Affinity capillary electrophoresis; Analytical techniques; Biomolecular interaction; DNA-Encoded chemical libraries; Drug discovery; Fragment-based drug discovery; Microscale thermophoresis; Weak affinity chromatography; Analytical technique; Biomolecular interactions; Chemical libraries; DNA-encoded chemical library; Analytical Chemistry; Spectroscopy
Abstract :
[en] Detection and characterization of biomolecular interactions are the backbone of the drug discovery process. One of the most widely used approaches to developing new drugs is the fragment-based drug discovery (FBDD) strategy. The FBDD approach begins with the discovery of low molecular weight chemical fragments that bind weakly to the target of interest. The identified fragments are then combined or optimized into potent drug-like compounds. Despite its advantages over the high-throughput screening approach, its execution can be challenging. The reason is that discovering weak binders and determining how to grow or bind them are difficult. Therefore, intensive research is still underway to develop analytical technologies to detect and characterize weak, non-covalent interactions. The purpose of this article is to comprehensively review the emerging analytical technologies used in FBDD compared with the conventional ones. Particularly, we summarize their principle, advantages, limitations, and potential artifacts. For each emerging technique, we provide practical examples. Accurate detection and characterization of weak interactions are critical for the success of a FBDD project. Hence, knowledge of the features of the different techniques can support the selection and implementation of the project's analytical platform.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège NARILIS - NAmur Research Institute for LIfe Sciences - UNamur
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Davoine, Clara ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM) ; Namur Medicine & Drug Innovation Center (NAMEDIC – NARILIS), University of Namur, Namur, Belgium
Pochet, Lionel ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique ; Namur Medicine & Drug Innovation Center (NAMEDIC – NARILIS), University of Namur, Namur, Belgium
Fillet, Marianne ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Language :
English
Title :
Advances in analytical technologies detecting and characterizing noncovalent interactions for fragment-based drug discovery
F.R.S.-FNRS - Fonds de la Recherche Scientifique Fondation Léon Fredericq
Funding text :
C. D. received funding from the National Fund for Scientific Research (FNRS) [grant number 40000455 ]; and Fondation Léon Frédéricq [grant number 2020-2021-30 -C.F.F]. L. P. received funding from the University of Namur [grant number L. POCHET-12/2021 ]. M. F. received funding from the University of Liège Fonds Spéciaux—Crédits facultaires [grant number 14758 ].
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Coyle, J., Walser, R., Applied biophysical methods in fragment-based drug discovery. SLAS Discov. Adv. Sci. Drug Discov. 25 (2020), 471–490, 10.1177/2472555220916168.
Lamoree, B., Hubbard, R.E., Current perspectives in fragment-based lead discovery (FBLD). Essays Biochem. 61 (2017), 453–464, 10.1042/EBC20170028.
Lu, W., Kostic, M., Zhang, T., Che, J., Patricelli, M.P., Jones, L.H., Chouchani, E.T., Gray, N.S., Fragment-based covalent ligand discovery. RSC Chem. Biol. 2 (2021), 354–367, 10.1039/D0CB00222D.
Erlanson, D.A., Davis, B.J., Jahnke, W., Fragment-based drug discovery: advancing fragments in the absence of crystal structures. Cell Chem. Biol. 26 (2019), 9–15, 10.1016/j.chembiol.2018.10.001.
Walsh, L., Erlanson, D.A., de Esch, I.J.P., Jahnke, W., Woodhead, A., Wren, E., Fragment-to-Lead medicinal chemistry publications in 2021. J. Med. Chem., 2023, 10.1021/acs.jmedchem.2c01827.
de Esch, I.J.P., Erlanson, D.A., Jahnke, W., Johnson, C.N., Walsh, L., Fragment-to-Lead medicinal chemistry publications in 2020. J. Med. Chem. 65 (2022), 84–99, 10.1021/acs.jmedchem.1c01803.
Erlanson, D.A., de Esch, I.J.P., Jahnke, W., Johnson, C.N., Mortenson, P.N., Fragment-to-Lead medicinal chemistry publications. 2018, J. Med. Chem, 2020, 10.1021/acs.jmedchem.9b01581.
Konteatis, Z., What makes a good fragment in fragment-based drug discovery?. Expet Opin. Drug Discov. 00 (2021), 1–4, 10.1080/17460441.2021.1905629.
Jahnke, W., Erlanson, D.A., de Esch, I.J.P., Johnson, C.N., Mortenson, P.N., Ochi, Y., Urushima, T., Fragment-to-Lead medicinal chemistry publications in 2019. J. Med. Chem. 63 (2020), 15494–15507, 10.1021/acs.jmedchem.0c01608.
Barker, J., Courtney, S., Hesterkamp, T., Ullmann, D., Whittaker, M., Fragment screening by biochemical assay. Expet Opin. Drug Discov. 1 (2006), 225–236, 10.1517/17460441.1.3.225.
Davis, B.J., Erlanson, D.A., Learning from our mistakes : the ‘ unknown knowns ’ in fragment screening. Bioorg. Med. Chem. Lett. 23 (2013), 2844–2852, 10.1016/j.bmcl.2013.03.028.
McGovern, S.L., Helfand, B.T., Feng, B., Shoichet, B.K., A specific mechanism of nonspecific inhibition. J. Med. Chem. 46 (2003), 4265–4272, 10.1021/jm030266r.
Erlanson, D.A., Introduction to fragment-based drug discovery. Top. Curr. Chem. 310 (2012), 1–32, 10.1007/128.
Krimm, I., Applications of ligand and protein-observed NMR in ligand discovery. Appl. Biophys. Drug Discov., 2017, John Wiley & Sons, Ltd, Chichester, UK, 175–195, 10.1002/9781119099512.ch10.
Li, Q., Application of fragment-based drug discovery to versatile targets. Front. Mol. Biosci., 7, 2020, 10.3389/fmolb.2020.00180.
Davies, T.G., Tickle, I.J., Fragment screening using X-ray crystallography. Top Curr Chem, 2011, Springer, Berlin, Heidelberg, 33–59, 10.1007/128_2011_179.
Giannetti, A.M., From experimental design to validated hits: a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Methods Enzymol. 493 (2011), 169–218, 10.1016/B978-0-12-381274-2.00008-X.
Homola, J., Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377 (2003), 528–539, 10.1007/s00216-003-2101-0.
Tsopelas, F., Tsantili-Kakoulidou, A., Advances with weak affinity chromatography for fragment screening. Expet Opin. Drug Discov. 14 (2019), 1125–1135, 10.1080/17460441.2019.1648425.
Ohlson, S., Duong-Thi, M.-D., Emerging technologies for fragment screening. Erlanson, D.A., Jahnke, W., (eds.) Fragm. Drug Discov. Lessons Outlook, 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 173–196, 10.1002/9783527683604.ch08.
Ohlson, S., Duong-Thi, M.-D., Fragment screening for drug leads by weak affinity chromatography (WAC-MS). Methods 146 (2018), 26–38, 10.1016/j.ymeth.2018.01.011.
Rainard, J.M., Pandarakalam, G.C., McElroy, S.P., Using microscale thermophoresis to characterize hits from high-throughput screening: a European lead factory perspective. SLAS Discov. Adv. Sci. Drug Discov. 23 (2018), 225–241, 10.1177/2472555217744728.
Olabi, M., Stein, M., Wätzig, H., Affinity capillary electrophoresis for studying interactions in life sciences. Methods 146 (2018), 76–92, 10.1016/j.ymeth.2018.05.006.
Galievsky, V.A., Stasheuski, A.S., Krylov, S.N., Capillary electrophoresis for quantitative studies of biomolecular interactions. Anal. Chem. 87 (2015), 157–171, 10.1021/ac504219r.
