[en] Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical<SUP>1,2</SUP>. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios<SUP>3</SUP>. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity<SUP>4</SUP>. Isotope ratios, such as deuterium to hydrogen and <SUP>14</SUP>N/<SUP>15</SUP>N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System<SUP>5-7</SUP>. For exoplanets, only a handful of constraints on <SUP>12</SUP>C/<SUP>13</SUP>C exist, pointing to the accretion of <SUP>13</SUP>C-rich ice from beyond the CO iceline of the disks<SUP>8,9</SUP>. Here we report on the mid-infrared detection of the <SUP>14</SUP>NH<SUB>3</SUB> and <SUP>15</SUP>NH<SUB>3</SUB> isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a <SUP>14</SUP>N/<SUP>15</SUP>N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the <SUP>15</SUP>N isotope<SUP>10</SUP>, we expect that <SUP>15</SUP>NH<SUB>3</SUB> will be detectable in several cold, wide-separation exoplanets.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Barrado, David ✱; Center for Astrobiology, Madrid
Mollière, Paul ✱; Max-Planck-Institute for Astronomy, Heidelberg
Patapis, Polychronis ✱; Institute of Particle Physics and Astrophysics, ETH Zurich, Zürich, Switzerland
Min, Michiel; Netherlands Institute for Space Research
Tremblin, Pascal; Université Paris-Saclay, UVSQ, CNRS, CEA, Gif-sur-Yvette, France
Ardevol Martinez, Francisco; Netherlands Institute for Space Research, -, University of Edinburgh, School of Geosciences, University of Edinburgh, Centre for Astrobiology
Whiteford, Niall; American Museum of Natural History, New York
Vasist, Malavika Vijayendra ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Argyriou, Ioannis; Katholieke University of Leuven, Astronomical Institute
Samland, Matthias; Max-Planck-Institute for Astronomy, Heidelberg
Lagage, Pierre-Olivier; CEA Saclay, Service d'Astrophysique
Decin, Leen; Katholieke University of Leuven, Astronomical Institute
Waters, Rens; Netherlands Institute for Space Research, Radboud University Nijmegen, Department of Astronomy and Physics
Henning, Thomas; Max-Planck-Institute for Astronomy, Heidelberg
Morales-Calderón, María; Center for Astrobiology, Madrid
Guedel, Manuel; Max-Planck-Institute for Astronomy, Heidelberg, -, University of Vienna, Department of Astronomy
Vandenbussche, Bart; Katholieke University of Leuven, Astronomical Institute
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Baudoz, Pierre; LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, Meudon, France
Boccaletti, Anthony; LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, Meudon, France
Bouwman, Jeroen; Max-Planck-Institute for Astronomy, Heidelberg
Cossou, Christophe; Université Paris-Saclay, CEA, IRFU, Gif-sur-Yvette, France
Coulais, Alain; CEA Saclay, Service d'Astrophysique, -
Crouzet, Nicolas; Leiden Observatory
Gastaud, René; Université Paris-Saclay, CEA, IRFU, Gif-sur-Yvette, France
Glasse, Alistair; Royal Observatory Edinburgh
Glauser, Adrian M.; Institute of Particle Physics and Astrophysics, ETH Zurich, Zürich, Switzerland
Kamp, Inga; Kapteyn Institute of Astronomy, University of Groningen, Groningen, The Netherlands
Kendrew, Sarah; Space Telescope Science Institute, ESA Office, Baltimore, Maryland
Krause, Oliver; Max-Planck-Institute for Astronomy, Heidelberg
Lahuis, Fred; Netherlands Institute for Space Research
Mueller, Michael; Kapteyn Institute of Astronomy, University of Groningen, Groningen, The Netherlands
Olofsson, Göran; AlbaNova University Center
Pye, John; School of Physics &, Astronomy, Space Research Centre, Space Park Leicester, University of Leicester, Leicester, UK
Rouan, Daniel; LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, Meudon, France
Royer, Pierre; Katholieke University of Leuven, Astronomical Institute
Scheithauer, Silvia; Max-Planck-Institute for Astronomy, Heidelberg
Waldmann, Ingo; University College London, Department of Physics and Astronomy
Colina, Luis; Center for Astrobiology, Madrid
van Dishoeck, Ewine F.; Leiden Observatory
Ray, Tom; Dublin Institute for Advanced Studies, School of Cosmic Physics
Östlin, Göran; Stockholm University, Department of Astronomy
Burrows, A. et al. A nongray theory of extrasolar giant planets and brown dwarfs. Astrophys. J. 491, 856–875 (1997). DOI: 10.1086/305002
Faherty, J. K. in Handbook of Exoplanets (eds Deeg, H. & Belmonte, J.) 531–542 (Springer, 2018).
