Eprint already available on another site (E-prints, working papers and research blog)
Large normalizers of Zd-odometers systems and realization on substitutive subshifts
Cabezas Aros, Christopher; Petite, Samuel
2023
 

Files


Full Text
2309.10156.pdf
Author preprint (408.71 kB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
multidimensional substitutive subshift; odometer; normalizer; automorphism
Abstract :
[en] For a Zd-topological dynamical system (X, T, Zd), an isomomorphism is a self-homeomorphism φ : X → X such that for some matrix M ∈ GL(d, Z) and any n ∈ Zd, φ ◦ Tn = T Mn ◦ φ, where Tn denote the self-homeomorphism of X given by the action of n ∈ Zd. The collection of all the isomorphisms forms a group that is the normalizer of the set of transformations Tn. In the one-dimensional case, isomorphisms correspond to the notion of flip conjugacy of dynamical systems and by this fact are also called reversing symmetries. These isomorphisms are not well understood even for classical systems. We present a description of them for odometers and more precisely for constant-base Z2-odometers, which is surprisingly not simple. We deduce a complete description of the isomorphisms of some minimal Zd-substitutive subshifts. This enables us to provide the first example known of a minimal zero-entropy subshift with the largest possible normalizer group.
Disciplines :
Mathematics
Author, co-author :
Cabezas Aros, Christopher  ;  Université de Liège - ULiège > Mathematics
Petite, Samuel;  UPJV - Université de Picardie Jules Verne [FR] > Laboratoire Amiénois de Mathématique Fondamentale et Appliquée (UMR CNRS 7352)
Language :
English
Title :
Large normalizers of Zd-odometers systems and realization on substitutive subshifts
Publication date :
2023
Publisher :
arXiv
Name of the research project :
ANR IZES project
ECOS projet ACEDic C21E04.
Funders :
ANR - Agence Nationale de la Recherche
Funding text :
The authors acknowledge the financial support of ANR project IZES ANR-22-CE40-0011 and ECOS projet ACEDic C21E04.
Commentary :
The article has been submitted.
Available on ORBi :
since 15 January 2024

Statistics


Number of views
21 (2 by ULiège)
Number of downloads
15 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi