Suite de Laplace; Géométrie projective différentielle
Abstract :
[fr] Soit, dans un espace projectif à n dimensions Sn, une suite de Laplace L. Associons à cette suite les espaces S m (m < n) déterminés par m 1 points consécutifs de cette suite. Nous dirons que deux de ces espaces sont consécutifs si parmi les points de L qui les déterminent, il y a m points communs. Soient alors M, N deux points consécutifs d'une seconde suite de Laplace L'. On démontre que si M, N appartiennent à deux espaces Sm consécutifs, deux points consécutifs quelconques de la suite L' appartiennent à deux espaces Sm consécutifs.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.