[en] The alpine ecosystems and communities of central Asia are currently undergoing large-scale ecological and socio-ecological changes likely to affect wildlife-livestock-human disease interactions and zoonosis transmission risk. However, relatively little is known about the prevalence of pathogens in this region. Between 2012 and 2015 we screened 142 rodents in Mongolia's Gobi desert for exposure to important zoonotic and livestock pathogens. Rodent seroprevalence to Leptospira spp. was >1/3 of tested animals, Toxoplasma gondii and Coxiella burnetii approximately 1/8 animals, and the hantaviruses being between 1/20 (Puumala-like hantavirus) and <1/100 (Seoul-like hantavirus). Gerbils trapped inside local dwellings were one of the species seropositive to Puumala-like hantavirus, suggesting a potential zoonotic transmission pathway. Seventeen genera of zoonotic bacteria were also detected in the faeces and ticks collected from these rodents, with one tick testing positive to Yersinia. Our study helps provide baseline patterns of disease prevalence needed to infer potential transmission between source and target populations in this region, and to help shift the focus of epidemiological research towards understanding disease transmission among species and proactive disease mitigation strategies within a broader One Health framework.
Disciplines :
Zoology
Author, co-author :
Esson, Carol; One Health Research Group, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
Samelius, Gustaf; Snow Leopard Trust, Seattle, Washington, USA ; Nordens Ark, Åby Säteri, Hunnebostrand, Sweden
Strand, Tanja M; Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden ; National Veterinary Institute (SVA), Uppsala, Sweden
Lundkvist, Åke; Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
Michaux, Johan ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; Animal Sante Territoire Risque Environnement, Centre International de Recherche Agronomique pour le Developpement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, France
Råsbäck, Therese; National Veterinary Institute (SVA), Uppsala, Sweden
Wahab, Tara; Public Health Agency of Sweden, Stockholm, Sweden
Allen T, Murray KA, Zambrana-Torrelio C, et al. Global hotspots and correlates of emerging zoonotic diseases. Nat Commun. 2017; 8 (1): 1124. doi: 10.1038/s41467-017-00923-8
Mishra C, Samelius G, Khanyari M, et al. Snow leopards in a post-covid-19 world: understanding and managing the increasing risk of emerging infectious diseases in Asia’s high mountains. Policy Brief 12: Global Snow Leopard Ecosystem Protection Program (GSLEP). 2021; 1–10. https://globalsnowleopard.org/wp-content/uploads/2021/10/Disease-strategy-document-FINAL-10.22.21.high-res.pdf
Mishra C, Samelius G, Khanyari M, et al. Increasing risks for emerging infectious diseases within a rapidly changing High Asia. Ambio. 2022; 51 (3): 494–507. doi: 10.1007/s13280-021-01599-7
Luis AD, Hayman DTS, O’Shea TJ, et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B. 2013; 280 (1756): 20122753. doi: 10.1098/rspb.2012.2753
Meerburg BG, Singleton GR, Kijlstra A. Rodent-borne diseases and their risks for public health. Crit Rev Microbiol. 2009; 35 (3): 221–270. doi: 10.1080/10408410902989837
Batsukh Z, Tsolmon B, Otgonbaatar D, et al. One health in Mongolia. Curr Top Microbiol Immunol. 2013; 366: 123–137.
Mishra C, Allen P, McCarthy T, et al. The role of incentive programs in conserving the snow leopard. Conserv Biol. 2003; 17 (6): 1512–1520. doi: 10.1111/j.1523-1739.2003.00092.x
Foggin PM, Foggin JM & Shiirev-Adiya C. Animal and human health among semi-nomadic herders of central Mongolia: Brucellosis and the bubonic plague in Ovörhangay Aimag. Nomadic Peoples. 2000; 4 (1): 148–168. doi: 10.3167/082279400782310683
Odontsetseg N, Mweene AS, Kida H. Viral and bacterial diseases in livestock in Mongolia. Jpn J Vet Res. 2005; 52: 161–162.
