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A B S T R A C T

Climate change is amplifying the duration, frequency, and intensity of droughts, harming global ecosystems.
During droughts, plants can close their stomata to save water, at the expense of a reduced carboxylation rate.
When in a carboxylation-limited regime, plants benefit from an increase in water availability, as it increases
their photosynthetic rate. The sun-induced chlorophyll fluorescence (SIF) signal, measurable from satellites,
is mechanistically linked to this rate. Like canopy photosynthesis, SIF carries an imprint from the available
irradiation (PAR) as well as the canopy structure and the efficiency of the photosynthesis at the photosystem
level. Normalizing the global TROPOMI SIF observations with TROPOMI reflectance and MODIS Normalised
Difference Vegetation Index (NDVI) data, we extracted the fluorescence quantum yield (𝜙𝐹 ), which lab-scale
experiments have found to be linked to the photosynthetic electron transport. Plant physiologists have long
proved the photosynthetic electron transport to be sensitive to plant water status. Here, the plant water status is
controlled by the soil moisture (SM) and the vapour pressure deficit (VPD). Combining data from the TROPOMI,
AIRS and SMAP satellite sensors, this study describes how SM and VPD control the 𝜙𝐹 at the global scale. We
identify a VPD range (VPD<1.5 kPa) in which the 𝜙𝐹 is mainly controlled by VPD, and another (VPD>1.5 kPa)
in which the 𝜙𝐹 is co-regulated by SM and VPD. The precise values of this range, as well as the magnitude of
𝜙𝐹 values, are modulated by the plant isohydricity. To gain a deeper understanding of the link between 𝜙𝐹 and
photosynthetic efficiency at large scale, we used the link between 𝜙𝐹 and data on the canopy conductance
(Gs), which were calculated using remote sensing data-driven models. A comparison found that the 𝜙𝐹 -Gs
relationship at large scale is in line with the 𝜙𝐹 -Gs relationship described in plant-level studies.
1. Introduction

Water is an essential element for plants to grow and for ecosystems
to function. Changes in the ecosystem water status jeopardize the
ecosystem health, reduce crop yields and may lead to forest fires,
among other impacts (Gupta et al., 2020; Sungmin et al., 2020; Ven-
turas et al., 2021). Due to climate change, droughts are an increasingly
relevant problem in the coming decades (Balting et al., 2021). From a
plant physiological perspective, a drought is a shortage of water avail-
ability, combined with high atmospheric water demand (Orimoloye,
2022). This induces a series of possible reactions, which include stom-
atal closure, decreased photosynthetic rate, leaf water loss, cavitation,
chlorophyll degradation and accelerated senescence (West et al., 2019;
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Jonard et al., 2011). Over the last 50 years, remote sensing has proven
its value for large-scale drought stress monitoring. First-generation
Earth Observation (EO) satellites have used the canopy greenness as
an indicator of an ecosystem’s stress status (West et al., 2018), as
damaged plants tend to shed or brown their leaves. While very intu-
itive, greenness only provides limited information on plant physiology.
Data streams generated by new-generation EO satellites are focused
on signals that are more closely linked to plant health, establishing a
link between the fields of plant physiology and remote sensing (Jonard
et al., 2020). A key variable in this school of thought is the sun-induced
chlorophyll fluorescence (SIF) signal, which originates in the heart of
the photosynthetic apparatus (Porcar-Castell et al., 2021).
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Photosynthesis is the process by which a plant harvests light energy
and uses it to incorporate a CO2 molecule into a carbohydrate. This
verall reaction can be split into two main processes: the photosyn-
hetic electron transport, responsible for the light harvesting, and the
alvin cycle, responsible for the CO2 assimilation (Farquhar et al.,

1980). The chlorophyll molecules are embedded in proteins forming
photosystems (PS). The activity of photosystem II (PSII) determines
the rate of light absorption, while the rate of the Calvin cycle is
determined by the carboxylation rate. On the one hand, the overall
photosynthetic rate is limited by its light reactions, thus by its energy
availability. On the other hand, water availability conditions control
the carboxylation regime, as plants tend to close their stomata reducing
transpiration in an attempt to save water at the expense of a reduced
CO2 uptake (Muhammad et al., 2021; Jonard et al., 2022).

The mechanistic link between SIF and photosynthesis finds its ori-
gins at the level of PSII. The PSII is responsible for the electron
harvesting from a water molecule and for sending it to the electron
transport chain. For a PSII to provide this energy, its outermost electron
pair jumps to a higher energy level, forming an excited PSII (PSII*).
The energy trapped by this photosystem is split over three pathways.
The first pathway is the photochemical electron chain, fuelling the
Calvin cycle. The second pathway is a container category of processes
that dissipate the excess trapped energy as heat. These are collectively
known as non-photochemical quenching (NPQ). As a final pathway, the
trapped photon can be re-emitted as chlorophyll fluorescence (Porcar-
Castell et al., 2014). The fraction of photons going down each pathway
is referred to as the photochemical quantum yield (𝜙𝑝), the non-
photochemical quantum yield (𝜙𝑁 ), and the fluorescence quantum
yield (𝜙𝐹 ), respectively. The 𝜙𝐹 emission typically varies between 1
and 3% of the absorbed light radiation (Jonard et al., 2020). A low-
ered carboxylation decreases the energy demand by the photosynthetic
electron transport chain, decreasing 𝜙𝑃 , increasing 𝜙𝑁 , which leads
to a decrease in the life-time of the excited state of photosystem II
(PSII*), decreasing 𝜙𝐹 (van der Tol et al., 2014). Consequently, it

as possible to link 𝜙𝐹 to stomatal conductance (Gs) using leaf-level
easurements (Flexas et al., 2002). Canopy-scale SIF is the aggregate

f the fluorescence emission of all photosystems, the rate of which
s determined by 𝜙𝐹 . Therefore, 𝜙𝐹 can be conceptualized as the

physiological component of SIF.
SIF is dwarfed by the reflected and scattered sunlight, restricting

the SIF retrieval to the Fraunhofer lines and Telluric bands. These
are (sub-)nanometre scale spectral bands in which solar irradiation is
reduced. In case of the Fraunhofer lines, this reduction is caused by
light absorption by -mostly metallic- elements in the Sun’s outer layers.
In Telluric lines, the reduction is caused by atmospheric gasses. The
main Telluric lines are linked to absorption of O2 and of H2O. Thanks
to the reduction in solar irradiation in the Fraunhofer lines, the relative
contribution of SIF to the measured radiance is significantly higher
compared to radiances measured outside these bands. Given the narrow
spectral range of the Fraunhofer lines, a nanometre-scale spectral reso-
lution is imperative for SIF measurements. The FLuorescence EXplorer
(FLEX) satellite, scheduled for launch in 2025, will be carrying two
spectrometers tailored to SIF retrievals (Drusch et al., 2017). Currently,
satellites designed for monitoring atmospheric trace gasses provide
global SIF data products. One of these products comes from the TRO-
POspheric Monitoring Instrument (TROPOMI), installed on Sentinel-5P,
that provides daily global coverage. Guanter et al. (2021) propose two
different TROPOMI-based SIF products that estimate the SIF emission at
740 nm. The products differ in the fitting window through which SIF
is retrieved; the 735 product makes use of a fitting window between
735 and 758 nm, while the 743 product uses a fitting window between
743 and 758 nm. The former makes use of a wider range of Fraunhofer
lines than the latter, but its retrieval is impacted by the atmospheric
water content. The latter only uses solar absorption lines, making the
2