Farcas, E., Pochet, L., Crommen, J., Servais, A., Fillet, M., Capillary electrophoresis in the context of drug discovery. J. Pharm. Biomed. Anal. 144 (2017), 195–212, 10.1016/j.jpba.2017.02.022.
Wang, Y., Adeoye, D.I., Ogunkunle, E.O., Wei, I.-A., Filla, R.T., Roper, M.G., Affinity capillary electrophoresis: a critical review of the literature from 2018 to 2020. Anal. Chem. 93 (2021), 295–310, 10.1021/acs.analchem.0c04526.
Ouimet, C.M., D'amico, C.I., Kennedy, R.T., Advances in capillary electrophoresis and the implications for drug discovery. Expet Opin. Drug Discov. 12 (2017), 213–224, 10.1080/17460441.2017.1268121.
Favalli, N., Bassi, G., Scheuermann, J., Neri, D., DNA-encoded chemical libraries - achievements and remaining challenges. FEBS Lett. 592 (2018), 2168–2180, 10.1002/1873-3468.13068.
Zimmermann, G., Neri, D., DNA-encoded chemical libraries: foundations and applications in lead discovery. Drug Discov. Today 21 (2016), 1828–1834, 10.1016/J.DRUDIS.2016.07.013.
Scheuermann, J., Neri, D., Dual-pharmacophore DNA-encoded chemical libraries. Curr. Opin. Chem. Biol. 26 (2015), 99–103, 10.1016/j.cbpa.2015.02.021.
Shi, B., Zhou, Y., Huang, Y., Zhang, J., Li, X., Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg. Med. Chem. Lett. 27 (2017), 361–369, 10.1016/j.bmcl.2016.12.025.
Venkatraman, A., Duong-Thi, M.-D., Pervushin, K., Ohlson, S., Mehta, J.S., Pharmaceutical modulation of the proteolytic profile of Transforming Growth Factor Beta induced protein (TGFBIp) offers a new avenue for treatment of TGFBI-corneal dystrophy. J. Adv. Res. 24 (2020), 529–543, 10.1016/j.jare.2020.05.012.
Duong-Thi, M.-D., Bergström, G., Mandenius, C.-F., Bergström, M., Fex, T., Ohlson, S., Comparison of weak affinity chromatography and surface plasmon resonance in determining affinity of small molecules. Anal. Biochem. 461 (2014), 57–59, 10.1016/j.ab.2014.05.023.
Meiby, E., Simmonite, H., le Strat, L., Davis, B., Matassova, N., Moore, J.D., Mrosek, M., Murray, J., Hubbard, R.E., Ohlson, S., Fragment screening by weak affinity chromatography: comparison with established techniques for screening against HSP90. Anal. Chem. 85 (2013), 6756–6766, 10.1021/ac400715t.
Meiby, E., Knapp, S., Elkins, J.M., Ohlson, S., Fragment screening of cyclin G-associated kinase by weak affinity chromatography. Anal. Bioanal. Chem. 404 (2012), 2417–2425, 10.1007/s00216-012-6335-6.
Duong-Thi, M.-D., Bergström, M., Edwards, K., Eriksson, J., Ohlson, S., To Yiu Ying, J., Torres, J., Agmo Hernández, V., Lipodisks integrated with weak affinity chromatography enable fragment screening of integral membrane proteins. Analyst 141 (2016), 981–988, 10.1039/C5AN02105G.
Lecas, L., Hartmann, L., Caro, L., Mohamed-Bouteben, S., Raingeval, C., Krimm, I., Wagner, R., Dugas, V., Demesmay, C., Miniaturized weak affinity chromatography for ligand identification of nanodiscs-embedded G-protein coupled receptors. Anal. Chim. Acta 1113 (2020), 26–35, 10.1016/j.aca.2020.03.062.