Riehm JM, Tserennorov D, Kiefer D, et al. Yersinia pestis in small rodents, Mongolia. Emerg Infect Dis. 2011; 17 (7): 1320–1322. doi: 10.3201/eid1707.100740
Esson C, Skerratt LF, Berger L, et al. Health and zoonotic infections of snow leopards panthera unica in the South Gobi desert of Mongolia. Infect Ecol Epidemiol. 2019; 9: 1604063. doi: 10.1080/20008686.2019.1604063
Esson CL 2018. A One Health approach to investigating the health and prevalence of zoonotic pathogens in snow leopards, sympatric wildlife, domestic animals and humans in the South Gobi Desert in Mongolia [PhD thesis]. Australia: James Cook University.
Adjemian ZJ, Adjemian M, Foley KP, et al. Evidence of multiple zoonotic agents in a wild rodent community in the Eastern Sierra Nevada. J Wildl Dis. 2008; 44 (3): 737–742. doi: 10.7589/0090-3558-44.3.737
Batu N, Wang Y, Liu Z, et al. Molecular epidemiology of Rickettsia sp. and Coxiella burnetii collected from Hyalomma asiaticum in bactrian camels (Camelus bactrianus) in inner Mongolia of China. Ticks Tick-Borne Dis. 2020; 11 (6): 101548. doi: 10.1016/j.ttbdis.2020.101548
Schmidt S, Essbauer SS, Mayer-Scholl A, et al. Multiple infections of rodents with zoonotic pathogens in Austria. Vector-Borne Zoonotic Dis. 2014; 14 (7): 467–475. doi: 10.1089/vbz.2013.1504
Sun WW, Song W, Li MH, et al. Coxiella burnetii seroprevalence and risk factors in cattle farmers and farm residents in three northeastern provinces and inner Mongolia autonomous region, China. Bio Med Res Int. 2016; 2016: 7059196. doi: 10.1155/2016/7059196
Vanderburg S, Rubach MP, Halliday JEB, et al. Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review. PLoS negl trop dis. 2014; 8 (4): e2787. doi: 10.1371/journal.pntd.0002787
Wu Z, Du J, Lu L, et al. Detection of hantaviruses and arenaviruses in three-toes jerboas from the inner Mongolia autonomous region, China. Emerg Microbes Infect. 2018; 7: 35. doi: 10.1038/s41426-018-0036-y
Zhang YZ, Zhang FX, Gao N, et al. Hantaviruses in rodents and humans, inner Mongolia autonomous region, China. Emerg Infect Dis. 2009; 15 (6): 885–891. doi: 10.3201/eid1506.081126
Gilbert AT, Fooks AR, Hayman DTS, et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. Ecohealth. 2013; 10 (3): 298–313. doi: 10.1007/s10393-013-0856-0
Lachish S, Murray KA. The certainty of uncertainty: potential sources of bias and imprecision in disease ecology studies. Front Vet Sci. 2018; 5: 90. doi: 10.3389/fvets.2018.00090
Tabak MA, Pedersen K, Miller RS. Detection error influences both temporal seroprevalence predictions and risk factors associations in wildlife disease models. Ecol Evol. 2019; 9 (18): 10404–10414. doi: 10.1002/ece3.5558
Tapia-Ramirez G, Lorenzo C, Navarrete D, et al. A review of mammarenaviruses and rodent reservoirs in the Americas. Ecohealth. 2022; 19 (1): 22–39. doi: 10.1007/s10393-022-01580-0
Gamble A, Garnier R, Chambert T, et al. Next-generation serology: integrating cross-sectional and capture–recapture approaches to infer disease dynamics. Ecology. 2020; 101 (2): e02923. doi: 10.1002/ecy.2923
Viana M, Mancy R, Biek R, et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol Evol. 2014; 29 (5): 270–279. doi: 10.1016/j.tree.2014.03.002
Johansson Ö, Koeler G, Rauset GR, et al. Sex-specific seasonal variation in puma and snow leopard hem range utilisation. Ecosphere. 2018; 9 (8): e02371. doi: 10.1002/ecs2.2371
Mijiddorj TN, Alexander JS, Samelius G. Livestock depredation by large carnivores in the South Gobi, Mongolia. Wildl Res. 2018; 45 (3): 237–246. doi: 10.1071/WR18009
Batsaikhan N, Samiya R, Shar S, et al. A field guide to the mammals of Mongolia. 2nd ed. Ulaanbaatar: Mongolica Publishing; 2014.
