Assessing the trophic ecology and migration on the exposure of cape petrels and Wilson's storm petrels from Antarctica to perfluoroalkylated substances, trace and major elements.
[en] Chemical pollution is a global concern as contaminants are transported and reach even the remote regions of Antarctica. Seabirds serve as important sentinels of pollution due to their high trophic position and wide distribution. This study examines the influence of migration and trophic ecology on the exposure of two Antarctic seabirds, Wilson's storm petrel (Oceanites oceanicus - Ooc), and Cape petrel (Daption capense - Dca), to chemical elements and perfluoroalkyl substances (PFAS). Our methodology involved assessing the concentration of these pollutants in feather samples obtained from carcasses, offering a practical means for monitoring contamination. Trace and major element concentrations were comparable in both species, suggesting that migratory patterns have a minimal impact on exposure levels. However, Ooc had higher concentration of PFAS compared to Dca (mean, ng g-1dry weight, PFOA: Ooc:0.710, Dca:0.170; PFTrDA: Ooc:0.550, Dca:0.360, and PFTeDA: Ooc:1.01, Dca:0.190), indicating that migration to the more polluted Northern Hemisphere significantly affects PFAS exposure. Furthermore, while no strong associations were found between either trace elements or PFAS and the three stable isotopes (δ13C, δ15N, and δ34S), a negative association was observed between PFUnDA and δ15N, hinting at potential biodilution. The research concludes that the migratory patterns of these seabird species affect their PFAS exposure, underscoring the critical need for further exploration and understanding of these relationships to better inform conservation strategies.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Padilha, J A G ; Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, CBMA - Centre for Molecular and Environmental Biology/ARNET-Aquatic Research Network, Portugal, IB-S, Institute of Science and Innovation for Bio-Sustainability, Department of Biology, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. Electronic address: janeide.padilha@bio.uminho.pt
Santos, S; CBMA - Centre for Molecular and Environmental Biology/ARNET-Aquatic Research Network, Portugal, IB-S, Institute of Science and Innovation for Bio-Sustainability, Department of Biology, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
Willems, T ; ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium, Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
Souza-Kasprzyk, J ; Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
Leite, A; CBMA - Centre for Molecular and Environmental Biology/ARNET-Aquatic Research Network, Portugal, IB-S, Institute of Science and Innovation for Bio-Sustainability, Department of Biology, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
Cunha, L S T ; Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Costa, E S; Environment and Sustainability, State University of Rio Grande do Sul, Assis Brasil Street, 842, Downtown, São Francisco de Paula, Rio Grande do Sul, Brazil
Pessôa, A R ; Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Eens, M ; Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
E, Prinsen; Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
Torres, J P M; Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Das, Krishna ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Lepoint, Gilles ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution
Dorneles, Paulo Renato ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Bervoets, Lieven; ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
Groffen, T ; ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium, Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
Assessing the trophic ecology and migration on the exposure of cape petrels and Wilson's storm petrels from Antarctica to perfluoroalkylated substances, trace and major elements.
This work was funded by the research projects G038615N, G018119N, and 12ZZQ21Nof the Research Foundation Flanders (FWO). TG is funded by a post-doctoral grant of the FWO (grant nr. 12ZZQ21N and 1205724N). This work was also supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (CNPq/MCT 557049/2009-1) and by the Rio de Janeiro State Government Research Agency (FAPERJ E-26/111.505/2010) through the project entitled: “Estudos bioecológicos em Pingüins (Pygoscelis Antarctica, P. papua e P. adeliae) e skuas (Stercorarius maccormickii e C. lonnbergii): determinação de micropoluentes e níveis de estresse através de métodos de amostragem não invasivos”, as well as through a Universal Call CNPq-Project from PRD (proc. 432518/2016–9). This work was also funded by a scientific cooperation established between the Brazilian Foundation for the Coordination and Improvement of Higher Level or Education Personnel (CAPES - process numbers 88881.154725/2017–01 88887.154724/2017–00) and Wallonie Bruxelles International (WBI, from Belgium), coordinated by PRD and KD. We would like to thank the Brazilian Navy, which provided logistical support in Antarctica through the “Secretaria da Comissão Interministerial para os Recursos do Mar” (SECIRM). GL is a F.R.S.-FNRS research associate, and KD is a Senior F.R.S.-FNRS research associate. PRD have research grants from CNPq (PQ-1A proc. 306703/2014–9 and PQ-2 proc. 306847/2016–7, respectively.This work was funded by the research projects G038615N , G018119N , and 12ZZQ21N of the Research Foundation Flanders (FWO). TG is funded by a post-doctoral grant of the FWO (grant nr. 12ZZQ21N and 1205724N ). This work was also supported by the Brazilian National Council for Scientific and Technological Development (CNPq) ( CNPq/MCT 557049/2009-1 ) and by the Rio de Janeiro State Government Research Agency ( FAPERJ E-26/111.505/2010 ) through the project entitled: “Estudos bioecológicos em Pingüins (Pygoscelis Antarctica, P. papua e P. adeliae) e skuas (Stercorarius maccormickii e C. lonnbergii): determinação de micropoluentes e níveis de estresse através de métodos de amostragem não invasivos”, as well as through a Universal Call CNPq -Project from PRD (proc. 432518/2016–9 ). This work was also funded by a scientific cooperation established between the Brazilian Foundation for the Coordination and Improvement of Higher Level or Education Personnel ( CAPES - process numbers 88881.154725/2017–01 88887.154724/2017–00 ) and Wallonie Bruxelles International (WBI, from Belgium), coordinated by PRD and KD. We would like to thank the Brazilian Navy, which provided logistical support in Antarctica through the “Secretaria da Comissão Interministerial para os Recursos do Mar” (SECIRM). GL is a F.R.S.-FNRS research associate, and KD is a Senior F.R.S.-FNRS research associate. PRD have research grants from CNPq ( PQ-1A proc. 306703/2014–9 and PQ-2 proc. 306847/2016–7 , respectively.
Abrams, R.W., Energy and food requirements of pelagic aerial seabirds in different regions of the African sector of the Southern Ocean. Siegfried, Em W.R., Condy, P.R., Laws, R.M., (eds.) Antarctic Nutrient Cycles and Food Webs, 1985, Springer, 466–472, 10.1007/978-3-642-82275-9_65.
Bargagli, R., Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 400:1 (2008), 212–226, 10.1016/j.scitotenv.2008.06.062.
BirdLife International, IUCN Red List of Threatened Species: Daption Capense. 2018 IUCN Red List of Threatened Species https://www.iucnredlist.org/en.
Bond, A.L., Lavers, J.L., Biological archives reveal contrasting patterns in trace element concentrations in pelagic seabird feathers over more than a century. Environ. Pollut., 263, 2020, 114631.
Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A., van Leeuwen, S.P., Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated Environ. Assess. Manag. 7:4 (2011), 513–541.
Burger, J., Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ. Toxicol. 5 (1993), 203–311.
Celis, J.E., Barra, R., Chiang, G., Gonzalez, D., Espejo, W., Studying heavy metals on Antarctica by using non invasive biotic samples of penguins. Oceanogr. Fish. Open Access J. 7:1 (2018), 23–24.
Cherel, Y., Hobson, K.A., Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar. Ecol. Prog. Ser. 329 (2007), 281–287, 10.3354/meps329281.
Cherel, Y., Connan, M., Jaeger, A., Richard, P., Seabird year-round and historical feeding ecology: blood and feather δ13C and δ15N values document foraging plasticity of small sympatric petrels. Mar. Ecol. Prog. Ser. 505 (2014), 267–280, 10.3354/meps10795.
Cipro, C.V.Z., Bustamante, P., Petry, M.V., Montone, R.C., Seabird colonies as relevant sources of pollutants in Antarctic ecosystems: Part 1 - trace elements. Chemosphere 204 (2018), 535–547, 10.1016/j.chemosphere.2018.02.048.
Colominas-Ciuró, R., Santos, M., Coria, N., Barbosa, A., Sex-specific foraging strategies of Adélie penguins (Pygoscelis adeliae): females forage further and, on more krill, than males in the Antarctic Peninsula. Polar Biol. 41:12 (2018), 2635–2641, 10.1007/s00300-018-2395-1.
Stockholm Convention. https://www.pops.int/default.aspx, 2018.
Correia, E., Granadeiro, J.P., Vale, C., Catry, T., Trace elements in relation to trophic ecology of long-distance migratory shorebirds and seabirds in West Africa. Environ. Pollut., 316, 2023, 120674.
Costa, E.S., Santos, M.M., Coria, N.R., Torres, J.P.M., Malm, O., Alves, M.A., dos, S., Antarctic Skuas as bioindicators of local and global mercury contamination. Rev. Eletrôn. Cient. UERGS, 5(3), 2019, 10.21674/2448-0479.53.311-317 Artigo 3.
Croxall, J.P., Wood, A.G., The importance of the Patagonian Shelf for top predator species breeding at South Georgia. Aquat. Conserv. Mar. Freshw. Ecosyst. 12:1 (2002), 101–118, 10.1002/aqc.480.
Cruwys, L., A complete guide to Antarctic wildlife: the birds and marine mammals of the Antarctic continent and the Southern Ocean. Hadoram Shirihai. 2007.London: A&C Black. 544 P, Illustrated, Hard Cover, second ed., 2008, 380–381, 10.1017/S003224740800764 ISBN 978-0-7136-6406-5. Polar Record 44.
Dauwe, T., Bervoets, L., Pinxten, R., Blust, R., Eens, M., Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environ. Pollut. 124:3 (2003), 429–436.
Dehnhard, N., Achurch, H., Clarke, J., Michel, L.N., Southwell, C., Sumner, M.D., Eens, M., Emmerson, L., High inter‐and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment?. J. Anim. Ecol. 89:1 (2020), 104–119.
Espejo, W., Celis, J.E., GonzÃlez-Acuña, D., Banegas, A., Barra, R., Chiang, G., A global overview of exposure levels and biological effects of trace elements in penguins. Em, P., de Voogt, (eds.) Reviews of Environmental Contamination and Toxicology, vol. 245, 2018, Springer International Publishing, 1–64, 10.1007/398_2017_5.
Espejo, W., Padilha, J. de A., Kidd, K.A., Dorneles, P.R., Barra, R., Malm, O., Chiang, G., Celis, J.E., Trophic transfer of cadmium in marine food webs from Western Chilean Patagonia and Antarctica. Mar. Pollut. Bull. 137 (2018), 246–251, 10.1016/j.marpolbul.2018.10.022.
Fijn, R.C., Van Franeker, J.A., Trathan, P.N., Dietary variation in chick-feeding and self-provisioning cape petrel Daption capense and snow petrel Pagodroma nivea at Signy Island, South Orkney Islands, Antarctica. Mar. Ornithol. 40 (2012), 81–87.
Filipovic, M., Laudon, H., McLachlan, M.S., Berger, U., Mass balance of perfluorinated alkyl acids in a pristine boreal catchment. Environ. Sci. Technol. 49:20 (2015), 12127–12135, 10.1021/acs.est.5b03403.
Flood, R., Fisher, A., Wilson's Storm-petrels off the isles of Scily: A ten-year analysis, 2000-2009., 103, 2010, 396–2009.
Gao, K., Miao, X., Fu, J., Chen, Y., Li, H., Pan, W., Fu, J., Zhang, Q., Zhang, A., Jiang, G., Occurrence and trophic transfer of per- and polyfluoroalkyl substances in an Antarctic ecosystem. Environ. Pollut., 257, 2020, 113383, 10.1016/j.envpol.2019.113383.
Gómez-Ramírez, P., Bustnes, J.O., Eulaers, I., Herzke, D., Johnsen, T.V., Lepoint, G., Pérez-García, J.M., García-Fernández, A.J., Jaspers, V.L.B., Per- and polyfluoroalkyl substances in plasma and feathers of nestling birds of prey from northern Norway. Environ. Res. 158 (2017), 277–285, 10.1016/j.envres.2017.06.019.
González-Gaya, B., Dachs, J., Roscales, J.L., Caballero, G., Jiménez, B., Perfluoroalkylated substances in the global tropical and subtropical surface oceans. Environ. Sci. Technol. 48 (2014), 13076–13084, 10.1021/es503490z.
Groffen, T., Lopez-Antia, A., D'Hollander, W., Prinsen, E., Eens, M., Bervoets, L., Perfluoroalkylated acids in the eggs of great tits (Parus major) near a fluorochemical plant in Flanders, Belgium. Environ. Pollut. 228 (2017), 140–148, 10.1016/j.envpol.2017.05.007.
Groffen, T., Lasters, R., Lemière, F., Willems, T., Eens, M., Bervoets, L., Prinsen, E., Development and validation of an extraction method for the analysis of perfluoroalkyl substances (PFASs) in environmental and biotic matrices. J. Chromatogr. B 1116 (2019), 30–37.
