
Environmental Research 244 (2024) 117827

Available online 10 December 2023
0013-9351/© 2023 Elsevier Inc. All rights reserved.

Assessing the trophic ecology and migration on the exposure of cape petrels 
and Wilson’s storm petrels from Antarctica to perfluoroalkylated 
substances, trace and major elements 

J.A.G. Padilha a,b,c,*, S. Santos b,c, T. Willems d,e, J. Souza-Kasprzyk a,f, A. Leite b,c, L.S. 
T. Cunha a, E.S. Costa g, A.R. Pessôa a, M. Eens j, Prinsen E e, J.P.M. Torres a, K. Das h, G. Lepoint i, 
P.R. Dorneles a,h, Lieven Bervoets d, T. Groffen d,j 

a Biophysics Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil 
b CBMA – Centre for Molecular and Environmental Biology/ARNET-Aquatic Research Network, Portugal 
c IB-S, Institute of Science and Innovation for Bio-Sustainability, Department of Biology, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal 
d ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium 
e Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium 
f Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland 
g Environment and Sustainability, State University of Rio Grande do Sul, Assis Brasil Street, 842, Downtown, São Francisco de Paula, Rio Grande do Sul, Brazil 
h Freshwater and Oceanic ScienCes Unit of ReSearch (FOCUS), Laboratory of Oceanology, University of Liège, 4000, Liège, Belgium 
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A B S T R A C T   

Chemical pollution is a global concern as contaminants are transported and reach even the remote regions of 
Antarctica. Seabirds serve as important sentinels of pollution due to their high trophic position and wide dis
tribution. This study examines the influence of migration and trophic ecology on the exposure of two Antarctic 
seabirds, Wilson’s storm petrel (Oceanites oceanicus - Ooc), and Cape petrel (Daption capense - Dca), to chemical 
elements and perfluoroalkyl substances (PFAS). Our methodology involved assessing the concentration of these 
pollutants in feather samples obtained from carcasses, offering a practical means for monitoring contamination. 
Trace and major element concentrations were comparable in both species, suggesting that migratory patterns 
have a minimal impact on exposure levels. However, Ooc had higher concentration of PFAS compared to Dca 
(mean, ng g− 1dry weight, PFOA: Ooc:0.710, Dca:0.170; PFTrDA: Ooc:0.550, Dca:0.360, and PFTeDA: Ooc:1.01, 
Dca:0.190), indicating that migration to the more polluted Northern Hemisphere significantly affects PFAS 
exposure. Furthermore, while no strong associations were found between either trace elements or PFAS and the 
three stable isotopes (δ13C, δ15N, and δ34S), a negative association was observed between PFUnDA and δ15N, 
hinting at potential biodilution. The research concludes that the migratory patterns of these seabird species affect 
their PFAS exposure, underscoring the critical need for further exploration and understanding of these re
lationships to better inform conservation strategies.   

1. Introduction 

Antarctica is the only continent without permanent human residents 
or industrial activities, making the region pristine with lower anthro
pogenic pressures than the rest of the globe (Abrams, 1985; Bargagli, 
2008; Jerez et al., 2011; Metcheva et al., 2010; Polito et al., 2016). 

However, due to the long-range transport of contaminants and the 
increasing number of research stations and tourist activities, Antarctica 
has been experiencing various environmental impacts, including the 
rising concentrations of several contaminants such as trace elements, 
which are concerning for living organisms due to their bioaccumulative 
nature and potential toxicity (Bargagli, 2008; Jerez et al., 2011; Padilha 
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et al., 2021; Tin et al., 2009). Trace elements occur naturally in the 
environment, but anthropogenic activities such as mining, agriculture 
and industry, can render them bioavailable in various ecosystems, 
including Antarctica (Bargagli, 2008). The isolation of the region, along 
with shorter food chains, makes Antarctica an important site for pollu
tion studies (Gao et al., 2020). Although, the primary source of pollution 
in Antarctica comes by long-range global transport, the King George 
Island, chosen for this study, houses several research stations and is a 
popular location for tourist activities, which significantly contribute to 
the local input of contamination in the area (Espejo et al., 2018a; Jerez 
et al., 2011; Tin et al., 2009). 

In addition to trace elements, emerging anthropogenic compounds 
such as perfluoroalkyl substances (PFAS) can also be found in 
Antarctica, far from their production sites (Gao et al., 2020; Roscales 
et al., 2019). Many PFAS are resistant to fat, oil, water, and heat, making 
them useful in stain- and water-resistant fabrics, specific packaging for 
fatty foods, non-stick cookware, among many other applications (Buck 
et al., 2011). Although the exact transport mechanism is not yet fully 
understood, PFAS can reach other regions of the globe through atmo
spheric and/or oceanic currents (Young and Mabury, 2010; Zhao et al., 
2012), and exposure to PFAS can cause various health issues such as 
cancer, liver dysfunction, chronic kidney damage, among others (Podder 
et al., 2021). Some PFAS, including perfluorooctane sulfonic acid 
(PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic 
acid (PFHxS) have been regulated and banned under the Stockholm 
Convention, an international agreement created to protect human 
health and the environment from a range of persistent pollutants 
(Stockholm Convention, 2023). However, the production of alternative 
compounds continues to increase, and their impacts are still not fully 
understood (Filipovic et al., 2015; Groffen et al., 2017; Stockholm 
Convention, 2018; Wang et al., 2013). 