Kessler, D., Gmachl, M., Mantoulidis, A., Martin, L.J., Zoephel, A., Mayer, M., Gollner, A., Covini, D., Fischer, S., Gerstberger, T., Gmaschitz, T., Goodwin, C., Greb, P., Häring, D., Hela, W., Hoffmann, J., Karolyi-Oezguer, J., Knesl, P., Kornigg, S., Koegl, M., Kousek, R., Lamarre, L., Moser, F., Munico-Martinez, S., Peinsipp, C., Phan, J., Rinnenthal, J., Sai, J., Salamon, C., Scherbantin, Y., Schipany, K., Schnitzer, R., Schrenk, A., Sharps, B., Siszler, G., Sun, Q., Waterson, A., Wolkerstorfer, B., Zeeb, M., Pearson, M., Fesik, S.W., McConnell, D.B., Drugging an undruggable pocket on KRAS. Proc. Natl. Acad. Sci. USA 116 (2019), 15823–15829, 10.1073/pnas.1904529116.
Coletti, A., Camponeschi, F., Albini, E., Greco, F.A., Maione, V., Custodi, C., Ianni, F., Grohmann, U., Orabona, C., Cantini, F., Macchiarulo, A., Fragment-based approach to identify Ido1 inhibitor building blocks. Eur. J. Med. Chem. 141 (2017), 169–177, 10.1016/j.ejmech.2017.09.044.
Miao, J., Yuan, H., Rao, J., Zou, J., Yang, K., Peng, G., Cao, S., Chen, H., Song, Y., Identification of a small compound that specifically inhibits Zika virus in vitro and in vivo by targeting the NS2B-NS3 protease. Antivir. Res., 199, 2022, 105255, 10.1016/j.antiviral.2022.105255.
Kozielski, F., Sele, C., Talibov, V.O., Lou, J., Dong, D., Wang, Q., Shi, X., Nyblom, M., Rogstam, A., Krojer, T., Fisher, Z., Knecht, W., Identification of fragments binding to SARS-CoV-2 nsp10 reveals ligand-binding sites in conserved interfaces between nsp10 and nsp14/nsp16. RSC Chem. Biol. 3 (2022), 44–55, 10.1039/D1CB00135C.
Reyes Romero, A., Lunev, S., Popowicz, G.M., Calderone, V., Gentili, M., Sattler, M., Plewka, J., Taube, M., Kozak, M., Holak, T.A., Dömling, A.S.S., Groves, M.R., A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Commun. Biol., 4, 2021, 949, 10.1038/s42003-021-02442-1.
Austin, C., Pettit, S.N., Magnolo, S.K., Sanvoisin, J., Chen, W., Wood, S.P., Freeman, L.D., Pengelly, R.J., Hughes, D.E., Fragment screening using capillary electrophoresis (CEfrag) for hit identification of heat shock protein 90 ATPase inhibitors. J. Biomol. Screen 17 (2012), 868–876, 10.1177/1087057112445785.
Farcaş, E., Bouckaert, C., Servais, A.C., Hanson, J., Pochet, L., Fillet, M., Partial filling affinity capillary electrophoresis as a useful tool for fragment-based drug discovery: a proof of concept on thrombin. Anal. Chim. Acta 984 (2017), 211–222, 10.1016/j.aca.2017.06.035.
Farcaş, E., Hanson, J., Pochet, L., Fillet, M., Capillary electrophoretic mobility shift displacement assay for the assessment of weak drug-protein interactions. Anal. Chim. Acta 1034 (2018), 214–222, 10.1016/j.aca.2018.06.024.
Davoine, C., Fillet, M., Pochet, L., Capillary electrophoresis as a fragment screening tool to cross-validate hits from chromogenic assay: application to FXIIa. Talanta, 226, 2021, 122163, 10.1016/j.talanta.2021.122163.
Davoine, C., Pardo, A., Pochet, L., Fillet, M., Fragment hit discovery and binding site characterization by indirect affinity capillary electrophoresis: application to factor XIIa. Anal. Chem. 93 (2021), 14802–14809, 10.1021/acs.analchem.1c03611.