Esson C, Michaux J, Johansson Ö, et al. The importance of genetic tools when studying the distribution of rare and elusive species illustrated by the Dam dwarf hamster. Glob Ecol Conserv. 2017; 12: 166–169. doi: 10.1016/j.gecco.2017.11.003
Ratnasingham S, Hebert PDN. BOLD: the barcode of life data system (http: //www. barcodinglife.Org). Mol Ecol Notes. 2007; 7 (3): 355–364. doi: 10.1111/j.1471-8286.2007.01678.x
Faine S, Adler B, Bolin C, et al. Leptospira and leptospirosis. 2nd ed. MediSci, Melbourne: MediSci Press; 1999.
Verner-Carlsson J, Lohmus M, Sundström K, et al. First evidence of Seoul hantavirus in the wild rat population in the Netherlands. Infect Ecol Epidemiol. 2015; 5 (1): 27215. doi: 10.3402/iee.v5.27215
Chaya D, Parija SB. Performance of polymerase chain reaction for the diagnosis of cystic echinococcosis using serum, urine and cyst fluid samples. Trop Parasitol. 2014; 4 (1): 43–46. doi: 10.4103/2229-5070.129164
Andersson AF, Lindberg M, Jakobsson H, et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008; 3 (7): e2836. doi: 10.1371/journal.pone.0002836
Ghosh S, Debnath A, Sil A, et al. PCR detection of Giardia lamblia in stool: targeting intergenic spacer region of multicopy rRNA gene. Mol Cell Probes. 2000; 14 (3): 181–189. doi: 10.1006/mcpr.2000.0302
Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge Press; 2006.
Plummer M 2003. JAGS: a program for analysis of Bayesian graphical models using Gibb’s sampling. In: Proc. 3rd Int. Work. Distrib. Stat. Comput. Vienna, Austria. (DSC 2023).
R Core Team. 2021. R: A Language And Environment For Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available from: https://www.R-project.org/.
McClure DE. Clinical pathology and sample collection in the laboratory rodent. Et Clin North Am Exot Anim Pract. 1999; 2 (3): 565–590. doi: 10.1016/S1094-9194(17)30111-1
Kallio ER, Klingström J, Gustafsson E, et al. Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment. J gen virol. 2006; 87 (8): 2127–2134. doi: 10.1099/vir.0.81643-0
Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol. 2012; 28 (10): 437–446. doi: 10.1016/j.pt.2012.07.003
Sjöstedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci. 2007; 1105 (1): 1–29. doi: 10.1196/annals.1409.009
Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2005; 50 (1): 505–528. doi: 10.1146/annurev.ento.50.071803.130337
Gholipoury M, Rezai HR, Namroodi S, et al. Zoonotic and non-zoonotic parasites of wild rodents in Turkman Sahra, northeastern Iran. Ian J Parasitol. 2016; 11: 350–357.
Restif O, Hayman DTS, Pulliam J, et al. Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol Lett. 2012; 15 (10): 1083–1094. doi: 10.1111/j.1461-0248.2012.01836.x
Enkhtsetseg N, Altankhuu B, Narangerel B. Study of leptospirosia in animal and livestock. Mong J Agric Sci. 2019; 26 (1): 34–41. doi: 10.5564/mjas.v26i01.1195
Iacobucci E, Taus NS, Ueti MW, et al. Detection and genotypic characterization of Toxoplasma gondii DNA within the milk of Mongolian livestock. Parasitol Res. 2019; 118 (6): 2005–2008. doi: 10.1007/s00436-019-06306-w
Pagmadulam B, Myagmarsuren P, Fereig RM, et al. Seroprevalence of Toxoplasma gondii and Neospora caninum infections in cattle in Mongolia. Vet Parasitol Reg Stud reports. 2018; 14: 11–17. doi: 10.1016/j.vprsr.2018.08.001
Yan X, Han W, Wang Y, et al. Seroprevalence of Toxoplasma gondii infection in sheep in inner Mongolia province, China. Parasite. 2020; 27: 11. doi: 10.1051/parasite/2020008