Seabirds are important sentinels of pollution due to their high tro
phic position, wide distribution, and longevity (Espejo et al., 2018b; 
Jerez et al., 2011; Metcheva et al., 2006; Padilha et al., 2021), and 
migratory birds can carry contaminants to Antarctica, as they travel to 
more polluted regions during the southern winters and return to breed 
during the summer (Cipro et al., 2018; Costa et al., 2019). Wilson’s 
storm petrels (Oceanites oceanicus) are known for their extensive 
migration distances and are frequently observed in the northern hemi
sphere (Flood and Fisher, 2010; Kitching, 2002; Nakamura et al., 1983; 
Warham, 1990), while Cape petrels (Daption capense) only reaches the 
waters of the southern Atlantic Ocean (BirdLife International, 2018; 
Croxall and Wood, 2002). Feeding is the primary route through which 
avian species are exposed to pollutants, which can accumulate in organs 
such as the liver or kidneys (Burger, 1993; Bargagli, 2008; Celis et al., 
2018). Subsequently, pollutants can be eliminated through the molting 
process and sequestered in feathers (Burger, 1993; Bargagli, 2008; Celis 
et al., 2018). 

Feathers are connected to the bloodstream during their growth, 
incorporating contaminants during their formation (Costa et al., 2019; 
Groffen et al., 2020; Jaspers et al., 2006; Løseth et al., 2019a,b). They 
serve as an important pathway for the detoxification of organic and 
inorganic pollutants (Burger, 1993; Jaspers et al., 2019; Rutkowska 
et al., 2018). While feathers are recommended as an alternative to 
invasive matrices, such as organs and tissues, in the analysis of metals 
and POPs, limited information is currently available for emerging con
taminants leaving uncertainties about the usefulness of feathers for 
studying other pollutants such as PFAS (Jaspers et al., 2019). For PFAS 
and similar substances, the correlations between feather concentrations 
and internal tissue concentrations are still unclear (Jaspers et al., 2019; 
Pacyna-Kuchta, 2023). While some authors have reported moderate 
correlations and proposed feathers as a useful non-invasive matrix for 
monitoring PFAS exposure (Gómez-Ramírez et al., 2017), others 
recommend prioritizing different matrices such as plasma over feathers 
for PFAS analyses (Løseth et al., 2019a,b). Additionally, correlations 
vary among PFAS compounds and may be influenced by the specific 

feather types and bird species (Groffen et al., 2020). This ambiguity is 
due to the limited number of studies conducted on this topic, high
lighting the urgent need for further research. 

Conversely, although more studies have investigated the exposure of 
seabirds to trace elements, there is still a need for further research on 
factors affecting their accumulation, such as migration 
(Colominas-Ciuró et al., 2018; Espejo et al., 2018a; Herman et al., 2017; 
Jerez et al., 2013; Metcheva et al., 2010). Similarly, there is limited 
knowledge about the contamination of emerging pollutants in Antarctic 
seabirds (Larramendy and Soloneski, 2015; Munoz et al., 2017; Roscales 
et al., 2019), and the factors that influence their exposure, especially in 
migratory birds. A valuable tool that can provide clearer insights into 
these matters is stable isotope analysis (SIA) of carbon, nitrogen, and 
sulfur (Cherel et al., 2014; Cherel and Hobson, 2007; Herman et al., 
2017). In differentiating between inshore and offshore food items, car
bon ratios expressed as per mill ‰ δ13C play a crucial role, whereas 
nitrogen ratios (δ15N) are essential indicators of trophic positions 
(Cherel et al., 2014; Dehnhard et al., 2020; Polito et al., 2016). 
Furthermore, sulfur ratios (δ34S) serve the purpose of distinguishing 
marine and terrestrial habitats (Connolly et al., 2004). Thus, SIA can be 
used to investigate how migration patterns and different trophic ecol
ogies may influence the exposure of Antarctic seabirds to pollutants 
(Wing et al., 2021). 

Therefore, in order to fill these knowledge gaps, this study aimed to 
assess the influence of migration and trophic ecology (δ13C, δ15N, and 
δ34S) on the exposure of two Antarctic migratory bird species, Wilson’s 
storm petrel (Oceanites oceanicus), and Cape petrel (Daption capense), to 
concentrations of 18 elements and 15 perfluoroalkyl acids (PFAS). Both 
species nest on King George Island in the Antarctic Peninsula, and 
exposure to pollutants was assessed through feather analysis. Our 
objective was to understand the influence of migration and trophic 
ecology on pollutant accumulation and thereby contribute to the pro
tection of these species. Our hypotheses were: (1) Wilson’s storm petrel, 
migrating to the Northern Hemisphere, is exposed to elevated levels of 
trace elements and PFAS compared to Cape petrel, which migrates 
within the Southern Hemisphere, due to greater industrialization and 
population density in the Northern Hemisphere; and (2) trophic ecology 
influences the concentration of trace elements and PFAS in migratory 
birds. 