retrievals independent from the atmospheric water content. s
Given its use in the field of plant physiology, there is an increasing
interest in finding remote sensing based estimates of 𝜙𝐹 . Tower- or
drone-based remote sensing studies have retrieved 𝜙𝐹 at the canopy
scale and managed to observe a reaction in 𝜙𝐹 in function of the water
availability (De Cannière et al., 2021; De Canniere et al., 2022; Wang
et al., 2023; Xu et al., 2021). Similarly, Kimm et al. (2021a) pointed
out the importance of the water demand, quantified by the vapour
pressure deficit (VPD). Both high VPD and low SM lead to a reduction
in 𝜙𝐹 . Helm et al. (2020) links the drought-induced decrease in 𝜙𝐹
to a decrease in Gs. At the satellite scale, fewer studies use 𝜙𝐹 in
favour of SIF, that has shown to be reactive to drought conditions. Sun
et al. (2015) linked different drought categories from the US drought
monitor (Svadoba et al., 2002) to the ecosystem-scale SIF.

However, the SIF drought reaction is determined by a simultaneous
canopy structural and physiological change (Dechant et al., 2020), the
sum of which caused a SIF decrease that goes together with a GPP
decrease (He et al., 2020). The combination of the structural and phys-
iological components makes SIF a more performant drought diagnostic
compared to greenness indices (Qiu et al., 2022). Recently, regional
satellite-based studies have isolated the physiological component and
observed its reactivity to droughts (Gu et al., 2023; Zhang et al., 2023).
The combination of the structural and physiological component makes
SIF a more performant drought diagnostic compared to greenness
indices (Qiu et al., 2022). The physiological component of SIF boils
down to the fluorescence yield 𝜙𝐹 , a variable that is unaffected by
canopy greennes or structure. Dechant et al. (2022) propose an efficient
method for retrieving 𝜙𝐹 from satellite-based sensors, by normalizing
the SIF. A global, satellite-based dataset of 𝜙𝐹 opens the door to an
improved interpretation of SIF data through an ecophysiological lens.

Two environmental variables that stand out as constraining factors
on the ecosystem-scale photosynthesis and SIF emission are water
availability, typically quantified with the SM and the atmospheric water
demand, quantified with the VPD (Fu et al., 2022; Lu et al., 2022).
In order to interpret the control of VPD and SM on photosynthesis,
and therefore on 𝜙𝐹 and SIF, it is important to consider the stomatal
behaviour. The connection between Gs, 𝜙𝐹 and photosynthesis is well-
established at the plant level (Flexas et al., 2002; van der Tol et al.,
2014). The specific nature of this connection at the ecosystem level
differs on a series of ecosystem properties, of which the isohydricity is a
key trait. Isohydricity is an ecophysiological trait that describes the sen-
sitivity of the stomata to increasing drought conditions. A plant is more
isohydric if its stomata are sensitive to drought (i.e., they tend to close
in response to drought), and more anisohydric if the stomata are less
sensitive (i.e., they tend to remain open despite of drought conditions).
More isohydric plants save up water during drought periods at the cost
of a lower carboxylation rate, while more anisohydric plants maintain
high photosynthetic rates during drought periods, putting themselves
under risk of hydraulic failure but potentially outperforming their more
isohydric neighbours (Novick et al., 2019). Considering the environ-
mental variables soil moisture (SM) and vapour pressure deficit (VPD),
as well as the physiological variables Gs and 𝜙𝐹 at the ecosystem
scale, we hypothesize that: (i) VPD and SM are important controlling
factors on 𝜙𝐹 , (ii) as anisohydric plants are known to have a less strict
stomatal response to changes in environmental factors, an effect of
the anisohydricity is expected on the response of 𝜙𝐹 to VPD and SM,
iii) the relationship between canopy conductance (Gs) and 𝜙𝐹 shows
similar behaviour to that relationship at the scale of the individual

lant (e.g., Flexas et al., 2002). The paper is structured as follows.
ection 2 explains the datasets used and the methodology, including the
ay we compute 𝜙𝐹 , the analysis of SM and VPD as controlling factors,
nd the modelling of stomatal conductance. Section 3 shows the results
n four steps: (i) the spatial patterns of 𝜙𝐹 ; (ii) the time-correlation
etween 𝜙𝐹 and greenness; (iii) the controls of SM and VPD on 𝜙𝐹 ;
nd (iv) the comparison of the SM-VPD-𝜙𝐹 space with the SM-VPD-Gs

pace. Sections 4 and 5 are the discussion and conclusions.
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2. Materials and methods

2.1. Data

2.1.1. L-band passive microwave soil moisture from SMAP
Passive microwave remote sensing at L-band (1.4 GHz) provides

an excellent tool for monitoring soil moisture regularly and globally.
Advantages of this technique include: (i) compared to higher frequen-
cies, the longer wavelength increases the soil moisture sampling depth;
(ii) clouds are transparent, allowing for all-weather retrievals and (iii)
compared to active microwave techniques and to shorter wavelengths,
L-band passive microwave emission is less affected by the canopy struc-
ture. The coarse spatial resolution of passive microwave SM retrievals
is particularly suited for regional to global scale research. This study
makes use of L-band SM data from the Soil Moisture Active Passive
(SMAP) satellite (Entekhabi et al., 2010) retrieved using the Multi-
Temporal Dual-Channel Algorithm (MT-DCA; Konings and Gentine,
2017; Feldman et al., 2021). The data come at a 3-day temporal
resolution and 9 km spatial gridding.

2.1.2. Atmospheric data from AIRS
The evaporative water demand is monitored with the Atmospheric

InfraRed Sounder (AIRS) instrument, on NASA’s Aqua satellite, laun-
ched in 2002 (Aumann et al., 2003). This instrument measures the
infrared radiance at 2378 spectral samples, located in three spectral
regions of the thermal infrared. Along these bands, atmospheric trace
gasses, like CO2 and H2O, have different absorption spectra. Using
this information, AIRS retrieves a vertical transect of temperatures and
atmospheric trace gasses concentrations at the global scale with a daily
resolution (Aumann et al., 2003). This allows computing daily data of
VPD (Eqs. (1)–(2)) based on the saturation water vapour pressure (e𝑠𝑎𝑡;
kPa), air temperature (T𝑎𝑖𝑟; 𝑜C) and the air relative humidity (RH; %).