Groffen, T., Lasters, R., Bervoets, L., Prinsen, E., Eens, M., Are feathers of a songbird model species (the great Tit, Parus major) suitable for monitoring perfluoroalkyl acids (PFAAs) in blood plasma?. Environ. Sci. Technol. 54:15 (2020), 9334–9344, 10.1021/acs.est.0c00652.
Groffen, T., Bervoets, L., Jeong, Y., Willems, T., Eens, M., Prinsen, E., A rapid method for the detection and quantification of legacy and emerging per-and polyfluoroalkyl substances (PFAS) in bird feathers using UPLC-MS/MS. J. Chromatogr. B, 1172, 2021, 122653.
Herman, R.W., Valls, F.C.L., Hart, T., Petry, M.V., Trivelpiece, W.Z., Polito, M.J., Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol., 164(5), 2017, 115, 10.1007/s00227-017-3142-9.
Jackson, C., Multi-state models for panel data: the msm package for R. J. Stat. Software 38 (2011), 1–28.
Jaspers, V.L.B., Voorspoels, S., Covaci, A., Eens, M., Can predatory bird feathers be used as a non-destructive biomonitoring tool of organic pollutants?. Biol. Lett. 2:2 (2006), 283–285, 10.1098/rsbl.2006.0450.
Jaspers, V.L.B., Covaci, A., Herzke, D., Eulaers, I., Eens, M., Bird feathers as a biomonitor for environmental pollutants: prospects and pitfalls. TrAC, Trends Anal. Chem. 118 (2019), 223–226, 10.1016/j.trac.2019.05.019.
Jerez, S., Motas, M., Palacios, M.J., Valera, F., Cuervo, J.J., Barbosa, A., Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ. Pollut. 159:10 (2011), 2412–2419, 10.1016/j.envpol.2011.06.036.
Jerez, S., Motas, M., Benzal, J., Diaz, J., Barbosa, A., Monitoring trace elements in Antarctic penguin chicks from South Shetland Islands, Antarctica. Mar. Pollut. Bull. 69:1 (2013), 67–75, 10.1016/j.marpolbul.2013.01.004.
Kitching, M., The Wilson's petrel off Northumberland—the first British North Sea record. Bird. World 15:9 (2002), 390–391.
Kojadinovic, J., Corre, M.L., Cosson, R.P., Bustamante, P., Trace elements in three marine birds breeding on Reunion Island (western Indian Ocean): Part 1—factors influencing their bioaccumulation. Arch. Environ. Contam. Toxicol. 52 (2007), 418–430.
Kopp, M., Peter, H.-U., Mustafa, O., Lisovski, S., Ritz, M.S., Phillips, R.A., Hahn, S., South polar skuas from a single breeding population overwinter in different oceans though show similar migration patterns. Mar. Ecol. Prog. Ser. 435 (2011), 263–267, 10.3354/meps09229.
Kuepper, N.D., Böhm, L., Braun, C., Bustamante, P., Düring, R.A., Libertelli, M.M., Quillfeldt, P., Persistent organic pollutants and mercury in a colony of Antarctic seabirds: higher concentrations in 1998, 2001, and 2003 compared to 2014 to 2016. Polar Biol. 45:7 (2022), 1229–1245.
Larramendy, M., Soloneski, S., Emerging Pollutants in the Environment: Current and Further Implications. 2015, BoD – Books on Demand.
Lesco Lescord, G.L., Kidd, K.A., DeSilva, A.O., Williamson, M., Spencer, C., Wang, X., Muir, D.C., Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high arctic. Environ. Sci. Technol. 49:5 (2015), 2694–2702.
Løseth, M.E., Briels, N., Flo, J., Malarvannan, G., Poma, G., Covaci, A., Herzke, D., Nygård, T., Bustnes, J.O., Jenssen, B.M., Jaspers, V.L.B., White-tailed eagle (Haliaeetus albicilla) feathers from Norway are suitable for monitoring of legacy, but not emerging contaminants. Sci. Total Environ. 647 (2019), 525–533, 10.1016/j.scitotenv.2018.07.333.
Løseth, M.E., Briels, N., Flo, J., Malarvannan, G., Poma, G., Covaci, A., Herzke, D., Nygård, T., Bustnes, J.O., Jenssen, B.M., Jaspers, V.L.B., White-tailed eagle (Haliaeetus albicilla) feathers from Norway are suitable for monitoring of legacy, but not emerging contaminants. Sci. Total Environ. 647 (2019), 525–533, 10.1016/j.scitotenv.2018.07.333.