2. Material and methods 

2.1. Sampling and sample preparation 

Carcasses of Cape petrel and of Wilson’s storm petrel were sampled 
at King George Island (61◦50′-62◦15′S and 57◦30′-59◦ 00′W) in the South 
Shetland Archipelago, Antarctic Peninsula region, during 2010–2011, 
2012–2013 and 2013–2014 austral summers (Fig. 1). Wings were 
retrieved from the remains of Cape petrels and Wilson’s storm petrels 
within their breeding colonies, a feasible approach considering that 
predatory and scavenging birds typically consume all parts of deceased 
birds, leaving the wings intact. Notably, these wings are often found 
intact in Antarctica, facilitating species identification (Souza et al., 
2020). The wings were packed in individual zip-lock polyethylene bags 
and stored at room temperature (approx. 24 ◦C) until the analysis. 

Initially, the primary feather (P9) was removed from each wing. 
Then, the feathers were washed three times with a sequence of 1) Milli-Q 
ultrapure water (Merck Millipore, USA), 2) 0.01% EDTA (Spectrum, 
Tedia, USA), and 3) Milli-Q ultrapure water (Merck Millipore, USA), for 
eliminating external contamination, and then the samples were oven- 
dried at 50 ◦C for 24 h (Marques et al., 2007). Subsequently, the 
feathers were cut into small pieces using ceramic scissors. For stable 
isotope analysis, the samples were additionally washed with a chlor
oform/methanol (2:1, v: v, suprapur Merck, Germany) solution and 
dried at 50 ◦C for 48 h (Padilha et al., 2021, 2023). 
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2.2. ICP MS and UPLC analysis and stable isotope measurements 

The measurements of various elements, including both trace ele
ments (such as lithium [Li], beryllium [Be], chromium [Cr], iron [Fe], 
manganese [Mn], nickel [Ni], copper [Cu], zinc [Zn], arsenic [As], se
lenium [Se], rubidium [Rb], strontium [Sr], cadmium [Cd], tin [Sn], 
barium [Ba], and lead [Pb]) and major elements (specifically magne
sium [Mg] and calcium [Ca]), was conducted utilizing the methodology 
delineated in Padilha et al. (2021). The inclusion of major elements in 
our study stems from their biological importance and environmental 
interactions, as these components are integral to various physiological 
processes within seabirds and are indicative of the broader ecological 
dynamics and nutritional availability in their habitats. For instance, Mg 
is vital for birds, particularly in nerve impulse conduction, muscle 
contraction, and overall energy production, while Ca is crucial for bone 
formation and eggshell production in breeding seabirds (Newman et al., 
1997; Shastak and Rodehutscord, 2015; Roman et al., 2023). 

Briefly, 0.1 g of dry powdered feathers were acid digested in the 
microwave in Teflon vessels, with 5 mL of nitric acid (HNO3, 65% 
suprapur Merck, Germany), 2 mL of hydrogen peroxide (H2O2, 30% 
suprapur Merck, Germany) and 1 mL of Milli-Q ultrapure water (Merck 
Millipore, USA). Subsequently, the samples were transferred to Falcon 
tubes and adjusted to a final volume of 50 mL. The solution was quan
tified using an inductively coupled plasma mass spectrometry (ICP MS; 
PerkinElmer 9000). The measurements of the stable isotopes δ13C, δ15N, 
and δ34S were conducted using continuous flow elemental analysis- 
isotope ratio mass spectrometry (CF-EA-IRMS; OPTIMA) using a Vario 
MICRO cube CeNeS elemental analyzer (Elementar Analysensysteme 
GmBH, Hanau, Germany) coupled to an IsoPrime100 isotope ratio mass 
spectrometer (Isoprime, Cheadle, United Kingdom) according to Padilha 
et al. (2021). 

