Drought stress; FLEX; Isohydricity; SIF; SMAP; Soil moisture; TROPOMI; Chlorophyll fluorescence; Photosynthetic electron transport; Sun-induced chlorophyll fluorescence; Vapor pressure deficit; Water availability; Soil Science; Geology; Computers in Earth Sciences
Abstract :
[en] Climate change is amplifying the duration, frequency, and intensity of droughts, harming global ecosystems. During droughts, plants can close their stomata to save water, at the expense of a reduced carboxylation rate. When in a carboxylation-limited regime, plants benefit from an increase in water availability, as it increases their photosynthetic rate. The sun-induced chlorophyll fluorescence (SIF) signal, measurable from satellites, is mechanistically linked to this rate. Like canopy photosynthesis, SIF carries an imprint from the available irradiation (PAR) as well as the canopy structure and the efficiency of the photosynthesis at the photosystem level. Normalizing the global TROPOMI SIF observations with TROPOMI reflectance and MODIS Normalised Difference Vegetation Index (NDVI) data, we extracted the fluorescence quantum yield (ϕF), which lab-scale experiments have found to be linked to the photosynthetic electron transport. Plant physiologists have long proved the photosynthetic electron transport to be sensitive to plant water status. Here, the plant water status is controlled by the soil moisture (SM) and the vapour pressure deficit (VPD). Combining data from the TROPOMI, AIRS and SMAP satellite sensors, this study describes how SM and VPD control the ϕF at the global scale. We identify a VPD range (VPD<1.5 kPa) in which the ϕF is mainly controlled by VPD, and another (VPD>1.5 kPa) in which the ϕF is co-regulated by SM and VPD. The precise values of this range, as well as the magnitude of ϕF values, are modulated by the plant isohydricity. To gain a deeper understanding of the link between ϕF and photosynthetic efficiency at large scale, we used the link between ϕF and data on the canopy conductance (Gs), which were calculated using remote sensing data-driven models. A comparison found that the ϕF-Gs relationship at large scale is in line with the ϕF-Gs relationship described in plant-level studies.
De Cannière, S.; Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Baur, M.J.; Department of Geography, University of Cambridge, Cambridge, United Kingdom
Chaparro, D.; Microwaves and Radar Institute, German Aerospace Center (DLR), Wessling, Germany
Jagdhuber, T.; Microwaves and Radar Institute, German Aerospace Center (DLR), Wessling, Germany ; Faculty of Applied Computer Sciences, Institute of Geography, University of Augsburg, Augsburg, Germany
Jonard, François ; Université de Liège - ULiège > Département de géographie ; Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
Language :
English
Title :
Water availability and atmospheric dryness controls on spaceborne sun-induced chlorophyll fluorescence yield
F.R.S.-FNRS - Fonds de la Recherche Scientifique ETH Zürich - Eidgenössische Technische Hochschule Zürich Fundación Ramón Areces FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Funding text :
This research was funded by the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA, Belgium). D. Chaparro benefited from the Funcación Ramón Areces postdoctoral grant. We would like to thank Andrea Carminati, Fabian Wankmüller and Peter Lehmann, all from ETH Zurich, for their help and support regarding the soil-plant hydraulic model.This research was funded by the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA, Belgium) . D. Chaparro benefited from the Funcación Ramón Areces postdoctoral grant . We would like to thank Andrea Carminati, Fabian Wankmüller and Peter Lehmann, all from ETH Zurich, for their help and support regarding the soil-plant hydraulic model.
Acebron, K., Matsubara, S., Jedmowski, C., Emin, D., Muller, O., Rascher, U., Diurnal dynamics of nonphotochemical quenching in Arabidopsis NPQ mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytol. 229:4 (2021), 2104–2119, 10.1111/nph.16984.
Alonso, L., Van Wittenberghe, S., Amorós-López, J., Vila-Francés, J., Gómez-Chova, L., Moreno, J., Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. Remote Sens., 9(8), 2017, 10.3390/rs9080770.
Attia, Z., Domec, J.C., Oren, R., Way, D.A., Moshelion, M., Growth and physiological responses of isohydric and anisohydric poplars to drought. J. Exp. Bot. 66:14 (2015), 4373–4381, 10.1093/jxb/erv195.