𝑒𝑠𝑎𝑡 = 0.61094 ⋅ 𝑒
17.625⋅𝑇𝑎𝑖𝑟
𝑇𝑎𝑖𝑟+243.04 (1)

VPD =𝑒𝑠𝑎𝑡 ⋅
(

1 − RH
100

)

(2)

Both Sentinel-5P (used to retrieve SIF; see Section 2.1.3) and Aqua
satellites have their overpass times at 13.30, minimizing the diurnal
shift between the VPD and SIF measurements. AIRS provides daily
atmospheric data at 1𝑜 spatial resolution. Using linear interpolation,
the 1-degree dataset is re-gridded to a 9 km Equal Area Scalable Earth
version 2 (EASE-2) grid. When interpreting VPD at a large scale, it is
important to realize that VPD, air temperature and solar irradiation
are tightly interconnected and that a VPD effect is hard to distinguish
from an irradiation or a temperature effect. We try to limit the effects
of the lower resolution VPD by binning 𝜙𝐹 relative to SM and VPD
conditions (see Section 2.2.2). This approach enables us to use datasets
of different resolutions, although higher resolution VPD would increase
the number of unique SM and VPD pairs for binning. We think that
AIRS VPD sufficiently covers large scale atmospheric dryness, and we
have high enough sampling to isolate the VPD control on 𝜙𝐹 .

2.1.3. SIF and NIR data from TROPOMI
The SIF data were taken from the ‘TROPOSIF’ product (Guanter

et al., 2021), that retrieves SIF emission at its 740 nm emission peak (in
mW m−2 sr−1nm−1) from the TROPOMI sensor onboard the Sentinel-5P
satellite. The product represents instantaneous SIF emission at the mo-
ment of the measurement. The retrieval uses the spectral fitting window
between 743 and 758 nm and relies purely on solar Fraunhofer lines,
reducing its sensitivity to atmospheric effects compared to retrieval
methods that include the atmospheric absorption bands. For the SIF
retrieval, the observed signal over the different bands is split into a
smooth (true) reflectance signal and a fluorescence signal. The latter
makes up for the difference between the true and apparent reflectance
3

(i.e., the reflectance as observed by the satellite). The retrieval assumes
cloud-free conditions. The same TROPOSIF product also provided the
broadband top of atmosphere (TOA) NIR radiances (NIRRAD; in mW
m−2 sr−1nm−1). TROPOMI has a 16-day revisit time and a swath of
2600 km, allowing it to combine nadir and off-nadir measurements.
This combination allows a daily global coverage. The spatial resolution
of the data product goes up to 3.5 km × 5.5 km at nadir, while going
down to 14.5 × 5.5 km off-nadir. Each data point in the TROPOSIF
product contains a quality value, with penalties for high Solar Zenith
Angle (SZA), a low average TOA NIRRAD, an extreme value for SIF,
or a high Viewing Zenith Angle (VZA). As a final quality control, the
𝜒2-value between the calculated and observed spectra is calculated,
allowing to identify the retrievals that have been hampered by clouds.
The calculated spectrum is the sum of the smooth (true) reflectance and
the fluorescence. Following the recommendations laid out in Guanter
et al. (2021), this study only selected TROPOSIF SIF and NIRRAD data
that did not take any penal point from the beforementioned categories.
In the TROPOSIF dataset, SIF values can be negative. These values
are the result of the lack of ground-based calibrations, as well as of
a series of noise introduced by the atmosphere. Negative SIF values
were mainly reported over areas with only sparse vegetation. While
negative SIF values are not physical, they do represent the regions with
the lowest SIF emissions and deleting the negative SIF values would
introduce a positive bias in the system. Therefore, the negative SIF
values were considered in our analyses. 23% of the data were negative.

2.1.4. NDVI data from MODIS
Information on the vegetation development comes from NDVI data,

which were obtained from the MOD13C1 product (Didan, 2015). This
product is derived from the MODerate Imaging Spectroradiometer
(MODIS) on board of the Terra satellite. This product bins two 8-
day composite surface reflectance granules into a 16-day period and
is set out on a 0.050 grid. The product has a staunch quality control,
removing any cloud-affected data. In a second instance, the data were
spatially aggregated and temporally interpolated to form a global 9 km
product at a daily resolution. This approach allows to get a smooth
signal on the vegetation development that minimizes the cloud effects,
that profoundly affect the NDVI retrieval. Table 1 gives an overview of
all the used remote sensing products, as well as on their resolutions.

2.1.5. Isolating the physiological component from SIF to create a global 𝜙𝐹
dataset

To convert satellite-based SIF to ecosystem-scale 𝜙𝐹 values, three
multiplicative factors need to be considered (Jonard et al., 2020)
(Eq. (3)).

SIF = PAR ⋅ fPAR ⋅ 𝜙F ⋅ 𝑓𝑒𝑠𝑐 (3)

The first term is the photosynthetically active radiation (PAR), that
fuels the photosynthesis. The second factor is the fraction of this PAR
that the leaves absorb (fPAR). Finally, there is the escape probability
(𝑓esc), the probability of a re-emitted photon by PSII to reach the sensor.
The non-physiological part of SIF, being the fPAR, PAR and 𝑓esc can be
grouped in the NIRvP variable (Dechant et al., 2022) as in Eq. (4).

NIRvP ≈ PAR ⋅ fPAR ⋅ 𝑓𝑒𝑠𝑐 (4)

While SIF has very strict spectral retrieval requirements, NIRvP can
be measured by using only the Normalized Difference Vegetation Index
(NDVI) and the reflected radiance in the TOA part of the near-infrared
(NIRrad), as shown in Eq. (5).

NIRvP = NDVI ⋅ NIRrad (5)

Finally, normalizing SIF by NIRvP provides an estimate for 𝜙𝐹
(Eq. (6)), the fluorescence yield (Zeng et al., 2022):

𝜙F ≈ SIF
NIRvP

(6)

As an additional quality control on the TROPOSIF product, data
points of 𝜙𝐹 with a NIRvP < 25 mWm−2sr−1nm−1 were not considered,
as they represent too small vegetation or too low solar radiations.
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Table 1
Overview of used sensors and data products.

Variable Sensor Spatial grid Time step Reference

Soil Moisture SMAP 9 km 3 days Konings et al.
(2017)

NDVI MODIS 0.05◦ 16 days Didan (2015)
VPD AIRS 1◦ 1 day Aumann et al.

(2003)
NIRRAD TROPOMI Up to 3.5 km × 5.5 km 1 day Guanter et al.

(2021)
SIF740 TROPOMI Up to 3.5 km × 5.5 km 1 day Guanter et al.

(2021)
2.2. Evaluating the effect of environmental factors on 𝜙𝐹

2.2.1. Grasping the spatial and temporal variation of 𝜙𝐹
The analysis was based on data from the years 2019 and 2020.

Three steps were made to explore the behaviour of 𝜙𝐹 along the
spatial and temporal dimensions. First, a pixel-averaged map of global
yearly 𝜙𝐹 was made for the year 2019. Second, to verify that the 𝜙𝐹
indeed represents effects that are unrelated to canopy-greenness, the
pixel-based Pearson’s correlation coefficient between 𝜙𝐹 and NDVI was
calculated for the year 2019. Third, to visualize the effect of a drought
stress on large-scale 𝜙𝐹 , a 𝜙𝐹 map of Western Europe was made before
and during the 2019 European Summer Drought (Blauhut et al., 2022).