The determination of PFAS concentrations and their analysis 

followed the methods described in Groffen et al. (2021). Around 100 mg 
of each specimen was measured and placed in 50 mL polypropylene (PP) 
containers. Upon introducing 10 mL of methanol, the specimens un
derwent vortex agitation for a minute and then settled at ambient 
temperature for 48 h. This was followed by a centrifugation step (4 ◦C, 
10 min, 2400 rpm; 1037×g, using an Eppendorf 5804 R centrifuge). The 
resultant clear liquid was decanted into a 15 mL PP container, with an 
addition of 10 ng of every internal standard (ISTD), and subsequently 
fully evaporated with a rotary vacuum device (Martin Christ, RVC 2–25, 
Osterode am Harz, Germany). Afterward, the specimens were recon
stituted using 2 mL of a 2% ammonium hydroxide solution mixed with 
ACN. These specimens were then vortex-agitated and filtered utilizing a 
13 mm Ion Chromatography Acrodisc Syringe Filter featuring a 0.2 μm 
Supor (PES) Membrane (supplied by VWR International, Leuven, 
Belgium) and ultimately poured into a PP auto-injector container. 
Ultra-performance liquid chromatography-tandem ES (− ) mass spec
trometry (UPLC-MS/MS, ACQUITY, TQD, Waters, Milford, MA, USA) 
was used to measure four perfluoroalkane sulfonic acids (PFBS, PFHxS, 
PFOS, and PFDS) and eleven perfluoroalkane carboxylic acids (PFBA, 
PFPeDA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, 
PFTrDA, and PFTeDA) were selected as target analytes. For quality 
control of the samples, the procedures are further explained in Padilha 
et al. (2022, 2023) for trace elements and PFAS, respectively. The ab
breviations utilized for the target PFAS are consistent with those pro
posed by Buck et al. (2011; see Table S1 in the Supplementary Material). 
Further specifications such as MRM transitions, cone voltages, and 
collision energy for each target analyte, inclusive of the ISTDs, are 
detailed in Table S2, with validations provided by Groffen et al. (2019). 
All data are reported in dry weight (dw). Calibration curves were 
established by Groffen et al. (2021, 2019), demonstrating a highly sig
nificant linear fit for all target analytes (p < 0.001; R2 > 0.98). To ensure 
data quality control, procedural blanks containing 10 mL of methanol 

Fig. 1. Map of the study area: a) Antarctic Peninsula in relation to southern South America b) Antarctic peninsula with the King George Island shown in the 
rectangle; c) King George Island (61◦50′-62◦15′S and 57◦30′-59◦00′W) with specific sampling locations marked in red. 
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were introduced for every batch of 20–25 samples. The methanol blanks 
exhibited minimal contamination with PFOA (0.0500–0.150 ng g− 1 

ww), PFDA (<LOQ – 0.280 ng g− 1 ww), and PFUnDA (<LOQ – 0.250 ng 
g− 1 ww), and these contaminant levels were subtracted from the con
centrations of samples within the same batch. Additionally, instru
mental blanks (100% ACN) were regularly analyzed to prevent 
cross-contamination between injections. The quantification of individ
ual PFAS was conducted using the most appropriate internal standard 
(ISTD) based on ionization and extraction efficiency, as detailed in 
Groffen et al. (2019), selecting ISTDs that closely matched the functional 
group and carbon-chain length. The individual limits of quantification 
(LOQs) were established within the matrix, employing a signal-to-noise 
(S/N) ratio of 10 (refer to Table S3 in the Supplementary material). 

2.3. Statistical analysis 

The statistical analyses were performed using R software (Jackson, 
2011; R Core Team, 2023). Due to the non-normality of the data, all data 
were logarithmically transformed (base 10), and parametric tests were 
utilized. Student’s t-test was employed to compare chemical elements, 
PFAS concentrations, and stable isotope values between the two species. 

Correlation matrices were constructed to examine the relationships 
between trace elements and stable isotopes, as well as between PFAS and 
stable isotopes using the package “corrplot". 

To analyze the relationship between PFAS concentrations in the two 
species of migratory seabirds, a Principal Component Analysis (PCA) 
was conducted. The inclusion of isotopes as variables in the PCA aimed 
to observe whether trophic ecology also influenced the differences in 
PFAS and element concentrations between species. 

To explore ecological niches across various species, the SIBER (Stable 
Isotope Bayesian Ellipses in R) method was utilized, incorporating δ15N 
and δ13C data (Jackson, 2011). The SEAb (Standard Ellipse Area 
Bayesian), a Bayesian-derived estimate of the standard ellipse area, was 
used to compare niche widths among groups. This estimation was based 
on the dimensions of the generated ellipse areas and their predicted 
posterior distributions. Groups with similar SEAb values indicate anal
ogous isotopic niche widths, suggesting a reliance on a similar assort
ment of prey species and/or foraging habitats. 

3. Results 

3.1. Trace and major elements, stable isotopes, and trophic niche 

The concentrations of the elements (Li, Be, Mg, Ca, Cr, Fe, Mn, Ni, 
Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Ba, and Pb) and the values of stable iso
topes δ13C, δ15N, and δ34S detected in the feathers of Cape Petrel and 
Wilson’s storm petrel from King George Island, Antarctic Peninsula, are 
presented in Table 1. 

The Student’s t-test conducted to evaluate differences between the 
concentrations of various variables in the two species under study, only 
revealed significant differences for Li (p = 0.02, t = − 2.49, df = 19.5), 
Mg (p < 0.001, t = − 4.79, df = 21.4), Rb (p = 0.04, t = − 2.20, df =
21.9), Ca (p = 0.004, t = 3.25, df = 22.1), and δ15N (p < 0.001, t = 6.60, 
df = 19.4). As observed in Fig. 2, Cape Petrel shows higher average 
concentrations of Li, Mg, and Rb compared to Wilson’s storm petrel, 
while Wilson’s storm petrel exhibits higher average concentrations of Cd 
and δ15N. 