Aumann, H.H., Chahine, M.T., Gautier, C., Goldberg, M.D., Kalnay, E., McMillin, L.M., Revercomb, H., Rosenkranz, P.W., Smith, W.L., Staelin, D.H., Strow, L.L., Susskind, J., AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens. 41:2 PART 1 (2003), 253–263, 10.1109/TGRS.2002.808356.
Balting, D.F., AghaKouchak, A., Lohmann, G., Ionita, M., Northern Hemisphere drought risk in a warming climate. npj Clim. Atmos. Sci. 4:1 (2021), 1–13, 10.1038/s41612-021-00218-2.
Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K.A., Sonnewald, S., Sonnewald, U., Kneitz, S., Lachmann, N., Mendel, R.R., Bittner, F., Hetherington, A.M., Hedrich, R., The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol. 23:1 (2013), 53–57, 10.1016/j.cub.2012.11.022.
Bayat, B., Van Der Tol, C., Verhoef, W., Integrating satellite optical and thermal infrared observations for improving daily ecosystem functioning estimations during a drought episode. Remote Sens. Environ. 209:March (2018), 375–394, 10.1109/IGARSS.2018.8518309.
Berger, K., Machwitz, M., Kycko, M., Kefauver, S., Van Wittenberghe, S., Gerhards, M., Verrelst, J., Atzberger, C., van der Tol, C., Damm, A., Rascher, U., Herrmann, I., Sobejano Paz, V., Fahrner, S., Pieruschka, R., Prikaziuk, E., Buchaillot, L., Halabuk, A., Celesti, M., Koren, G., Gormus, E., Rossini, M., Foerster, M., Siegmann, B., Abdelbaki, A., Tagliabue, G., Hank, T., Darvischzadeh, R., Aasen, H., Garcia, M., Pocas, I., Bandopadhyay, S., Sulis, M., Tomelleri, E., Rozenstein, O., Filchev, L., Stancile, G., Schlerf, M., Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote Sens. Environ., 280(113198), 2022.
Blauhut, V., Stoelzle, M., Ahopelto, L., Brunner, M.I., Teutschbein, C., Wendt, D.E., Akstinas, V., Bakke, S.J., Barker, L.J., Bartošová, L., Briede, A., Cammalleri, C., Kalin, K.C., De Stefano, L., Fendeková, M., Finger, D.C., Huysmans, M., Ivanov, M., Jaagus, J., Jakubínský, J., Krakovska, S., Laaha, G., Lakatos, M., Manevski, K., Neumann Andersen, M., Nikolova, N., Osuch, M., Van Oel, P., Radeva, K., Romanowicz, R.J., Toth, E., Trnka, M., Urošev, M., Urquijo Reguera, J., Sauquet, E., Stevkov, A., Tallaksen, L.M., Trofimova, I., Van Loon, A.F., Van Vliet, M.T., Vidal, J.P., Wanders, N., Werner, M., Willems, P., Zivković, N., Lessons from the 2018–2019 European droughts: A collective need for unifying drought risk management. Nat. Hazards Earth Syst. Sci. 22:6 (2022), 2201–2217, 10.5194/nhess-22-2201-2022.
Bussotti, F., Gerosa, G., Digrado, A., Pollastrini, M., Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies, 108, june 2019. 2020.
Cao, J., An, Q., Zhang, X., Xu, S., Si, T., Niyogi, D., Is satellite Sun-Induced Chlorophyll Fluorescence more indicative than vegetation indices under drought condition?. Sci. Total Environ., 792, 2021, 10.1016/j.scitotenv.2021.148396.
Carminati, A., Javaux, M., Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25:9 (2020), 868–880, 10.1016/j.tplants.2020.04.003.
Cocozza, C., De Miguel, M., Pšidová, E., Ditmarová, L., Marino, S., Maiuro, L., Alvino, A., Czajkowski, T., Bolte, A., Tognetti, R., Variation in ecophysiological traits and drought tolerance of beech (Fagus sylvatica L.) seedlings from different populations. Front. Plant Sci. 7:June (2016), 1–14, 10.3389/fpls.2016.00886.
De Cannière, S., Herbst, M., Vereecken, H., Defourny, P., Jonard, F., Constraining water limitation of photosynthesis in a crop growth model with sun-induced chlorophyll fluorescence. Remote Sens. Environ., 267(October), 2021, 10.1016/j.rse.2021.112722.