2.2.2. Evaluating the effect of SM and VPD in a phase space
As a next step, we analyse the effect of the environmental variables

SM and VPD on 𝜙𝐹 by plotting the mean of the 𝜙𝐹 observations and
their corresponding VPD and SM observations in a phase space. While
plant drought stress is a complex and multi-dimensional problem, SM
and VPD represent respectively the supply and demand of water. Each
point in the phase space considers a specific set of environmental
conditions, i.e., a VPD-SM combination, and shows the average 𝜙𝐹
value for these conditions. The observed 𝜙𝐹 values over the years 2019
and 2020 were binned based on both their SM (55 bins, between 0
and 0.55 m3/m3, bin width 0.01 m3/m3) and VPD (40 bins, between 1
and 5 kPa, bin width 0.1 kPa). To ensure statistical representativeness,
we took global data over two years, and SM-VPD bins that contained
fewer than 1200 measurements were removed. Within the phase space,
contour lines connect points of equal 𝜙𝐹 . The shape of these lines
qualitatively reveals the controlling factor on 𝜙𝐹 .

The analysis of phase space plots is done in two steps. In a first
instance, a global average of the relationship between SM-VPD and 𝜙𝐹
is made through a phase space. The global analysis has the advantage
of containing a maximal number of observations, but it neglects spatial
variations in the response of 𝜙𝐹 to SM and VPD. In a second instance,
the vegetation are considered by plotting different phase spaces for
each of the different land cover and isohydricity categories.

2.2.3. Data stratification of the global 𝜙𝐹 dataset with land cover and
isohydricity

Mechanistically linked to photosynthesis, plant-scale 𝜙𝐹 is sensitive
to plant isohydricity (Attia et al., 2015; Cocozza et al., 2016), although
the precise relationship at ecosystem scale is unclear. The global 𝜙𝐹
dataset was stratified based on the degree of anisohydricity of each
pixel (Table 2) using a global database of isohydricity from Appendix
A.1 and Konings and Gentine (2017). This dataset quantifies an ecosys-
tem isohydricity based on the diurnal variation on satellite AMSR-E
observations of X-band Vegetation Optical Depth (VOD), a proxy for
the water potential in the leaves. This variation is quantified as the
slope (𝜎) of the linear regression between daytime and night-time VOD.
Pixels showing little 𝜎 values (𝜎 ∼ 0) were considered as more isohy-
dric, meaning they have a strict stomatal control, therefore low diurnal
VOD variation. Pixels with 𝜎 values close to 1 were instead considered
more anisohydric. Those pixels typically have higher daily transpiration
4

rates, and therefore a larger difference between daytime and nighttime
VOD (Konings and Gentine, 2017). While some ecosystems are reported
to have a seasonality in their degree of anisohydricity, driven by leaf
phenology (Gong et al., 2022), or due to species turnover (Wu et al.,
2021), studying time-variable effects of isohydricity is beyond the scope
of this study. Isohydricity is thefore considered as a time-constant
value. To assess the effect of isohydricity and anisohydricity on the
𝜙𝐹 under different SM and VPD conditions, we split ecosystem-scale
isohydricity into 6 discrete classes.

In addition to the isohydricity effect (Table 2), the effects of land
management were studied. To do so, croplands were treated distinctly
from other vegetation types as they typically show a clear anisohy-
dric behaviour and farming practices allow agricultural crops to grow
optimally, with high photosynthetic rates. Such management practices
are not present in natural ecosystems. The vegetation type information
come from the International Geosphere–Biosphere Programme (Friedl
et al., 2010) land cover classification information. Both the land cover
and isohydricity analyses were carried out over the global dataset.

2.3. Modelling Gs at the continental scale

SM and VPD affect 𝜙𝐹 through partially driving stomatal clo-
sure (Jonard et al., 2020), as closed stomata limit the plant’s carboxyla-
tion rate. Therefore 𝜙𝐹 and Gs should be controlled by SM and VPD in
similar ways. We test this by comparing 𝜙𝐹 observations to Gs model
estimates. We do not attempt to validate 𝜙𝐹 using Gs but aim to explore
whether both variables are controlled by SM and VPD in similar ways
and whether a previously observed relationship between 𝜙𝐹 and Gs is
reproducible using continental scale 𝜙𝐹 and model estimates (Flexas
et al., 2002). Similar comparisons have been done by Zhang et al.
2021, Fu et al. 2022 and Liu et al. 2020, although on smaller scales.
Work by Zhang et al. (2021) relies on Gs calculated using the Penman
Monteith equation, which requires substantial local measurements to
parameterize the model properly. The Gs data we use is based on a
simple soil-plant hydraulic model, originally designed by Carminati and
Javaux (2020) and expanded by Wankmüller and Carminati (2021).
We run the model with remote sensing observations of SM and VPD
(same as in Table 1) as inputs to predict Gs for Africa. Furthermore,
soil hydraulic properties are calculated using empirical formulations
by Rawls and Brakensiek (1985) and global soil maps (Hengl, 2018a,b)
and root length is adjusted as a fraction of MODIS leaf area index (LAI).
Limiting the scope of the analysis to the African continent reduces
the computation time to a manageable amount, while still analysing
a large diversity of different biomes and climates. Due to the coarse
input datasets and the computationally expensive nature of the model,
we estimate Gs at 36 km resolution.

The plant soil hydraulic model we use has been desrcibed in Carmi-
nati and Javaux (2020) and Wankmüller and Carminati (2021) and
includes radial water transport from soil to root, which is often not
resolved in larger ecosystem models. The model operates under the
steady state assumption, i.e., all water fluxes equalize between soil
and plant compartments. Water flow between soil and plant follows
from the water potential difference between compartments and the
compartment conductance. The decrease of soil conductance as a result
of root water uptake is nonlinear and can quickly limit the conductance
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Isohydricity classes, based on the slope 𝜎 between midday and midnight vegetation optical depth (Konings and Gentine, 2017).
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of the whole soil plant system in dry conditions, which might exert
strong control on stomatal response (Carminati and Javaux, 2020).
The model setup does not prescribe species specific traits or levels of
isohydricity. The relationship of Gs to SM and VPD is resulting from
the models’ soil and plant hydraulics and the local SM and VPD time
series. Our goal is to provide a simple comparison between SM and VPD
control on 𝜙𝐹 and plant hydraulics-based Gs. Abscisic acid (ABA) is a
lant hormone relevant for many plant processes, like growth, and a
lays an important role in signalling water stress. It has been observed
hat increasing ABA levels lead to stomatal closure, therefore reducing
lant water loss (Bauer et al., 2013). Wankmüller and Carminati (2021)
nclude the effect of ABA on stomatal/canopy conductance using a
imple model. The relative level of ABA (–) follows from a sink-source
quation (Eq. (7)):

𝐴𝐵𝐴| ∝
−𝛹leaf + 𝜖𝛹
𝐴 + 𝜖𝐴

(7)

where the source term in the numerator depends on the leaf water
potential 𝛹leaf (MPa) and a constant minimum production rate 𝜖𝛹
(MPa). The sink term in the denominator depends on an assimilation
rate 𝐴 and a constant minimum degradation rate 𝜖𝐴 (μmol m−2s−1).
𝜓leaf results from the solution of the plant hydraulics model for a given
transpiration rate Eleaf. This description of ABA dynamics is extremely
simplified, not including a variety of other factors and processes, like
the transport of ABA in the plant or the dependence of ABA production
and degradation on temperature, among others. The assimilation rate
A μmol m−2s−1 is modelled as a function of stomatal conductance and
a saturation curve (Eq. (8):)