Regarding the correlation matrices between elements and stable 
isotopes (Fig. 3), a moderate negative correlation (− 0.5) can be 
observed between Fe and δ13C in Cape Petrel, and a moderate negative 
correlation (− 0.5) between Be and δ13C in Wilson’s storm petrel. 

The results of the SIBER metrics (Fig. 4) show that Wilson’s storm 
petrel has a larger total niche area compared to Cape Petrel (14.6‰2 >

5.40‰2), as well as a considerably larger standard ellipse area (Fig. 4) 
(6.14‰2 > 1.87‰2). There is no overlap between the standard ellipse 
areas of both species. Ta
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Fig. 2. Boxplots representing the differences in concentrations of Li, Mg, Rb, Cd, and N, on a log10, between Cape Petrel (Daption capense, Dca) and Wilson’s storm 
petrel (Oceanites oceanicus, Ooc). The whiskers indicate the maximum and minimum values, while the box represents the interquartile range with the central line 
representing the median value for each analyzed group. 

Fig. 3. Correlation matrices between trace and major elements and stable isotopes of δ13C, δ15N, and δ34S in feathers of Cape Petrel (a) and Wilson’s storm petrel (b).  
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Principal Component Analysis (Fig. S1a) revealed that the first 
principal component explains 27.8% of the variance in the samples, with 
Mn, Rb, and Li making the highest contributions (Fig. S2). The second 
principal component explains 15.3% of the variance in the samples, with 
Cr, Sn, and Ni making the highest contribution. Additionally, there is an 
overlap observed between the two species. 

3.2. Perfluoroalkyl acids and stable isotopes 

PFBA, PFPeA, PFHpA, PFNA, PFBS, PFHxS, PFOS, and PFDS could 
not be detected in any of the samples and were removed from further 
analyses. The concentrations of the other perfluoroalkyl acids (PFHxA, 
PFOA, PFDA, PFUnDA, PFDoDA, PFTrDA, and PFTeDA) and the values 
of stable isotopes δ13C, δ15N, and δ34S detected in the feathers of Cape 
petrel and Wilson’s storm petrel are presented in Table 2 in ng g− 1 due to 
their lower concentration compared to chemical elements. 

The t-test revealed significant differences for PFOA (p < 0.001, t =
− 8.06, df = 37.9), PFDA (p = 0.01, t = − 2.61, df = 36.9), PFDoDA (p <
0.001, t = − 9.56, df = 37.9), PFTrDA (p = 0.01, t = − 2.85, df = 36.7), 
PFTeDA (p < 0.001, t = − 4.30, df = 37.8), and δ15N (p < 0.001, t =
− 6.74, df = 32.4) between the two species, with the highest concen
trations being observed in Wilson’s storm petrel. Profiles based on the 
relative contribution (Fig. 5) of the studied compounds to PFAS were 
dominated by ΣPFCAs (100%). As observed in Fig. 5, Wilson’s storm 
petrel exhibits higher average concentrations for 

∑
PFAS (ng g− 1 dw) 

compared to Cape petrel, with the predominance of PFUnDA. 
Regarding the correlation matrices between PFAS and stable isotopes 

(Fig. 6), most of the existing correlations are weak, with more pro
nounced moderate correlations observed between PFUnDA and δ15N 
(− 0.41) in Cape petrel, and between PFTeDA and δ34 (− 0.47) in Wil
son’s storm petrel. 

The PCA(Fig. S1b) revealed that the first principal component ex
plains 27.8% of the sample variance, with δ15N, δ13C, and PFDoDA 
making the highest contributions (Fig. S3). The second principal 
component explains 21.1% of the sample variance, with PFUnDA and 
PFTrDA making the highest contributions. There is no clear overlap 
between the two species. 

4. Discussion 

Our results indicate that migratory behaviors do not significantly 
impact the trace and major element concentrations in either studied 
species. However, we observed a difference in PFAS accumulation, with 
Wilson’s storm petrel showing higher concentrations for multiple com
pounds compared to Cape petrel, likely due to the former’s broad- 
ranging migration and higher trophic position. Trophic ecology 
exhibited more significant correlations with PFAS concentrations 
compared to elements, emphasizing the complex interplay between 
environmental factors, diet, and contaminant accumulation. 

Fig. 4. a) Size of trophic niche and their respective standard ellipses for Cape petrel (Dca, Daption capense; SH, Southern Hemisphere) and Wilson’s storm petrel (Ooc, 
Oceanites oceanicus; HN, Northern Hemisphere) and b) the areas of the standard ellipses for (Dca, 1.1) and Ooc, 2.2) (B). 

Table 2 
Concentration of (median, mean, and min-max in ng g− 1 dry weight) of PFAS and stable isotope values (δ13C, δ15N, and δ34S) in the feathers of Cape petrel (Daption 
capense) and Wilson’s storm petrel (Oceanites oceanicus).  

