[en] Microbial consortia include cellulolytic bacteria, fungi, yeasts, and microbial-based biofilms which can be found in, or constituents of, food products, soils, wastewater, etc. flourishing in nature. The characterization, design, and management of these consortia are feasible, and their application in diverse fields, such as agriculture, is under research. During the last decades, considerable attention has been paid to microbial consortia as plant bio stimulants. They are an ecological alternative for sustainable agriculture and a win-win strategy to grow valuable plants without releasing fertilizers and/or pesticides into the environment. Plant biostimulants are natural preparations, of a diverse class of substances and/or micro-organisms, which positively affect plant growth conditions, stimulate natural processes, improve yield and chemical composition, and increase tolerance to biotic and abiotic stress. The purpose of this chapter is to provide an up-to-date overview of microbial consortia used as plant biostimulants. Aiming to describe the emerging definitions of plant bio stimulants, their concept, the functional categories, and their potential application as a significant tool for modern eco-friend agriculture. The chapter focuses also on reporting the regulatory framework and the current market situation of plant bio stimulants, as well as their advances in research.
Disciplines :
Agriculture & agronomy
Author, co-author :
Soudani, Nafissa
Khaoula Toumi
El Jarroudi, Moussa ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Eau, Environnement, Développement
Sami Fattouch
Language :
English
Title :
Microbial Consortia as Plant Biostimulants: Definition, Concept, Categories, and Regulation.
Publication date :
2024
Main work title :
Microbial Biostimulants: Biorational Pesticides for Management of Plant Pathogens.
Sangiorgio, D., Cellini, A., Donati, I., Pastore, C., Onofrietti, C., & Spinelli, F., (2020). Facing climate change: Application of microbial biostimulants to mitigate stress in horticultural cropsAgronomy, 10(6), 794https://doi.org/10.3390/agronomy10060794.
Castiglione, AM., Mannino, G., Contartese, V., Bertea, CM., & Ertani, A., (2021). Microbial biostimulants as response to modern agriculture needs: Composition, role, and application of these innovative productsPlants, 10(8), 1533https://doi.org/10.3390/plants10081533.
Rafiee, H., Naghdi, BH., Mehrafarin, A., Qaderi, A., Zarinpanjeh, N., Sekara, A., & Zand, E., (2016)Application of plant biostimulants as new approach to improve the biological responses of medicinal plants – A critical reviewJournal of Medicinal Plants, 15, 6–39.
Joner, E., Skjerve, E., Sundheim, L., Tronsmo, A., Wastson, Y., Eckner, K., Kapperud, G., et al., (2019)Microorganisms in biostimulantsEuropean Journal of Nutrition & Food Safety, 310–311https://doi.org/10.9734/ejnfs/2019/v9i330074.
Barros-Rodríguez, A., Rangseekaew, P., Lasudee, K., Pathom-aree, W., & Manzanera, M., (2020)Regulatory risks associated with bacteria as biostimulants and biofertilizers in the frame of the European regulation (EU) 2019/1009Science of The Total Environment, 740, 140239https://doi.org/10.1016/j.scitotenv.2020.140239.
Caradonia, F., Battaglia, V., Righi, L., Pascali, G., & La Torre, A., (2018)Plant biostimulant regulatory framework: Prospects in Europe and current situation at international levelJournal of Plant Growth Regulation, 38(2), 438–448https://doi. org/10.1007/s00344-018-9853-4.
Drobek, M., Frąc, M., & Cybulska, J., (2019)Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A reviewAgronomy, 9(6), 335https://doi.org/10.3390/agronomy9060335.
Du Jardin, P., (2015)Plant biostimulants: Definition, concept, main categories, and regulationScientia Horticulturae, 196, 3–14https://doi.org/10.1016/j. scienta.2015.09.021.
Gavelienė, V., Šocik, B., Jankovska-Bortkevič, E., & Jurkonienė, S., (2021). Plant microbial biostimulants as a promising tool to enhance the productivity and quality of carrot root cropsMicroorganisms, 9(9), 1850https://doi.org/10.3390/microorganisms9091850.
Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S., (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environmentCritical Reviews in Biotechnology, 41(3), 317–338https://doi.org/10.108 0/07388551.2020.1853032.
Khan, W., Rayirath, UP., Subramanian, S., Jithesh, MN., Rayorath, P., Hodges, D. M., Critchley, AT., et al., (2009)Seaweed extracts as biostimulants of plant growth and developmentJournal of Plant Growth Regulation, 28(4), 386–399https://doi. org/10.1007/s00344-009-9103-x.
Toscano, S., Romano, D., Massa, D., Bulgari, R., Franzoni, G., & Ferrante, A., (2018). Biostimulant applications in low input horticultural cultivation systemsItalus Hortus, 35, 27–36https://doi.org/10.26353/j.itahort/2018.1.2736.
Shahrajabian, MH., Chaski, C., Polyzos, N., & Petropoulos, SA., (2021)Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules, 11(5), 698https://doi.org/10.3390/biom11050698.
Yakhin, OI., Lubyanov, AA., Yakhin, IA., & Brown, PH., (2017)Biostimulants in plant science: A global perspectiveFrontiers in Plant Science, 7https://doi. org/10.3389/fpls.2016.02049.
Dara, SK., (2021)Advances in Biostimulants as an Integrated Pest Management Tool in Horticulture (pp1–35)University of California Cooperative.