Andrews, S.P., Tehan, B., Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A 2A receptor. Medchemcomm 4 (2013), 52–67, 10.1039/C2MD20164J.
Wichert, M., Krall, N., Decurtins, W., Franzini, R.M., Pretto, F., Schneider, P., Neri, D., Scheuermann, J., Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7 (2015), 241–249, 10.1038/nchem.2158.
Cui, M., Nguyen, D., Gaillez, M.P., Heiden, S., Lin, W., Thompson, M., Reddavide, F.V., Chen, Q., Zhang, Y., Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat. Commun., 14, 2023, 1481, 10.1038/s41467-023-37071-1.
Zhou, Y., Shen, W., Peng, J., Deng, Y., Li, X., Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg. Med. Chem., 45, 2021, 116328, 10.1016/j.bmc.2021.116328.
Zhou, Y., Li, C., Peng, J., Xie, L., Meng, L., Li, Q., Zhang, J., Li, X.D., Li, X., Huang, X., Li, X., DNA-encoded dynamic chemical library and its applications in ligand discovery. J. Am. Chem. Soc. 140 (2018), 15859–15867, 10.1021/jacs.8b09277.
Ohlson, S., Shoravi, S., Fex, T., Isaksson, R., A Method of Screening a Biological Target for Weak Interactions Using Weak Affinity Chromatography. 2006, EP1941269B8.
Saromics Biostructures, A.B., Fragment screening & lead discovery services. https://www.saromics.com/services/drug-discovery/#wac-screen, 2023.
Kvist Reimer, M., R&D initiatives. https://www.redglead.com/rd-initiatives-and-science/#publications, 2023.
Congreve, M., Christopher, J.A., Fragment screening in complex systems. Erlanson, D.A., Jahnke, W., (eds.) Fragm. Drug Discov. Lessons Outlook, 2016, 267–292, 10.1002/9783527683604.ch12.
Štěpánová, S., Kašička, V., Application of capillary electromigration methods for physicochemical measurements. Capill. Electromigr. Sep. Methods, 2018, Elsevier, 547–591, 10.1016/B978-0-12-809375-7.00024-1.
Ansorge, M., Dubský, P., Ušelová, K., Into the theory of the partial-filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte-ligand complexes. Electrophoresis 39 (2018), 742–751, 10.1002/elps.201700385.
Hughes, D.E., Affinity Capillary Electrophoresis Method for Assessing a Biological Interraction of a Ligand/receptor Pair Such as G Protein Coupled Receptor and its Targets as Well as for Drug Screening. 2010, EP2480879A1.
Wartchow, C.A., Podlaski, F., Li, S., Rowan, K., Zhang, X., Mark, D., Huang, K.-S., Biosensor-based small molecule fragment screening with biolayer interferometry. J. Comput. Aided Mol. Des. 25 (2011), 669–676, 10.1007/s10822-011-9439-8.
Kartal, Ö., Andres, F., Lai, M.P., Nehme, R., Cottier, K., waveRAPID—a robust assay for high-throughput kinetic screens with the creoptix WAVEsystem. SLAS Discov. Adv. Sci. Drug Discov. 26 (2021), 995–1003, 10.1177/24725552211013827.
FitzGerald, E.A., Butko, M.T., Boronat, P., Cederfelt, D., Abramsson, M., Ludviksdottir, H., van Muijlwijk-Koezen, J.E., de Esch, I.J.P., Dobritzsch, D., Young, T., Danielson, U.H., Discovery of fragments inducing conformational effects in dynamic proteins using a second-harmonic generation biosensor. RSC Adv. 11 (2021), 7527–7537, 10.1039/D0RA09844B.
Geschwindner, S., Carlsson, J.F., Knecht, W., Application of optical biosensors in small-molecule screening activities. Sensors 12 (2012), 4311–4323, 10.3390/s120404311.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.