A
(

GS
)

=
GS
1.6Amax
GS
1.6+KM

(8)

here Amax (μmol m−2s−1) is the maximum assimilation rate and
𝑀 (μmol m−2s−1) is the Michaelis–Menten constant. GS (μmol m−2s−1)

is linked to the transpiration rate using the following simple model (Med
lyn et al., 2011):

GS = TAleaf
Patm
VPD

(9)

ith transpiration rate Eleaf, Patm the atmospheric pressure and VPD
he vapour pressure deficit. Eq. (9) displays the dependence of Gs,
nd therefore of |ABA| on plant hydraulics (through Eleaf) and VPD.
urthermore, 𝛹leaf goes into Eq. (7) which influences |ABA| and sub-
equently Gs as well. The whole model containing plant hydraulics
nd ABA dynamics is iteratively solved by minimizing |ABA|, which
esults in an estimation of Gs for every timestep with SM and VPD
bservation. We refer to Carminati and Javaux (2020) and Wankmüller
nd Carminati (2021) for a more detailed description of the model
ramework and provide our exact parameterization in the supplement.
he model framework does not include any functional dependence of
s on light availability or temperature, which should limit the ability
f the model to capture Gs dynamics in areas where they are most
mportant and water limitation is not relevant (e.g rainforests).

. Results

.1. Global patterns of 𝜙𝐹

Fig. 1 shows the global average 𝜙𝐹 for 2019 at 9 km resolution.
egions that typically show a clear moisture gradient, such as the Sahel
5

egion or Northern Australia, tend to show a gradient in 𝜙𝐹 . Western t
Europe, India, Brazil, Tropical Africa and Southeast Asia show high
values of 𝜙𝐹 . Smaller-scale patterns however, are harder to spot.

In addition to the spatial patterns, the 𝜙𝐹 also shows reactivity to
isturbances, that typically reduce the 𝜙𝐹 . This concept is illustrated
y Fig. 2, which shows the 𝜙𝐹 over Western Europe during a regular
019 spring (Fig. 2a) and the First European heatwave 2019 (Fig. 2b) in
estern Europe (Blauhut et al., 2022). The map shows a clear decrease

n 𝜙𝐹 in France and Southern Germany (Fig. 2c). This behaviour was
ot repeated in 2021, a year in which heatwaves and droughts were
bsent in Europe (Fig. 2d-e).

Fig. 3 shows the pixel-based Pearson’s correlation coefficient be-
ween NDVI and 𝜙𝐹 (𝜌𝜙𝐹 -NDVI𝜙𝐹 ) for 2019. Spatially, regions with

high 𝜙𝐹 -NDVI correlation tend to concentrate in regions that have
ither a semi-arid climate, such as the Sahel, or that are situated at high
atitudes, such as Siberia or Canada. The histogram of the correlation
oefficient shows a clear peak around 0, indicating that the 𝜙𝐹 is
nrelated to the NDVI for most pixels. Significant (p-value < 0.05)
DVI-𝜙𝐹 correlations grouped around the sahel and the Taiga regions

n Canada and Siberia (Figure Appendix A.4).

.2. Observed control of SM and VPD on 𝜙𝐹

Fig. 4 shows the global 𝜙𝐹 as a function of the SM and VPD.
onsidering almost all global terrestrial ecosystems, Fig. 4 shows a
eneral image on the behaviour of 𝜙𝐹 over the globe. The highest 𝜙𝐹
alues are found in the VPD range between 2 and 3 kPa. Some SM-VPD
ombinations were more frequent than others, which is represented by
ig. 4b. For the region with VPD < 1.8 kPa, the horizontal contour
ines indicate that VPD is the only driving factor for the 𝜙𝐹 . For the
egion with VPD > 1.8 kPa, the more curved and diagonal contour
ines indicate a co-regulation of 𝜙𝐹 by SM and VPD, especially for VPD

2.5 kPa. Fig. 4c shows in another way that VPD is the main factor
riving 𝜙𝐹 for the region VPD < 1.8 kPa. For higher VPD, a decrease in
oil moisture leads to a decrease in 𝜙𝐹 . This is most for the region SM
0.25 m3∕m3, which is also visible in the right part of Fig. 4a. Fig. 4b

hows points with a higher SM tend to be more frequent in the lower
PD part and vice versa. Therefore, high SM-high VPD points were
xcluded from the analysis. Fig. 4c shows clearly the control of VPD
n 𝜙𝐹 at lower VPD values and the role that SM plays in this control
t higher VPD.

.3. Isohydricity modulates control of SM and VPD on 𝜙𝐹

Fig. 5 shows the 𝜙𝐹 values in function of both the SM and VPD
onditions along the isohydricity strata. All the subplots replicate the
lobal behaviour, with maximal 𝜙𝐹 values found in the region of VPD
etween 2 and 3 kPa. The 𝜙𝐹 behaved similarly in the classes isohydric,
ather isohydric and rather anisohydric. In contrast, in the two most
nisohydric categories (𝜎 > 0.8), the 𝜙𝐹 values were notably higher
han in the more isohydric classes. In addition, there was a clear local
aximum for SM around 0.17 and VPD around 2.2 kPa, for the rather

nisohydric and anisohydric classes. This local maximum was not
bserved for the more isohydric classes. In the most anisohydric class,
he 𝜙𝐹 was almost completely decoupled from the water availability,
ith a decrease in 𝜙𝐹 only setting in when the SM values approach to
.

Fig. 6 shows the effect of increasing VPD on the 𝜙𝐹 under ranges of
veraged soil moisture conditions for the different isohydricity classes.
he figure shows a very clear difference in the 𝜙𝐹 emission for the
PD range between 1 and 3 kPa. For VPD > 2.5 kPa, the 𝜙𝐹 tends
o decrease in response to a higher VPD. Consistent with Fig. 5, there
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Fig. 1. Pixel-averaged global distribution of 𝜙𝐹 for 2019, with zoom-ins on the Sahel (bottom left) and Australia (bottom right).
Fig. 2. (a) Spatial overview of the average 𝜙𝐹 for June 1st-June 11th (b) Spatial overview of the average 𝜙𝐹 for June 25th-July 5th, the 2019 European heatwave; (c) difference
in 𝜙𝐹 between Figures (a) and (b). (d), (e) and (f) show the same periods of the year, for the year 2021, a wet year.
is an increasing trend of 𝜙𝐹 with increasing isohydricity, and very
anisohydric regions show the highest 𝜙𝐹 values, especially for VPD
above 1 kPa. It is worth noting that the more isohydric ecosystems show
a higher 𝜙𝐹 at VPD < 0.8 kPa. For the lower SM classes, the isohydricity
effect on 𝜙𝐹 is more notable, as the two more anisohydric lines clearly
show the highest 𝜙𝐹 value in the plot with the lowest soil moisture in
the region with VPD > 0.8 kPa. In contrast, the plot with SM > 0.45
m3/m3 shows that the isohydricity almost plays no effect on 𝜙𝐹 , except
for the most anisohydric category.