De Canniere, S., Vereecken, H., Defourny, P., Jonard, F., Remote sensing of instantaneous drought stress at canopy level using sun-induced chlorophyll fluorescence and canopy reflectance. Remote Sens., 14(2642), 2022.
Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca, M., Zhang, Y., Tagliabue, G., Guan, K., Rossini, M., Goulas, Y., Zeng, Y., Frankenberg, C., Berry, J.A., NIRVP: A robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales. Remote Sens. Environ., 268(October 2021), 2022, 10.1016/j.rse.2021.112763.
Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J.A., Zhang, Y., Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., Moya, I., Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ., 241(March), 2020, 10.1016/j.rse.2020.111733.
Didan, K., MOD13c1 MODIS/Terra vegetation indices 16-day L3 global 0.05Deg cmg V006no title. 2015, 10.5067/MODIS/MOD13C1.006 NASA EOSDIS Land Processes DAAC.
Drusch, M., Moreno, J., Bello, U.D., Franco, R., Goulas, Y., Huth, A., Kraft, S., Middleton, E.M., Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schüttemeyer, D., Verhoef, W., Concept — ESA ’ s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55:3 (2017), 1273–1284.
Farquhar, G., von Caemmerer, S., Berry, J., A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1980), 78–90.
Feldman, A., Konings, A., Piles, M., Entekhabi, D., The multi-temporal dual channel algorithm (MT-DCA). 2021, 10.5281/zenodo.5619583 Zenodo.
Feldman, A.F., Short Gianotti, D.J., Trigo, I.F., Salvucci, G.D., Entekhabi, D., Land-atmosphere drivers of landscape-scale plant water content loss. Geophys. Res. Lett., 47(22), 2020, 10.1029/2020GL090331.
Flexas, J., Escalona, J.M., Evain, S., Gulías, J., Moya, I., Osmond, C.B., Medrano, H., Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol. Plant.(527), 2002, 26–29.
Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114:1 (2010), 168–182, 10.1016/j.rse.2009.08.016.
Fu, Z., Ciais, P., Prentice, I.C., Bastos, A., Luo, X., Green, J.K., Gentine, P., Makowski, D., Stoy, P.C., Yang, H., Hajima, T., Along a large range of soil water de fi cits. Nat. Commun. 13:Umr 518 (2022), 989–999.
Fujimura, S., Shi, P., Iwama, K., Zhang, X., Gopal, J., Jitsuyama, Y., Effect of altitude on the response of net photosynthetic rate to carbon dioxide increase by spring wheat. Plant Product. Sci. 13:2 (2010), 141–149, 10.1626/pps.13.141.
Gong, F., Chen, X., Yuan, W., Su, Y., Yang, X., Liu, L., Sun, Q., Wu, J., Dai, Y., Shang, J., Partitioning of three phenology rhythms in American tropical and subtropical forests using remotely sensed solar-induced chlorophyll fluorescence and field litterfall observations. Int. J. Appl. Earth Obs. Geoinf., 107, 2022, 102698, 10.1016/j.jag.2022.102698.
Gu, H., Yin, G., Yang, Y., Verger, A., Filella, I., Zeng, Y., Hao, D., Xie, Q., Li, X., Xiao, J., Satellite-detected contrasting responses of canopy structure and leaf physiology to drought. J. Sel. Top. Appl. Earth Observ. Remote Sensing(01452), 2023, 1–10, 10.1109/JSTARS.2023.3247422.
Guanter, L., Bacour, C., Schneider, A., Aben, I., Van Kempen, T.A., Maignan, F., Retscher, C., Köhler, P., Frankenberg, C., Joiner, J., Zhang, Y., The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data 13:11 (2021), 5423–5440, 10.5194/essd-13-5423-2021.
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., Huete, A.R., Zarco-Tejada, P., Lee, J.E., Moran, M.S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J.M., Griffis, T.J., Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA, 111(14), 2014, 10.1073/pnas.1320008111.
Gupta, A., Rico-Medina, A., Caño-Delgado, A.I., The physiology of plant responses to drought. Science 368:6488 (2020), 266–269, 10.1126/science.aaz7614.
He, L., Wood, J.D., Sun, Y., Magney, T., Dutta, D., Köhler, P., Zhang, Y., Yin, Y., Frankenberg, C., Tracking seasonal and interannual variability in photosynthetic downregulation in response to water stress at a temperate deciduous forest. J. Geophys. Res.: Biogeosci. 125:8 (2020), 1–23, 10.1029/2018JG005002.