Tissue Species Compounds PFHxA PFOA PFDA PFUnDA PFDoDA 

Feather Daption capense n = 25 Median 0.340 0.0800 0.370 1.56 0.0200 
Mean 0.690 0.170 0.670 1.72 0.0500 
Min-Max 0.340–2.21 0.0800–1.29 0.370–1.73 0.870–5.36 0.0200–0.380 

Oceanites oceanicus n = 23 Median 0.250 0.390 0.510 1.67 0.150 
Mean 0.730 0.710 0.900 1.71 0.310 
Min-Max 0.260–2.29 0.390–1.56 0.510–2.20 0.890–3.61 0.150–0.700 

Tissue Species  PFTrDA PFTeDA δ13 C (‰) δ15N (‰) δ34S (‰) 

Feather Daption capense n = 25 Median 0.0500 0.0600 − 25.0 8.93 15.5 
Mean 0.360±0.710 0.190±0.360 − 24.7±1.76 9.01±1.19 17.5±0.550 
Min-Max 0.0500–2.81 0.0600–1.29 − 26.5–− 18.1 7.48–13.5 16.6–18.4 

Oceanites oceanicus n = 23 Median 0.370 0.180 − 19.9 12.7 17.8 
Mean 0.550 1.01 − 20.9 12.1 17.7 
Min-Max 0.120–2.39 0.180–6.13 − 25.4–− 19.9 8.86–14.2 16.3–18.8  

J.A.G. Padilha et al.                                                                                                                                                                                                                            



Environmental Research 244 (2024) 117827

7

4.1. Comparative analysis of PFAS, trace and major element 
concentrations in two Antarctic migratory seabirds 

Limited data are available for the two species under investigation 
(Souza et al., 2020; Kuepper et al., 2022). Our study observed concen
trations of Ca, Cu, Fe, Mg, Se, and Sr (Table 3) at least an order of 
magnitude higher than those reported by Pacyna et al. (2019). In 
contrast, the Zn levels (Table 3) recorded by Pacyna et al. (109 μg g− 1) 
were an order of magnitude higher than our findings. It is important to 
note that while Pacyna et al. collected their samples in 2017, our sam
ples were collected between 2010 and 2014. Such a temporal gap could 
account for the observed discrepancies, considering potential shifts in 
environmental conditions and exposures across these years. For the Cape 
petrel, Souza et al. (2020) reported values for Cd and Se (Cd: 
0.020–0.950, Se: 2.24–4.93 μg g-1, dw, Table 3) from wing carcass 
feathers collected between 2010 and 2014. These values were an order 
of magnitude lower compared to the current study. Padilha et al. (2023) 
observed concentrations of Ca, Cd, Mg, and Cr (Table 3) in breast 
feathers of Giant petrel (Macronectes giganteus), a seabird species with a 
similar migratory distribution to Cape petrel, at least were an order of 
magnitude lower than the present study (Patterson and Hunter, 2000). 
The variations in trace element concentrations highlight the possible 
impacts of differing environmental conditions, exposure rates, feather 
types, and time-sensitive factors on the biochemistry of these marine 
birds (Dauwe et al., 2003; Jerez et al., 2011). 

Regarding PFAS concentrations, Padilha et al. (2022) studied 15 

PFAS in breast feathers from 8 seabird species collected on King George 
Island between 2010 and 2014. In line with our results, both PFTrDA 
and PFTrDA levels were significantly higher in the South polar skua 
(Stercorarius maccormicki), a transequatorial migrant, similar to the 
Wilson storm petrel (see details in Table 3). PFUnDA emerged as the 
dominant compound in our study, a finding also noted by Padilha et al. 
(2022). Additionally, Gao et al. (2020) assessed PFAS concentrations in 
Cape petrel wing feathers on King George Island sampled in 2012–2013, 
recording values (ng g− 1 dw, mean ± SD) for PFOA (0.0600 ± 0.0200) 
and PFTrDA (0.06 ± 0.0300) that were an order of magnitude lower 
than ours. In contrast, Roscales et al. (2019), using blood plasma as a 
matrix, found PFOS to be the prevalent compound in Antarctic seabirds. 
Such varied findings suggest different compounds might have distinct 
affinities to animal matrices, highlighting the importance of further in
vestigations to clarify these variations. 

It is worth noting that procuring feathers from deceased specimens 
offers an apt methodology for monitoring contaminant concentrations 
(Souza et al., 2020) particularly in understudied species like the Cape 
petrel and Wilson’s storm petrel. Such samples are straightforward to 
collect, store, and transport, given that they do not necessitate refrig
eration. However, the process of collecting feather samples from marine 
bird carcasses does have its limitations, including the absence of infor
mation regarding the seabird’s weight, age, or molting status. Despite 
these limitations, the significant insights garnered from our study affirm 
the value of this methodology. 