Madhusudhan, N., Amin, M. A. & Kennedy, G. M. Toward chemical constraints on hot Jupiter migration. Astrophys. J. Lett. 794, L12 (2014). DOI: 10.1088/2041-8205/794/1/L12
Mollière, P. et al. Interpreting the atmospheric composition of exoplanets: sensitivity to planet formation assumptions. Astrophys. J. 934, 74 (2022). DOI: 10.3847/1538-4357/ac6a56
Feuchtgruber, H. et al. The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations. Astron. Astrophys. 551, A126 (2013). DOI: 10.1051/0004-6361/201220857
Alibert, Y. et al. The formation of Jupiter by hybrid pebble–planetesimal accretion. Nat. Astron. 2, 873–877 (2018). DOI: 10.1038/s41550-018-0557-2
Nomura, H. et al. The isotopic links from planet forming regions to the solar system. In Protostars and Planets VII, ASP Conference Series (eds Inutsuka, S.-i. et al.) Vol. 534 (Astronomical Society of the Pacific, 2023).
Zhang, Y. et al. The 13CO-rich atmosphere of a young accreting super-Jupiter. Nature 595, 370–372 (2021). DOI: 10.1038/s41586-021-03616-x
Line, M. R. et al. A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere. Nature 598, 580–584 (2021). DOI: 10.1038/s41586-021-03912-6
Adande, G. R. & Ziurys, L. M. Millimeter-wave observations of CN and HNC and their 15N isotopologues: a new evaluation of the 14N/15N ratio across the galaxy. Astrophys. J. 744, 194 (2012). DOI: 10.1088/0004-637X/744/2/194
Cushing, M. C. et al. The discovery of Y dwarfs using data from the Wide-field Infrared Survey Explorer (WISE). Astrophys. J. 743, 50 (2011). DOI: 10.1088/0004-637X/743/1/50
Morley, C. V. et al. An L band spectrum of the coldest brown dwarf. Astrophys. J. 858, 97 (2018). DOI: 10.3847/1538-4357/aabe8b
Skemer, A. J. et al. The first spectrum of the coldest brown dwarf. Astrophys. J. Lett. 826, L17 (2016). DOI: 10.3847/2041-8205/826/2/L17
Cushing, M. C. et al. An improved near-infrared spectrum of the archetype Y dwarf WISEP J182831.08+265037.8. Astrophys. J. 920, 20 (2021). DOI: 10.3847/1538-4357/ac12cb
Beiler, S. A. et al. The first JWST spectral energy distribution of a Y dwarf. Astrophys. J. Lett. 951, L48 (2023). DOI: 10.3847/2041-8213/ace32c
Argyriou, I. et al. JWST MIRI flight performance: the Medium-Resolution Spectrometer. Astron. Astrophys. 675, A111 (2023).
Burningham, B. et al. Retrieval of atmospheric properties of cloudy L dwarfs. Mon. Not. R. Astron. Soc. 470, 1177–1197 (2017). DOI: 10.1093/mnras/stx1246
Mollière, P. et al. petitRADTRANS. A Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019). DOI: 10.1051/0004-6361/201935470
Min, M., Ormel, C. W., Chubb, K., Helling, C. & Kawashima, Y. The ARCiS framework for exoplanet atmospheres. Modelling philosophy and retrieval. Astron. Astrophys. 642, A28 (2020). DOI: 10.1051/0004-6361/201937377
Tremblin, P. et al. Fingering convection and cloudless models for cool brown dwarf atmospheres. Astrophys. J. Lett. 804, L17 (2015). DOI: 10.1088/2041-8205/804/1/L17
Chubb, K. L. & Min, M. Exoplanet atmosphere retrievals in 3D using phase curve data with ARCiS: application to WASP-43b. Astron. Astrophys. 665, A2 (2022). DOI: 10.1051/0004-6361/202142800
De Furio, M. et al. JWST observations of the enigmatic Y-dwarf WISE 1828+2650. I. Limits to a binary companion. Astrophys. J. 948, 92 (2023). DOI: 10.3847/1538-4357/acbf1e
Phillips, M. W. et al. A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets. Astron. Astrophys. 637, A38 (2020). DOI: 10.1051/0004-6361/201937381
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009). DOI: 10.1146/annurev.astro.46.060407.145222
Zahnle, K. J. & Marley, M. S. Methane, carbon monoxide, and ammonia in brown dwarfs and self-luminous giant planets. Astrophys. J. 797, 41 (2014). DOI: 10.1088/0004-637X/797/1/41
Miles, B. E. et al. Observations of disequilibrium CO chemistry in the coldest brown dwarfs. Astron. J. 160, 63 (2020). DOI: 10.3847/1538-3881/ab9114
Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 619–642 (Univ. Arizona Press, 2014).