Lucia, M., Bocher, P., Cosson, R.P., Churlaud, C., Bustamante, P., Evidence of species-specific detoxification processes for trace elements in shorebirds. Ecotoxicology 21 (2012), 2349–2362.
Ma, J., Hung, H., Macdonald, R.W., The influence of global climate change on the environmental fate of persistent organic pollutants: a review with emphasis on the Northern Hemisphere and the Arctic as a receptor. Global Planet. Change 146 (2016), 89–108, 10.1016/j.gloplacha.2016.09.011.
Marques, R.C., Garrofe Dórea, J., Rodrigues Bastos, W., de Freitas Rebelo, M., de Freitas Fonseca, M., Malm, O., Maternal mercury exposure and neuro-motor development in breastfed infants from Porto Velho (Amazon), Brazil. Int. J. Hyg Environ. Health 210:1 (2007), 51–60, 10.1016/j.ijheh.2006.08.001.
Metcheva, R., Yurukova, L., Teodorova, S., Nikolova, E., The penguin feathers as bioindicator of Antarctica environmental state. Sci. Total Environ. 362:1 (2006), 259–265, 10.1016/j.scitotenv.2005.05.008.
Metcheva, R., Yurukova, L., Bezrukov, V., Beltcheva, M., Yankov, Y., Dimitrov, K., Trace and toxic elements accumulation in food chain representatives at Livingston Island (Antarctica). Int. J. Biol., 2(1), 2010, p155, 10.5539/ijb.v2n1p155.
Munoz, G., Labadie, P., Geneste, E., Pardon, P., Tartu, S., Chastel, O., Budzinski, H., Biomonitoring of fluoroalkylated substances in Antarctica seabird plasma: development and validation of a fast and rugged method using on-line concentration liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1513 (2017), 107–117, 10.1016/j.chroma.2017.07.024.
Nakamura, K., Tanaka, Y., Hasegawa, M., Distribution status of the Wilson's storm-petrel Oceanites oceanicus in Japanese waters. Bull. Biogeogr. Soc. Jpn. 381–12 (1983), 125–128.
Newman, S.H., et al. Hematological and plasma biochemical reference ranges of Alaskan seabirds: their ecological significance and clinical importance. Colon. Waterbirds, 20, 1997, 492e504, 10.2307/1521600.
Pacyna, A.D., Jakubas, D., Ausems, A.N.M.A., Frankowski, M., Polkowska, Ż., Wojczulanis-Jakubas, K., Storm petrels as indicators of pelagic seabird exposure to chemical elements in the Antarctic marine ecosystem. Sci. Total Environ. 692 (2019), 382–392, 10.1016/j.scitotenv.2019.07.137.
Pacyna-Kuchta, A.D., What should we know when choosing feather, blood, egg or preen oil as biological samples for contaminants detection? A non-lethal approach to bird sampling for PCBs, OCPs, PBDEs and PFASs. Crit. Rev. Environ. Sci. Technol. 53 (2023), 625–649, 10.1080/10643389.2022.2077077.
Padilha, J.A., Carvalho, G.O., Espejo, W., Souza, J.S., Pizzochero, A.C., Cunha, L.S.T., Costa, E.S., Pessôa, A.R.L., Almeida, A.P., Torres, J.P.M., Lepoint, G., Michel, L.N., Das, K., Dorneles, P.R., Factors that influence trace element levels in blood and feathers of Pygoscelis penguins from South Shetland Islands, Antarctica. Environ. Pollut., 284, 2021, 117209, 10.1016/j.envpol.2021.117209.
Padilha, J., de Carvalho, G.O., Willems, T., Lepoint, G., Cunha, L., Pessoa, A.R.L., Eens, M., Prinsen, E., Costa, E., Torres, J.P., Dorneles, P., Das, K., Bervoets, L., Groffen, T., Perfluoroalkylated compounds in the eggs and feathers of resident and migratory seabirds from the Antarctic Peninsula. Environ. Res., 214, 2022, 114157, 10.1016/j.envres.2022.114157.
Padilha, J.A., Carvalho, G.O., Espejo, W., Pessôa, A.R.L., Cunha, L.S.T., Costa, E.S., Torres, J.P.M., Lepoint, G., Das, K., Dorneles, P.R., Trace elements in migratory species arriving to Antarctica according to their migration range. Mar. Pollut. Bull., 188, 2023, 114693, 10.1016/j.marpolbul.2023.114693.