Croplands tend to behave differently in their SM-VPD space com-
pared to other vegetation (Fig. 7). As a main difference, the croplands
6

show higher 𝜙𝐹 values compared to the non-croplands, while the shape
of the contour lines does not change significantly. It should be noted
that the cropland vegetation contains a higher proportion of more
anisohydric pixels (mean of 𝜎=0.6 for non-croplands, mean of 𝜎=0.8
for croplands, Figure Appendix A.2).

3.4. Comparison of 𝜙𝐹 observations and modelled Gs at the continental
scale

Fig. 8 shows the phase space and contour plot of 𝜙𝐹 and Gs. The
main similarity between the 𝜙 and Gs phase space is that they both
𝐹
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Fig. 3. Global map of the 𝜙𝐹 -NDVI based Pearson’s correlation coefficient for 2019.
decrease with decreasing SM conditions, but the 𝜙𝐹 decreases are less
steep compared to the Gs decrease. Overall, both show a similar VPD-
dominated regime at high SM and a co-regulated regime at low SM.
For SM < 0.15 m3∕m3, the Gs lines are close to vertical along the entire
VPD range. This behaviour is not presented in the 𝜙𝐹 data. 𝜙𝐹 at low
SM might pick up adapted dryland vegetation, which is not represented
in the trait-less model. For the low VPD range, modelled Gs does not
increase with VPD, which is likely due to the limitation that Gs is only
driven by water limitation (i.e., SM and VPD) but is not an explicit
function of temperature or light. Future adaptation to the Gs model
could include these effects and might make the model more realistic.

Leaf-scale observations on fluorescence yield and stomatal conduc-
tance have shown a concave relationship, in which the 𝜙𝐹 approaches
a maximal value for high Gs values. The 𝜙𝐹 -Gs curve showed a concave
relationship (e.g., Flexas et al., 2002). The same behaviour is replicated
in Fig. 9, despite of being made at the continental scale. The low Gs-
region in this figure can be approximated with a linear curve. This is
also the region where SM and VPD are the most constraining factors on
𝜙𝐹 . When looking at the map of the pixel-based Pearson’s correlation
coefficient of 𝜙𝐹 and Gs (Fig. 10), the strongest correlation between Gs
and 𝜙𝐹 is found in the Sahel region as well as in East Africa, but overall
observed 𝜙𝐹 and modelled Gs show reasonably high correlations in
most water-limited areas. A low and negative correlation between 𝜙𝐹
and Gs can be found in some parts of the Ethiopian Highlands as well as
in the Congolese Rainforest, both regions where light and temperature
might be the dominant controls on 𝜙𝐹 . A significant correlation coef-
ficient was found all over Sub-Saharan Africa, albeit scattered around
(Figure Appendix A.3.)

4. Discussion

4.1. Interpretation of spatial patterns in global 𝜙𝐹 data

The different phase spaces (Figs. 4–8) show that the 𝜙𝐹 is sensitive
to the soil, plant and atmospheric characteristics. These sensitivities
are consistent with the spatial gradients of 𝜙𝐹 that appear in Fig. 1.
Clear examples here are the increase in 𝜙𝐹 over the Sahel region or
in the Australian Outback, where the 𝜙𝐹 decreases gradually when
entering the desert zone. In addition, in some mountain areas such as
those in the Western United States, 𝜙𝐹 is lower because high altitude
regions tend to show a lower photosynthetic activity (Fujimura et al.,
2010). Low 𝜙𝐹 values are mainly found in regions with either sparse
vegetation, like the Australian Outback, or very low irradiations, such
as Siberia. In such regions, a low SIF value is also expected.

The low correlation coefficient between NDVI and 𝜙𝐹 (Fig. 3) shows
that 𝜙 and NDVI are fundamentally different, strengthening the case
7

𝐹

that satellite-based 𝜙𝐹 indeed represents the physiological component
of the SIF emission independently of vegetation greenness. Fig. 3 shows
only two situations in which NDVI and 𝜙𝐹 tend to be correlated. The
first is in regions with high latitudes. There, high VPD values are rare,
so 𝜙𝐹 tends to show a seasonality with high 𝜙𝐹 in summer and lower
in winter, which is similar to the typical NDVI seasonality. Both are
driven by limitations in temperature and irradiation which are found
at high latitudes. The second situation where NDVI and 𝜙𝐹 show a
high correlation is in regions where plants tend to shed or brown their
leaves in the dry season, such as the Sahel region (Tagesson et al.,
2015), where a strong water limitation is expected. This is consistent
with Jonard et al. (2022), who identified a strong coupling between
light availability and sun-induced chlorophyll fluorescence tended to
show a high 𝜙𝐹 -NDVI correlation coefficient.

4.2. Global-scale interpretation of 𝜙𝐹

4.2.1. Constraining effect of SM and VPD on 𝜙𝐹 at the glocal scale
While SIF data have proven their ability to detect drought stress,

especially drought onset, at the regional to global scales (e.g., Cao
et al., 2021; Sun et al., 2015), the effects of irradiation and vegetation
structure (the latter changing 𝑓esc) might overpower 𝜙𝐹 (Dechant et al.,
2020; Ryu et al., 2019; Yang and van der Tol, 2018). The structural
effect include short-term variation in 𝑓esc as a result of changes in
leaf turgor (Xu et al., 2021) or due to wind effects (Liu et al., 2020).
In addition, prolonged stress leads to a lowered NDVI, an effect that
persists after the stress period (Wong et al., 2021), which provides an
additional difficulty in interpreting SIF data. Working on 𝜙𝐹 comes
with the advantage that it is stripped of non-physiological effects.

Acknowledging the importance of the structural changes on the
escape probability, regional-scale studies using satellite-based SIF data
have shown that variation in 𝜙𝐹 has its value in drought monitoring,
thanks to the sensitivity of 𝜙𝐹 to the efficiency of the photosynthe-
sis (Gu et al., 2023; Kimm et al., 2021b). In the latter studies, the
reaction of 𝜙𝐹 to a drought is shown in a way similar to Fig. 2. A
quantitative analysis of the effect of a dry soil and a high vapour
pressure deficit on photosynthesis shows a reduction on photosynthetic
activity under high VPD or low SM (Sulman et al., 2016; Novick et al.,
2016). The phase spaces in our study show a similar decrease in 𝜙𝐹
depending on SM and VPD. This suggests that 𝜙𝐹 bears the potential
of being a tool for evaluating plant functioning under changing water
availability and demand.