Fletcher, L. N. et al. The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio. Icarus 238, 170–190 (2014). DOI: 10.1016/j.icarus.2014.05.007
Öberg, K. I. & Wordsworth, R. Jupiter’s composition suggests its core assembled exterior to the N2 snowline. Astron. J. 158, 194 (2019). DOI: 10.3847/1538-3881/ab46a8
Furuya, K. & Aikawa, Y. Depletion of heavy nitrogen in the cold gas of star-forming regions. Astrophys. J. 857, 105 (2018). DOI: 10.3847/1538-4357/aab768
Bergner, J. B., Öberg, K. I. & Bergin, E. A. et al. An evolutionary study of volatile chemistry in protoplanetary disks. Astrophys. J. 898, 97 (2020). DOI: 10.3847/1538-4357/ab9e71
Visser, R. et al. Nitrogen isotope fractionation in protoplanetary disks. Astron. Astrophys. 615, A75 (2018). DOI: 10.1051/0004-6361/201731898
Bosman, A. D., Cridland, A. J. & Miguel, Y. Jupiter formed as a pebble pile around the N2 ice line. Astron. Astrophys. Lett. 632, L11 (2019). DOI: 10.1051/0004-6361/201936827
Guillot, T. Gautier, D. in Treatise on Geophysics (ed. Schubert, G.) 529–557 (Elsevier, 2015).
Suarez, G. & Metchev, S. Ultracool dwarfs observed with the Spitzer infrared spectrograph – II. Emergence and sedimentation of silicate clouds in L dwarfs, and analysis of the full M5–T9 field dwarf spectroscopic sample. Mon. Not. R. Astron. Soc. 513, 5701–5726 (2022). DOI: 10.1093/mnras/stac1205
Öberg, K. I. & Bergin, E. A. Astrochemistry and compositions of planetary systems. Phys. Rep. 893, 1–48 (2021). DOI: 10.1016/j.physrep.2020.09.004
Turrini, D. et al. Tracing the formation history of giant planets in protoplanetary disks with carbon, oxygen, nitrogen, and sulfur. Astrophys. J. 909, 40 (2021). DOI: 10.3847/1538-4357/abd6e5
Adams, F. C., Meyer, M. R. & Adams, A. D. A theoretical framework for the mass distribution of gas giant planets forming through the core accretion paradigm. Astrophys. J. 909, 1 (2021). DOI: 10.3847/1538-4357/abdd2b
Marleau, G.-D., Coleman, G. A. L., Leleu, A. & Mordasini, C. Exploring the formation by core accretion and the luminosity evolution of directly imaged planets. The case of HIP 65426 b. Astron. Astrophys. 624, A20 (2019). DOI: 10.1051/0004-6361/201833597
Law, D. R. et al. A 3D drizzle algorithm for JWST and practical application to the MIRI Medium Resolution Spectrometer. Astron. J. 166, 45 (2023).