While our samples were collected between 2010 and 2014, we 
contend that they remain pertinent for the investigation of PFAS and 
trace elements. The enduring nature of these compounds in biotic 
matrices like feathers mitigates concerns regarding the potential vola
tility or degradation over time. In the context of PFAS, studies such as 
that by Sun et al. (2019) have successfully analyzed museum feather 
samples dating from 1968 to 2015, identifying consistent presence of 
compounds like FOSA. This suggests that the biotransformation pro
cesses in feathers are minimal, lending credibility to the timelessness of 
our data. Feathers, once removed from the metabolic activity associated 
with the bird’s bloodstream, act as a historical register by effectively 
‘locking in’ the contaminants, thereby serving as a stable matrix for such 
investigations. 

Further, Bond & Lavers (2020) utilized feather samples spanning 
over a century (1900–2011) to investigate exposure trends for trace 
elements, including Cd, Hg, and Pb, in Flesh-footed Shearwaters. Their 
findings not only indicated the temporal shifts in exposure but also 
validated the methodological approach of using archival biological 
materials for contemporary environmental forensic purposes. Thus, the 
temporal gap between sample collection and analysis in our study does 
not detract from the validity or relevance of our findings. Instead, it 
highlights the robustness of feathers as a matrix for long-term environ
mental monitoring, capable of offering invaluable insights into histori
cal pollutant exposure and environmental shifts. 

4.2. Influence of migration and pollution in each hemisphere 

In our study, the impact of migration patterns on exposure to trace 
elements appears to have little influence, given that both Wilson’s storm 
petrel and Cape petrel displayed comparable values of these elements in 
their feathers, a similarity further substantiated by overlapping data 
observed in the PCA. However, regarding trace elements, Wilson’s storm 
petrel only showed higher concentrations of Cd compared to Cape pe
trel. This challenges our initial hypothesis and aligns with studies sug
gesting higher Cd concentrations in species inhabiting oceanic rather 
than coastal environments (Espejo et al., 2018b; Jerez et al., 2011). 
Carbon isotopic data supports the proposition that Wilson’s storm petrel 
has a more oceanic habitat compared to Cape petrel. Although Wilson’s 
storm petrel migrates to the Northern Hemisphere, it is possible that the 
areas it frequents during migration may not have significantly higher 
trace elements contamination levels than the areas Cape petrel inhabits. 

Fig. 5. The sum of quantified PFAS compounds and relative contribution 
(percent) of individual PFAS to 

∑
PFAS (ng g− 1 dw) in feathers of Cape petrel 

(Daption capense, Dca) and Wilson’s storm petrel (Oceanites oceanicus, Ooc) from 
King George Island, Antarctic Peninsula. 
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In addition, both species might have similar physiological mechanisms 
for detoxifying and eliminating these trace elements, which would also 
contribute to the similar exposure levels found in their feathers. A pre
vious study conducted by Lucia et al. (2012) investigated two different 
species, Calidris canutus, and Limosa, and identified similarities in their 
DNA, particularly in the sequences of genes such as β-actin, acetyl-CoA 
carboxylase (acc), Cu/Zn superoxide dismutase (sod1), metallothionein 
(mt), and NADP-dependent malic enzyme. Remarkably, despite the 
utilization of different detoxification systems, these species exhibited 
comparable response pathways, which may collectively provide them 
with similar levels of protection against lipid peroxidation and potential 
trace element toxicity. Nevertheless, further investigation would be 
required to definitively identify the factors leading to the lack of 

observed differences in trace element exposure between the Antarctic 
seabirds. 

Migration patterns are not the primary determinants of trace element 
accumulation in migratory birds. Correia et al. (2023) showed differ
ences in elemental concentrations such as As, Pb, and Se in the blood 
samples of migrating seabirds, attributed mainly to their diet and tro
phic guilds. Similarly, Kojadinovic et al. (2007) noted the significance of 
other factors such as diet, age, and health status in migratory birds. 
Collectively, these studies suggest that the environments and diets of 
migratory birds play a more crucial role in their exposure to contami
nants than their migratory patterns alone. 

In focusing on PFAS exposure, Wilson’s storm petrel exhibited 
elevated concentrations of PFOA, PFDA, PFDoDA, PFTrDA, and PFTeDA 

