1186/1471-2164-11-420 20609256
Krzywinski M. Schein J. Birol I. Connors J. Gascoyne R. Horsman D. Jones S.J. Marra M.A. Circos: An information aesthetic for comparative genomics Genome Res. 2009 19 1639 1645 10.1101/gr.092759.109 19541911
Wang D. Zhang Y. Zhang Z. Zhu J. Yu J. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies Genom. Proteom. Bioinform. 2010 8 77 80 10.1016/S1672-0229(10)60008-3 20451164
Niu S.H. Liu S.W. Ma J.J. Han F.X. Li Y. Li W. The transcriptional activity of a temperature-sensitive transcription factor module is associated with pollen shedding time in pine Tree Physiol. 2019 39 1173 1186 10.1093/treephys/tpz023
Zhang X. Cao H. Wang H. Zhang R. Jia H. Huang J. Zhao J. Yao J. Effects of graphene on morphology, microstructure and transcriptomic profiling of Pinus tabuliformis Carr. roots PLoS ONE 2021 16 e0253812 10.1371/journal.pone.0253812
Li J. Han F. Yuan T. Li W. Li Y. Wu H.X. Wei H. Niu S. The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine Nat. Commun. 2023 14 1947 10.1038/s41467-023-37684-6
Bolger A.M. Lohse M. Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data Bioinformatics 2014 30 2114 2120 10.1093/bioinformatics/btu170
Kim D. Paggi J.M. Park C. Bennett C. Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype Nat. Biotechnol. 2019 37 907 915 10.1038/s41587-019-0201-4
Pertea M. Pertea G.M. Antonescu C.M. Chang T.C. Mendell J.T. Salzberg S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads Nat. Biotechnol. 2015 33 290 295 10.1038/nbt.3122
Langmead B. Salzberg S.L. Fast gapped-read alignment with Bowtie 2 Nat. Methods 2012 9 357 359 10.1038/nmeth.1923
Li B. Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome BMC Bioinform. 2011 12 323 10.1186/1471-2105-12-323 21816040