The changes in 𝜙𝐹 according to SM and VPD variability are similar
to those occurring in Gs, as shown in Fig. 8. This suggests that the link
between Gs and 𝜙𝐹 , as described at the leaf scale (Flexas et al., 2002) or
at the canopy scale (Kimm et al., 2021a), holds at the global scale. Gs is



Remote Sensing of Environment 301 (2024) 113922S. De Cannière et al.
Fig. 4. (a) phase space showing the average 𝜙𝐹 for each SM-VPD combination that emerged from a global analysis during the years 2019 and 2020. The red lines denote contour
lines of regions of equal 𝜙𝐹 values. (b) Number of samples for each SM-VPD combination. The green line in Figure b shows the threshold of 1200 combinations; and fewer
combinations (i.e., right of the line) are removed from the analysis. (c) represents the same data as (a), but the axes are swapped. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
known to be constrained by a combination of SM and VPD, both at the
ecosystem (Novick et al., 2019) and the local level (Zhang et al., 2021).
A similar result is obtained for photosynthesis as such (Fu et al., 2022).
This result is consistent with the concept of light- and water-limitation
in ecosystem-scale photosynthesis (Jonard et al., 2022), since water
limitation is assumed to induce a reduction in Gs through stomatal
closure. As low irradiation values typically go together with low VPD
8

values, the increase in 𝜙𝐹 at low VPD is likely an irradiation or a
temperature effect.

There is a significant landscape-scale interaction between SM and
VPD, as a high VPD (i.e., dry air) tends to dry out the soil (Liu et al.,
2020), and dry/wet soils have also the capacity to reinforce dry/wet
atmospheric conditions. These interactions explain why some SM-VPD
combinations are more frequent than others, and why the high SM-high
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Fig. 5. Phase spaces of the 𝜙𝐹 values along the SM-VPD space for six different isohydricity classes.
VPD combination is so rare (Fig. 4b). In this sense, the co-regulation of
SM and VPD on 𝜙𝐹 , reported in Fig. 4, can also represent a downstream
effect of the dry air drying out the soil, or vice-versa. Determining
whether SM or VPD (water availability or atmospheric water demand)
is the main driving factor on the changes in 𝜙𝐹 would require further
assessment on how SM and VPD are interrelated both in space and
time (Feldman et al., 2020).

While the satellite-based 𝜙𝐹 data and the modelled Gs provide one
single value for large areas, local-scale studies have reported significant
within-field and within-plant variability of 𝜙𝐹 or SIF emission. This
high degree of spatial variability finds its origins in spatial differences
in stress and irradiation conditions (Pinto et al., 2016; Wieneke et al.,
2016; Zeng et al., 2022). In addition to small-scale spatial variations
in environmental factors, plants can have different biotic traits such as
isohydricity and heat resistance. Both show a variation at the level of
the individual plant (Bussotti et al., 2020; Pinto et al., 2016; Wu et al.,
2020), while the phase spaces in this study (Figs. 4–8) show the global
controls of VPD and SM on 𝜙𝐹 . Future work should address specific
analyses in the spatial and temporal domains. Such studies can answer
whether the relationship behaves similarly in space and time.

4.2.2. Role of non-photochemical quenching at the global scale
The most direct way to establish a link between 𝜙𝐹 and Gs is to

make leaf-scale measurements with a fluorometer and a leaf cham-
ber. A milestone study in this regard was Flexas et al. (2002), that
observed a hyperbolic relationship between 𝜙𝐹 and Gs, where 𝜙𝐹 , as
well as the photosynthetic rate, decrease with decreasing Gs. In the
9

presented study, a similar relationship was found between TROPOMI
𝜙𝐹 and modelled Gs (Fig. 10). Helm et al. (2020) expanded this idea
by comparing leaf-scale spectrometer SIF measurements with stomatal
conductance measurements, and they found a similar connection be-
tween 𝜙𝐹 and Gs. Both studies attribute the decrease in 𝜙𝐹 or SIF to
an observed increase in NPQ. While it makes sense to believe that the
increase in NPQ is also responsible for the decrease of satellite-based
𝜙𝐹 at the global scale, it is impractical to verify this claim, as there is
currently no reliable method for estimating NPQ from a remote sensing
platform. The closest we have to a remote-sensing based NPQ estimate
comes from the PRI. Short-term PRI dynamics are closely linked to
NPQ dynamics. Using airborne imagery over an orchard, Zarco-Tejada
et al. (2012) observed a simultaneous decrease in SIF, PRI and Gs,
strengthening the case that the drought-induced decrease in canopy-
scale SIF might indeed be driven by a decrease in Gs and an increase
in NPQ. While the link between NPQ and 𝜙𝐹 at the global scale remains
speculative, it is important to consider NPQ in the interpretation of
𝜙𝐹 under water-limited conditions, since the NPQ component forms a
key element in linking 𝜙𝐹 to ecosystem-scale photosynthesis (Lee et al.,
2015; Qiu et al., 2018).

4.3. Advantage of 𝜙𝐹 over other remote sensing signals

Optical remote sensing measures mainly the greenness and near-
infrared reflectance signatures of the vegetation, which then is linked
to the vegetation health as prolonged soil moisture deficit is reducing
the canopy greenness. However, these techniques fail to capture more
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Fig. 6. 𝜙𝐹 -VPD relationship at different soil moisture condition ranges and isohydricity classes. Values for VPD> 3 kPa were not shown, as there were too few observations in
this class.
Fig. 7. Phase space of 𝜙𝐹 along the SM-VPD space for croplands (left) and non-croplands (i.e., other vegetation types that are not croplands; right).
immediate effects of water limitation or stress. To do so, a variable
that reacts instantly and in accordance to the stress intensity is useful.
Along with 𝜙𝐹 measurements, two other techniques are indicative of
environmental constraints on photosynthesis. These are the photochem-
ical reflectance index (PRI) that is sensitive to the NPQ component in
10
PSII and indicators that make use of thermal remote sensing. PRI is
driven by the stress-induced increase in 𝜙𝑁 , making its driving factors
similar to the factors driving 𝜙𝐹 (Acebron et al., 2021; Alonso et al.,
2017). However, the interpretation of the PRI is blurred by the presence
of bare soil or by the canopy structure (Yang, 2022). Synergetic use
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Fig. 8. 𝜙𝐹 (left) and Gs (right) values over the African continent during 2019–2020 in the SM-VPD phase space. The 𝜙𝐹 dataset was re-gridded to 36 km before being put in the
phase space. The minimal threshold for an SM-VPD combination to be included in the plot was at 120 samples.
Fig. 9. 𝜙𝐹 values from the SM-VPD space over the African continent during 2019–2020
(Fig. 8) plotted in function of the Gs value and SM in the colourbar. Each dot represents
the 𝜙𝐹 average over the considered SM-VPD bin.

Fig. 10. Pixel-based correlation between Gs and 𝜙𝐹 over Africa during the years 2019
and 2020. Data points with a VPD < 1.5 kPa were excluded from the analysis, to
ensure that light-limited photosynthesis is excluded. a: denotes the Sahel regions; b:
denotes the Ethiopian Highlands and C: denotes the Congo River Basin.

of PRI and 𝜙𝐹 data is expected to lead to a better description of the
energy splitting at the level of PSII. Thermal remote sensing-based
stress detection relies on the decrease in latent heat flux over the leaves
11
because of reduced gas exchange. The reduction in the latent heat flux
leads to an increase in the sensible heat flux and thus in an increase
in leaf temperature (Maes and Steppe, 2012). This effect can be used
to constrain the plant resistances, which allows for better modelling of
the plant water and carbon fluxes (Bayat et al., 2018). Another thermal-
based technique is the crop water stress index (CWSI), which compares
the measured canopy temperature to a wet and dry references (Berger
et al., 2022). These variables are notoriously hard to measure, resulting
in significant errors over global CWSI-based stress monitoring.