Helm, L., Shi, H., Lerdau, M., Yang, X., Solar-induced chlorophyll fl uorescence and short-term photosynthetic response to drought. Ecol. Appl. 30:5 (2020), 1–12.
Hengl, T., Clay content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. 2018, 10.5281/zenodo.2525663 Zenodo.
Hengl, T., Sand content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. 2018, 10.5281/zenodo.2525662 Zenodo.
Jonard, F., Andre, F., Ponette, Q., Vincke, C., Jonard, M., Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003. J. Hydrol. 409:1–2 (2011), 371–381, 10.1016/j.jhydrol.2011.08.032.
Jonard, F., De Cannière, S., Brüggemann, N., Gentine, P., Short Gianotti, D.J., Lobet, G., Miralles, D.G., Montzka, C., Pagán, B.R., Rascher, U., Vereecken, H., Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: Current status and challenges. Agricult. Forest Meteorol., 291, 2020.
Jonard, F., Feldman, A.F., Short Gianotti, D.J., Entekhabi, D., Observed water and light limitation across global ecosystems. Biogeosciences 19:23 (2022), 5575–5590, 10.5194/bg-19-5575-2022.
Kimm, H., Guan, K., Burroughs, C.H., Peng, B., Ainsworth, E.A., Bernacchi, C.J., Moore, C.E., Kumagai, E., Yang, X., Berry, J.A., Wu, G., Quantifying high-temperature stress on soybean canopy photosynthesis: The unique role of sun-induced chlorophyll fluorescence. Global Change Biol. 27:11 (2021), 2403–2415, 10.1111/gcb.15603.
Kimm, H., Guan, K., Jiang, C., Miao, G., Wu, G., Suyker, A.E., Ainsworth, E.A., Bernacchi, C.J., Montes, C.M., Berry, J.A., Yang, X., Frankenberg, C., Chen, M., Köhler, P., A physiological signal derived from sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the U.S. Corn Belt. Environ. Res. Lett., 16(12), 2021, 10.1088/1748-9326/ac3b16.
Konings, A.G., Gentine, P., Global variations in ecosystem-scale isohydricity. Global Change Biol. 23:2 (2017), 891–905, 10.1111/gcb.13389.
Konings, A.G., Piles, M., Das, N.N., Entekhabi, D., L-band vegetation optical depth and effective scattering albedo estimation from SMAP. Remote Sens. Environ. 198 (2017), 460–470.
Lee, J.E., Berry, J.A., van der Tol, C., Yang, X., Guanter, L., Damm, A., Baker, I., Frankenberg, C., Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4. Global Change Biol. 21:9 (2015), 3469–3477.
Li, X., Ryu, Y., Xiao, J., Dechant, B., Liu, J., Li, B., Jeong, S., Gentine, P., New-generation geostationary satellite reveals widespread midday depression in dryland photosynthesis during 2020 western U.S. heatwave. Sci. Adv. 9:31 (2023), 1–15, 10.1126/sciadv.adi0775.
Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Shuangcheng, L., Seneviratne, S., Soil moisture dominates dryness stress on ecosystem production globally. Nature Commun., 11(4892), 2020, 10.1038/s41467-020-18631-1.
Lu, H., Qin, Z., Lin, S., Chen, X., Chen, B., He, B., Wei, J., Yuan, W., Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nature Commun. 13:1 (2022), 10–13, 10.1038/s41467-022-29009-w.
Maes, W., Steppe, K., Estimating evapotranspiration with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 63:2 (2012), 695–709, 10.1093/jxb/err313.
Medlyn, B., Duursma, R., Eamus, D., Ellsworth, D., Prentice, C., Bartons, C., Crous, K., De Angelis, P., Freeman, M., Wingate, L., Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol. 2:17 (2011), 2134–2144, 10.1111/j.1365-2486.2010.02375.x.
Muhammad, I., Shalmani, A., Ali, M., Yang, Q.H., Ahmad, H., Li, F.B., Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front. Plant Sci. 11:January (2021), 1–25, 10.3389/fpls.2020.615942.
Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Blanken, P.D., Noormets, A., Sulman, B.N., Scott, R.L., Wang, L., Phillips, R.P., The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Clim. Change 6:11 (2016), 1023–1027, 10.1038/nclimate3114.
Novick, K.A., Konings, A.G., Gentine, P., Beyond soil water potential: An expanded view on isohydricity including land–atmosphere interactions and phenology. Plant Cell Environ. 42:6 (2019), 1802–1815, 10.1111/pce.13517.
Orimoloye, I.R., Agricultural drought and its potential impacts: Enabling decision-support for food security in vulnerable regions. Front. Sustain. Food Syst., 6(February), 2022, 10.3389/fsufs.2022.838824.
Pinto, F., Damm, A., Schickling, A., Panigada, C., Cogliati, S., Müller-linow, M., Ballvora, A., Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 39 (2016), 1500–1512, 10.1111/pce.12710.
Porcar-Castell, A., Malenovský, Z., Magney, T., Wittenberghe, S.V., Fernández-marín, B., Maignan, F., Zhang, Y., Maseyk, K., Atherton, J., Albert, L.P., Robson, T.M., Zhao, F., Ensminger, I., Rajewicz, P.A., Grebe, S., Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nature plants, 7(August), 2021.
Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C., Flexas, J., Pfündel, E.E., Moreno, J., Frankenberg, C., Berry, J.A., Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 65:15 (2014), 4065–4095.
Qiu, R., Li, X., Han, G., Xiao, J., Ma, X., Gong, W., Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agricult. Forest Meteorol., 323(May), 2022, 109038, 10.1016/j.agrformet.2022.109038.
Qiu, B., Xue, Y., Fisher, J.B., Guo, W., Berry, J.A., Zhang, Y., Satellite chlorophyll fluorescence and soil moisture observations lead to advances in the predictive understanding of global terrestrial coupled carbon-water cycles. Glob. Biogeochem. Cycles 32:3 (2018), 360–375.
Rawls, W.J., Brakensiek, D.L., Prediction of soil water properties for hydrologic modeling. Watershed Management in the Eighties, 1985, ASCE, 293–299.
Ryu, Y., Berry, J.A., Baldocchi, D.D., Remote Sensing of Environment What is global photosynthesis ? History, uncertainties and opportunities, 223 (january). 2019, 95–114.
Sulman, B.N., Roman, D.T., Yi, K., Wang, L., Phillips, R.P., Novick, K.A., High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 43:18 (2016), 9686–9695, 10.1002/2016GL069416.
Sun, Y., Fu, R., Dikinson, R., Joiner, J., Frankenberg, C., Gu, L., Xia, Y., Fernando, N., Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. J. Geophys. Res.: Biogeosci. 120 (2015), 707–723, 10.1002/2015JG003150.Received.
Sungmin, O., Hou, X., Orth, R., Observational evidence of wildfire-promoting soil moisture anomalies. Sci. Rep., 10(1), 2020, 11008, 10.1038/s41598-020-67530-4.
Svadoba, M., LeCompte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., Miskus, D., Stephens, S., The drought monitor. Bull. Am. Meteorol. Soc.(April), 2002, 1181–1190.
Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M.O., Huber, S., Mbow, C., Garcia, M., Horion, S., Sandholt, I., Holm-Rasmussen, B., Göttsche, F.M., Ridler, M.E., Olén, N., Lundegard Olsen, J., Ehammer, A., Madsen, M., Olesen, F.S., Ardö, J., Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability. Global Change Biol. 21:1 (2015), 250–264, 10.1111/gcb.12734.
van der Tol, C., Berry, J.A., Campbell, P.K., Rascher, U., Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res.: Biogeosci. 119:12 (2014), 2312–2327, 10.1002/2014JG002713.
Venturas, M.D., Todd, H.N., Trugman, A.T., Anderegg, W.R.L., Understanding and predicting forest mortality in the Western United States using long-term forest inventory data and modeled hydraulic damage. New Phytol. 230:5 (2021), 1896–1910, 10.1111/nph.17043.
Wang, N., Yang, P., Clevers, J.G.P.W., Wieneke, S., Kooistra, L., Decoupling physiological and non-physiological responses of sugar beet to water stress from sun-induced chlorophyll fluorescence Remote Sensing of Environment Decoupling physiological and non-physiological responses of sugar beet to water stress from sun-. Remote Sens. Environ., 286(January), 2023, 113445, 10.1016/j.rse.2022.113445.