Zalesky, J. A., Line, M. R., Schneider, A. C. & Patience, J. A uniform retrieval analysis of ultra-cool dwarfs. III. Properties of Y dwarfs. Astrophys. J. 877, 24 (2019). DOI: 10.3847/1538-4357/ab16db
Mang, J. et al. Microphysics of water clouds in the atmospheres of Y dwarfs and temperate giant planets. Astrophys. J. 927, 184 (2022). DOI: 10.3847/1538-4357/ac51d3
Line, M. R., Teske, J., Burningham, B., Fortney, J. J. & Marley, M. S. Uniform atmospheric retrieval analysis of ultracool dwarfs. I. Characterizing benchmarks, Gl 570D and HD 3651B. Astrophys. J. 807, 183 (2015). DOI: 10.1088/0004-637X/807/2/183
Tremblin, P. et al. Thermo-compositional diabatic convection in the atmospheres of brown dwarfs and in Earth’s atmosphere and oceans. Astrophys. J. 876, 144 (2019). DOI: 10.3847/1538-4357/ab05db
Tsai, S.-M. et al. VULCAN: an open-source, validated chemical kinetics Python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017). DOI: 10.3847/1538-4365/228/2/20
Feroz, F. & Feroz, M. P. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008). DOI: 10.1111/j.1365-2966.2007.12353.x
Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014). DOI: 10.1051/0004-6361/201322971
Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018). DOI: 10.1093/mnras/sty1877
Hargreaves, R. J. et al. An accurate, extensive, and practical line list of methane for the HITEMP database. Astrophys. J. Suppl. Ser. 247, 55 (2020). DOI: 10.3847/1538-4365/ab7a1a
Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010). DOI: 10.1016/j.jqsrt.2010.05.001
Yurchenko, S. N., Mellor, T. M., Freedman, R. S. & Tennyson, J. ExoMol line lists – XXXIX. Ro-vibrational molecular line list for CO2. Mon. Not. R. Astron. Soc. 496, 5282–5291 (2020). DOI: 10.1093/mnras/staa1874
Rothman, L. S. et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013). DOI: 10.1016/j.jqsrt.2013.07.002
Azzam, A. A. A., Tennyson, J., Yurchenko, S. N. & Naumenko, O. V. ExoMol molecular line lists – XVI. The rotation–vibration spectrum of hot H2S. Mon. Not. R. Astron. Soc. 460, 4063–4074 (2016). DOI: 10.1093/mnras/stw1133
Coles, P. A., Yurchenko, S. N. & Tennyson, J. ExoMol molecular line lists – XXXV. A rotation–vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019). DOI: 10.1093/mnras/stz2778
Sousa-Silva, C., Al-Refaie, A. F., Tennyson, J. & Yurchenko, S. N. ExoMol line lists – VII. The rotation–vibration spectrum of phosphine up to 1500 K. Mon. Not. R. Astron. Soc. 446, 2337–2347 (2014). DOI: 10.1093/mnras/stu2246
Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013). DOI: 10.1088/0004-637X/778/2/153
Ormel, C. W. & Min, M. ARCiS framework for exoplanet atmospheres. The cloud transport model. Astron. Astrophys. 622, A121 (2019). DOI: 10.1051/0004-6361/201833678
Kawashima, Y. & Min, M. Implementation of disequilibrium chemistry to spectral retrieval code ARCiS and application to 16 exoplanet transmission spectra. Indication of disequilibrium chemistry for HD 209458b and WASP-39b. Astron. Astrophys. 656, A90 (2021). DOI: 10.1051/0004-6361/202141548
Greenberg, D., Nonnenmacher, M. & Macke, J. in Proc. 36th International Conference on Machine Learning Vol. 97 (eds Chaudhuri, K. & Salakhutdinov, R.) 2404–2414 (PMLR, 2019).
Burningham, B. et al. Cloud busting: enstatite and quartz clouds in the atmosphere of 2M2224-0158. Mon. Not. R. Astron. Soc. 506, 1944–1961 (2021). DOI: 10.1093/mnras/stab1361
Toon, O. B., McKay, C. P., Ackerman, T. P. & Santhanam, K. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res. Atmos. 94, 16287–16301 (1989). DOI: 10.1029/JD094iD13p16287
Madhusudhan, N. & Seager, S. A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009). DOI: 10.1088/0004-637X/707/1/24
Freedman, R. S., Marley, M. S. & Lodders, K. Line and mean opacities for ultracool dwarfs and extrasolar planets. Astrophys. J. Suppl. Ser. 174, 504–513 (2008). DOI: 10.1086/521793
Freedman, R. S. et al. Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures. Astrophys. J. Suppl. Ser. 214, 25 (2014). DOI: 10.1088/0067-0049/214/2/25
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013). DOI: 10.1086/670067
Schneider, A. D. & Bitsch, B. How drifting and evaporating pebbles shape giant planets. II. Volatiles and refractories in atmospheres. Astron. Astrophys. 654, A72 (2021). DOI: 10.1051/0004-6361/202141096