From this perspective, global 𝜙𝐹 is a promising variable that is
linked in a more physiologically established way to Gs, reducing the
need for ancillary data in its interpretation. Specifically, 𝜙𝐹 is mecha-
nistically coupled to the PSII activity, allowing 𝜙𝐹 to constrain photo-
system activity-related parameters in photosynthesis models. However,
this comes at the cost of very strict spectral retrieval requirements.
Consequently, 𝜙𝐹 comes with a coarse spatial resolution and significant
instrument noise.

4.4. Consistent behaviour of 𝜙𝐹 and Gs at the continental scale

Since 𝜙𝐹 is controlled by SM and VPD, 𝜙𝐹 is a promising variable
for constraining photosynthetic electron transport at the global scale.
At the leaf level, 𝜙𝐹 is mechanistically coupled to the PSII activity,
allowing 𝜙𝐹 to constrain light-harvesting-related parameters in pho-
tosynthesis models. The consistency between the hyperbolic shape in
Fig. 10 and the shape obtained by the leaf-scale study of Flexas et al.
(2002) and by the regional-scale study of Kimm et al. (2021b) suggest
that the observation from the leaf scale on the link between Gs and
𝜙𝐹 might be useful for a solid ecosystem-scale link between 𝜙𝐹 and
photosynthesis under water limitation. There are various hurdles to
take before mechanistic-based land surface models can exploit this link.
The first hurdle is linked to the strict spectral requirements for SIF
retrieval and the instrument noise. The second hurdle deals with the
upscaling of the link between 𝜙𝐹 , NPQ and Gs. Given the link between
photosynthesis and crop yield, satellite-based SIF has already improved
the crop yield predictions (Guanter et al., 2014). Further exploring the
link between 𝜙𝐹 , photosynthesis, Gs and crop yield will improve the
estimations of crop yield under water-limited conditions.

4.5. Perspectives for the FLuorescence EXplorer (FLEX) mission

While the TROPOSIF data are encouraging for presenting SIF’s
ability to detect environmental constraints on photosynthesis, the first
satellite designated for SIF measurements is scheduled for launch in
2025. The Fluorescence Imaging Spectrometer (FLORIS) instrument on
the FLEX satellite is planned to come with two main improvements: a
finer spatial resolution and a higher signal-to-noise ratio. Additionally,
FLEX data will be evaluated with the help of ground-based calibration-
validation dataset, which is expected to help the interpretation of the
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FLEX data, providing an absolute 𝜙𝐹 scale. The spatial footprint of FLEX
is in the same order of magnitude as the footprint of eddy covariance
towers, allowing for a fairer comparison of spaceborne 𝜙𝐹 and eddy
covariance estimates of Gs. A better characterization of this link will
help to improve global estimates of photosynthesis and transpiration.
However, the main advantage of the TROPOSIF product compared to
the upcoming FLEX data is the higher temporal resolution of TROPOMI.
A synergetic interpretation of both datasets might allow for 𝜙𝐹 and Gs
estimations that are both accurate and frequent.

4.6. Perspectives for upcoming geostationary missions

In addition to the FLEX mission, the recently launched Tropospheric
Emissions: Monitoring of POllution (TEMPO) mission, as well as the
upcoming Sentinel-4 sensor on the Meteosat Third Generation-Sounder
(MTG-S) satellite, will have capabilities of measuring SIF data (Jonard
et al., 2020). Unlike to the TROPOMI or the FLEX mission, these mis-
sions are in geostationary orbit, allowing them to capture the diurnal
dynamics in fluorescence emission. This opens the door for detecting
the afternoon depression, a decrease in photosynthesis (Xiao et al.,
2021). Thermal-based geostationary data have already made use of
the afternoon depression to reveal drought stress during the 2020 US
Heatwave (Li et al., 2023).

5. Conclusion

While well-established in laboratory experiments, the fluorescence
yield (𝜙𝐹 ) retrieved from remote sensing platforms is a newly estab-
lished variable. Mechanistically linked to the photosynthetic electron
transport, 𝜙𝐹 is promising for large-scale monitoring of vegetation
water status and functioning. Here, 𝜙𝐹 has been retrieved at the global
scale by normalizing the TROPOMI SIF data with the NIRvP, the latter
accounting for the irradiation and canopy structure components of
the signal. To gain insight into the environmental controls on the
remotely sensed 𝜙𝐹 , the global 𝜙𝐹 data were set out in a phase space
with remotely sensed vapour pressure deficit (VPD) and soil moisture
(SM), from the AIRS and SMAP sensors, respectively. The global spatial
patterns of 𝜙𝐹 show that these are responsive to limiting factors of
photosynthesis, including water availability, solar irradiation or tem-
perature, among others. Water availability and demand is described
by the SM and VPD and drive 𝜙𝐹 variability in both the spatial
and temporal domains. Consequently, 𝜙𝐹 shows a maximum around
intermediate soil moisture and VPD (i.e., 0.1 m3/m3 <SM<0.3 m3/m3

and 1.5 kPa<VPD<2.5 kPa). Results show that lower SM and/or higher
VPD may lead to lowered stomatal conductance. The effect of high VPD
and low SM on 𝜙𝐹 is stronger for more isohydric ecosystems, as they
exert stricter control over their stomatal conductance and thus also over
their photosynthetic electron transport and water regulation in function
of the environmental variables. More anisohydric ecosystems tend to
have less strict control on their stomatal closure, allowing to maintain
high rates of photosynthesis and therefore experience a weaker control
of SM and VPD on 𝜙𝐹 . The ecosystem-level link between Gs and
𝜙𝐹 obtained through remote sensing data is consistent with the link
between these variables at the leaf scale. At the leaf scale, the increase
in NPQ is an essential factor for linking Gs and 𝜙𝐹 . Despite of NPQ
not being measurable from a remote sensing platform, it makes sense
to believe that the NPQ is equally important to link 𝜙𝐹 and Gs at the
global scale. Thanks to its sensitivity to VPD and SM, and carrying an
imprint from Gs, 𝜙𝐹 is a very promising emerging remote sensing signal
that is sensitive to the photosynthetic electron transport at the instant
of the measurement. Still, we note that neither 𝜙𝐹 nor Gs datasets have
been validated with site (e.g., airborne, eddy-covariance towers, etc.)
data, so further comparison and validation of these datasets should be
done in the future. In the case of SIF and the reflectance bands used
in 𝜙𝐹 calculation, some calibration and validation activities will be
undertaken for the FLEX mission. The instantaneous nature of the stress
12
information embedded in 𝜙𝐹 contrasts with traditional, greenness-
based indicators that reflect a stress legacy effect than the instantaneous
stress itself. The FLEX satellite, scheduled for launch in 2025 will
retrieve 𝜙𝐹 at a finer spatial scale, a finer spectral resolution, and a
higher signal-to-noise ratio. This opens the door for field-scale analyses
and satellite-based modelling with 𝜙𝐹 .
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