Wankmüller, F.J.P., Carminati, A., Stomatal regulation prevents plants from critical water potentials during drought: Result of a model linking soil–plant hydraulics to abscisic acid dynamics. Ecohydrology(September), 2021, 1–15, 10.1002/eco.2386.
West, H., Quinn, N., Horswell, M., Remote sensing for drought monitoring and impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ., 232(June), 2019, 111291, 10.1016/j.rse.2019.111291.
West, H., Quinn, N., Horswell, M., White, P., Assessing vegetation response to soil moisture fluctuation under extreme drought using sentinel-2. Water (Switzerland) 10:7 (2018), 1–22, 10.3390/w10070838.
Wieneke, S., Ahrends, H., Damm, A., Pinto, F., Stadler, A., Rossini, M., Rascher, U., Remote Sensing of Environment Airborne based spectroscopy of red and far-red sun-induced chlorophyll fl uorescence : Implications for improved estimates of gross primary productivity. Remote Sens. Environ. 184 (2016), 654–667, 10.1016/j.rse.2016.07.025.
Wong, C.Y.S., Young, D.J.N., Latimer, A.M., Buckley, T.N., Magney, T.S., Remote sensing of environment importance of the legacy effect for assessing spatiotemporal correspondence between interannual tree-ring width and remote sensing products in the Sierra Nevada. Remote Sens. Environ., 265(August), 2021, 112635, 10.1016/j.rse.2021.112635.
Wu, G., Guan, K., Li, Y., Novick, K.A., Feng, X., McDowell, N.G., Konings, A.G., Thompson, S.E., Kimball, J.S., De Kauwe, M.G., Ainsworth, E.A., Jiang, C., Interannual variability of ecosystem iso/anisohydry is regulated by environmental dryness. New Phytol. 229:5 (2021), 2562–2575, 10.1111/nph.17040.
Wu, G., Guan, K., Li, Y., Novick, K.A., Konings, A.G., Thompson, S.E., Kimball, J.S., Kauwe, M.G.D., Interannual variability of ecosystem ISO / anisohydry is regulated by environmental dryness. 2020, 10.1111/nph.17040.
Xiao, J., Fisher, J.B., Hashimoto, H., Ichii, K., Parazoo, N.C., Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7:7 (2021), 877–887, 10.1038/s41477-021-00952-8.
Xu, S., Atherton, J., Riikonen, A., Zhang, C., Oivukkamäki, J., MacArthur, A., Honkavaara, E., Hakala, T., Koivumäki, N., Liu, Z., Porcar-Castell, A., Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop. Remote Sens. Environ., 263(June), 2021, 10.1016/j.rse.2021.112555.
Yang, P., Exploring the interrelated effects of soil background, canopy structure and sun-observer geometry on canopy photochemical reflectance index. Remote Sens. Environ., 279(June), 2022, 10.1016/j.rse.2022.113133.
Yang, P., van der Tol, C., Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sens. Environ. 209:March (2018), 456–467.
Zarco-Tejada, P.J., Gonzalez-Dugo, V., Berni, J.A., Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 117 (2012), 322–337, 10.1016/j.rse.2011.10.007.
Zeng, Y., Chen, M., Hao, D., Damm, A., Badgley, G., Rascher, U., Johnson, J.E., Dechant, B., Siegmann, B., Ryu, Y., Qiu, H., Krieger, V., Panigada, C., Celesti, M., Miglietta, F., Yang, X., Berry, J.A., Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sens. Environ., 270(February 2021), 2022.
Zhang, Y., Fang, J., Smith, W., Wang, X., Gentine, P., Scott, R., Migliavacca, M., Jeong, S., Litvak, M., Zhou, S., Satellite solar-induced chlorophyll fluorescence tracks physiological development during 2020 southwest US drought drought stress Running. Global Change Biol.(March 2023), 2023, 1–15, 10.1111/gcb.16683.
Zhang, J., Guan, K., Peng, B., Pan, M., Zhou, W., Jiang, C., Kimm, H., Franz, T.E., Grant, R.F., Yang, Y., Rudnick, D.R., Heeren, D.M., Suyker, A.E., Bauerle, W.L., Miner, G.L., Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand. Nature Commun., 12(1), 2021, 10.1038/s41467-021-25254-7.