Fig. 6. Correlation matrices (Pearson) between PFAS and stable isotopes of δ13C, δ15N, and δ34S in feathers of Cape petrel (Daption capense) (a) and Wilson’s storm 
petrel (Oceanites oceanicus) (b). 
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compared to Cape petrel. This is consistent with findings from Padilha 
et al. (2022), who found higher PFAS values in trans-equatorial migra
tory birds. The PCAillustrates a pronounced distinction in PFAS expo
sure between the two species. Notably, Wilson’s storm petrel has a 
wide-ranging migration pattern, reaching the Northern Hemisphere 
during the Austral winter via routes through the Atlantic and Pacific 
Oceans, before returning to the Antarctic environment for summer 
breeding (Cruwys, 2008; Kopp et al., 2011). This seabird species, a 
top-level predator, exhibits opportunistic feeding behaviors, consuming 
fish, and crustaceans, and scavenging from seabirds nesting in proximate 
colonies (Cruwys, 2008; Quillfeldt, 2002). The higher trophic position, 
combined with Wilson’s storm petrel migration behavior, may account 
for the elevated values of δ15N, δ13C, and most PFAS compared to Cape 
petrel. Wilson’s storm petrel displayed the highest levels of PFCAs 
observed in this study. It is noteworthy that long-chain PFCAs are pri
marily found in seawater outside the Antarctic Circumpolar Current, 
being more plentiful in the North Atlantic than in the South Atlantic 
(González-Gaya et al., 2014; Ma et al., 2016; Zhao et al., 2012). This 
distribution may explain the high concentrations of PFTrDA and 
PFTeDA in Wilson’s storm petrel and the lower concentrations in Cape 
petrel. Earlier studies on Antarctic seabirds have demonstrated similar 
patterns, with higher levels of long-chain PFCAs detected in the plasma 
of seabirds foraging north of Antarctica than in resident seabirds 
(Roscales et al., 2019; Tao et al., 2006). Given the higher production of 
these emergent pollutants in the Northern Hemisphere, it aligns with our 
initial hypothesis that migrating birds, such as Wilson’s storm petrel, 
venturing into more northern locations would experience greater 
exposure (Ma et al., 2016; Paul et al., 2009). 

4.3. Impact of trophic ecology on contaminant exposure 

The Wilson’s storm petrel’s diet is based on myctophid (pelagic), 
krill, carrion, cephalopods, and pelagic crustaceans while the cape petrel 
eats small crustaceans, fish, and cephalopods, which indicates the higher 
trophic position occupied by the Wilson’ storm petrel (Cruwys, 2008; 
Fijn et al., 2012). It was further confirmed by our δ15 N results, which 
evidenced the storm petrel’s elevated trophic position compared to the 
cape petrel. When considering the impact of trophic ecology on the 
concentrations of trace elements in the feathers of Cape petrel and 
Wilson’s storm petrel, we did not find any positive or negative associ
ations between any given element and the three stable isotopes. This 
contrasts with the findings of Padilha et al. (2023) who observed that 
foraging area and dietary sources impact Zn, Ba, Sn, and Cd concen
trations in migratory seabirds in Antarctica. However, this was not 
found in the present study. 

When investigating the impact of trophic ecology on the concen
trations of PFAS in Cape petrel and Wilson’s storm petrel, no strong 
positive correlations were observed between any compound and the 
three stable isotopes. However, certain compounds, such as PFUnDA, 
demonstrated a negative correlation with trophic position (δ15N), sug
gesting biodilution. Interestingly, comparable results were observed in 
the study by Roscales et al. (2019), and other studies, such as the one by 
Lescord et al. (2015), have suggested little to no biomagnification ca
pacity for PFCAs. Padilha et al. (2022) revealed that PFCA concentra
tions in the feathers of Antarctic birds are influenced by factors such as 
the birds’ trophic position (δ15N values), their foraging area (δ13C 
values), and dietary sources (δ34S values). Similarly, the study also 
found that PFSA levels are associated with the foraging area of these 
birds, as suggested by the δ13C values. These results, collectively, 
highlight the importance of continuing investigations in this domain to 
achieve a comprehensive understanding of how trophic ecology can 
potentially influence the exposure of seabirds to pollutants. 

5. Conclusions 

Our study aimed to investigate the influence of migration patterns Ta
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and trophic ecology on pollutant exposure, focusing in particular on 
trace elements and PFAS in two Antarctic seabird species, Wilson’s 
storm petrel and Cape petrel. Through feather analyses, we provide 
important insights into the complex connections between the ecology of 
these birds and their susceptibility to these contaminants. 

While the migratory pattern did not significantly affect exposure to 
trace elements, notable differences were observed in PFAS concentra
tions between the two studied species, with Wilson’s storm petrel 
exhibiting higher PFAS levels, possibly due to its broader migratory 
range reaching the Northern Hemisphere. This aligns with our initial 
hypothesis and prior research indicating higher production of these 
pollutants in the Northern Hemisphere. 

When considering the role of trophic ecology, the study did not find 
correlations between any given trace element or PFAS and the three 
stable isotopes (δ13C, δ15N, and δ34S) in either of the seabird species. 
However, certain PFAS compounds, such as PFUnDA, demonstrated a 
negative correlation with trophic position, suggesting biodilution. 

While we have started to understand the interplay between migra
tion, trophic ecology, and pollutant exposure, we also acknowledge that 
there is large variation observed in the accumulation patterns of trace 
elements and PFAS in these seabird species. Therefore, we recommend 
continued research into the factors affecting pollutant exposure to 
obtain a comprehensive understanding. The sample collection method 
employed in this study, which has been recognized in previous works, 
serves as a valuable tool, contributing to bridging the knowledge gap for 
these protected species. Such studies are essential in the broader context 
of marine ecology and conservation, assisting in the development of 
more effective strategies for managing and protecting migratory seabird 
populations in the face of ongoing anthropogenic environmental 
changes. 
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