Patterson, D., Hunter, S., Giant Petrel Macronectes spp. Band Recovery Analysis from the International Giant Petrel Banding Project. 2000, 1988–1989 Marine ornithology.
Paul, A.G., Jones, K.C., Sweetman, A.J., A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 43:2 (2009), 386–392, 10.1021/es802216n.
Podder, A., Sadmani, A.H.M.A., Reinhart, D., Chang, N.-B., Goel, R., Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: a transboundary review of their occurrences and toxicity effects. J. Hazard Mater., 419, 2021, 126361, 10.1016/j.jhazmat.2021.126361.
Quillfeldt, P., Seasonal and annual variation in the diet of breeding and non-breeding Wilson's storm-petrels on King George Island, South Shetland Islands. Polar Biol. 25 (2002), 216–221.
R Core Team. R: A Language and Environment for Statistical Computing. 2023, R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org/.
Roman, L., Kastury, F., Petit, S., Aleman, R., Hardesty, B.D., Wilcox, C., Nutrients and seabird biogeography: feather elements differ among oceanic basins in the Southern Hemisphere, reflecting bird size, foraging range and nutrient availability in seawater. Global Ecol. Biogeogr. 32:4 (2023), 495–510.
Roscales, J.L., Vicente, A., Ryan, P.G., González-Solís, J., Jiménez, B., Spatial and interspecies heterogeneity in concentrations of perfluoroalkyl substances (PFASs) in seabirds of the Southern Ocean. Environ. Sci. Technol. 53:16 (2019), 9855–9865, 10.1021/acs.est.9b02677.
Rutkowska, M., Płotka-Wasylka, J., Lubinska-Szczygeł, M., Różańska, A., Możejko-Ciesielska, J., Namieśnik, J., Birds' feathers–suitable samples for determination of environmental pollutants. TrAC, Trends Anal. Chem. 109 (2018), 97–115.
Shastak, Y., Rodehutscord, M., A review of the role of magnesium in poultry nutrition. World Poultry Sci. J. 71:1 (2015), 125–138.
Souza, J.S., Padilha, J.A., Pessoa, A.R.L., Ivar do Sul, J.A., Alves, M.A.S., Lobo-Hajdu, G., Malm, O., Costa, E.S., Torres, J.P.M., Trace elements in feathers of cape petrel (Daption capense) from Antarctica. Polar Biol. 43:7 (2020), 911–917, 10.1007/s00300-020-02683-6.
Sun, J., Bossi, R., Bustnes, J.O., Helander, B., Boertmann, D., Dietz, R., et al. White-tailed eagle (Haliaeetus albicilla) body feathers document spatiotemporal trends of perfluoroalkyl substances in the northern environment. Environ. Sci. Technol. 53:21 (2019), 12744–12753.
Tao, L., Kannan, K., Kajiwara, N., Costa, M.M., Fillmann, G., Takahashi, S., Tanabe, S., Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean. Environ. Sci. Technol. 40:24 (2006), 7642–7648.
Tin, T., Fleming, Z.L., Hughes, K.A., Ainley, D.G., Convey, P., Moreno, C.A., Pfeiffer, S., Scott, J., Snape, I., Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21:1 (2009), 3–33, 10.1017/S0954102009001722.
Wang, Z., Cousins, I.T., Scheringer, M., Hungerbühler, K., Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ. Int. 60 (2013), 242–248, 10.1016/j.envint.2013.08.021.
Warham, J., The Petrels: Their Ecology and Breeding Systems. 1990, Academic Press.
Wing, S.R., Wing, L.C., O'Connell-Milne, S.A., Barr, D., Stokes, D., Genovese, S., Leichter, J.J., Penguins and seals transport limiting nutrients between offshore pelagic and coastal regions of Antarctica under changing Sea Ice. Ecosystems 24:5 (2021), 1203–1221, 10.1007/s10021-020-00578-5.
Young, C.J., Mabury, S.A., Atmospheric perfluorinated acid precursors: chemistry, occurrence, and impacts. De Voogt, Em P., (eds.) Reviews of Environmental Contamination and Toxicology, 208, 2010, Springer, 1–109, 10.1007/978-1-4419-6880-7_1 Perfluorinated alkylated substances.
Zhao, Z., Xie, Z., Möller, A., Sturm, R., Tang, J., Zhang, G., Ebinghaus, R., Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast. Environ. Pollut. 170 (2012), 71–77, 10.1016/j.envpol.2012.06.004.