Vishwakarma, K., Kumar, N., Shandilya, C., Mohapatra, S., Bhayana, S., & Varma, A., (2020)Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: A reviewFrontiers in Microbiology, 11https://doi. org/10.3389/fmicb.2020.560406.
Qian, X., Chen, L., Sui, Y., Chen, C., Zhang, W., Zhou, J., & Ochsenreither, K., (2020)Biotechnological potential and applications of microbial consortia. BiotechnologyAdvances, 40, 107500.
De Pascale, S., Rouphael, Y., & Colla, G., (2018)Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farmingEuropean Journal of Horticultural Science, 82(6), 277–285https://doi.org/10.17660/ejhs.2017/82.6.2.
Ramírez-Flores, MR., Bello‐Bello, E., Rellán-Álvarez, R., Sawers, RJH., & Olalde-Portugal, V., (2019)Inoculation with the mycorrhizal fungus Rhizophagus irregularismodulates the relationship between root growth and nutrient content in maize (Zea Mays Sspmays L.)Plant Direct, 3(12)https://doi.org/10.1002/pld3.192.
Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., Pascale, SD., et al., (2015)Arbuscular mycorrhizal fungi act as biostimulants in horticultural cropsScientia Horticulturae, 196, 91–108https://doi.org/10.1016/j. scienta.2015.09.002.
Begum, N., Qin, C., Ahanger, MA., Raza, S., Khan, MI., Ashraf, M., Ahmed, N., & Zhang, L., (2019)Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress toleranceFrontiers in Plant Science, 10https://doi. org/10.3389/fpls.2019.01068.
Bücking, H., Liepold, E., & Ambilwade, P., (2012)The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processesPlant Sci., 4, 108–132.
Ruzzi, M., & Aroca, R., (2015)Plant growth-promoting rhizobacteria act as biostimulants in horticultureScientia Horticulturae, 196, 124–134https://doi. org/10.1016/j.scienta.2015.08.042.
Sumbul, A., Ansari, RA., Rizvi, R., & Mahmood, I., (2020)Azotobacter: A potential bio-fertilizer for soil and plant health management.Saudi Journal of Biological Sciences, 27(12), 3634–3640.
Hindersah, R., Kamaluddin, NN., Samanta, S., Banerjee, S., & Sarkar, S., (2020)Role and perspective of azotobacter in crops productionSAINS TANAH – Journal of Soil Science and Agroclimatology, 17(2), 170https://doi.org/10.20961/stjssa.v17i2.45130.
Bashan, Y., & De-Bashan, LE., (2010)How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessmentAdvances in Agronomy, 108, 77–136.
Reis, VM., Teixeira, KRDS., & Pedraza, RO., (2011)What is expected from the genus Azospirillum as plant growth-promoting bacteria? In: Bacteria in Agrobiology: Plant Growth Responses (pp123–138)Berlin, Heidelberg, Springer.
Cruz-Hernández, MA., Mendoza-Herrera, A., Bocanegra-García, V., & Rivera, G., (2022)Azospirillum sppfrom plant growth-promoting bacteria to their use in bioremediationMicroorganisms, 10(5), 1057https://doi.org/10.3390/microorganisms10051057.
Giller, KE., & Ronner, E., (2019)The story of N2Africa: Putting nitrogen fixation to work for smallholder farmers in Africa: A flavor of the excitement and the richness of learning from N2AfricaN2Africahttps://doi.org/10.18174/527074.
Ochieno, DMW., Karoney, EM., Muge, EK., Nyaboga, EN., Baraza, DL., Shibairo, SI., & Naluyange, V., (2021)Rhizobium-linked nutritional and phytochemical changes under multitrophic functional contexts in sustainable food systemsFrontiers in Sustainable Food Systems, 4https://doi.org/10.3389/fsufs.2020.604396.
Hendriksen, NB., (2022)Microbial biostimulants – the need for clarification in EU regulationTrends in Microbiology, 30(4), 311–313https://doi.org/10.1016/j. tim.2022.01.008.
Rouphael, Y., Spíchal, L., Panzarová, K., Casa, R., & Colla, G., (2018)High-throughput plant phenotyping for developing novel biostimulants: From lab to field or from field to lab? Frontiers in Plant Science, 9https://doi.org/10.3389/fpls.2018.01197.
Lopes, T., Cruz, C., Cardoso, P., Pinto, R., Marques, PAAP., & Figueira, E., (2021). A multifactorial approach to untangle graphene oxide (GO) nanosheets effects on plants: Plant growth-promoting bacteria inoculation, bacterial survival, and drought. Nanomaterials, 11(3), 771https://doi.org/10.3390/nano11030771.
Miceli, A., Moncada, A., & Vetrano, F., (2021)Use of microbial biostimulants to increase the salinity tolerance of vegetable transplantsAgronomy, 11(6), 1143https://doi.org/10.3390/agronomy11061143.
Padmaperuma, G., Butler, TO., Shuhaili, FAA., Almalki, WJ., & Vaidyanathan, S., (2020)Microbial consortia: Concept and application in fruit crop managementIn: Fruit Crops (pp353–366)Elsevier.
Ebrahimi, F., Salehi, A., Movahedi, DM., Mirshekari, A., Hamidian, M., & Hazrati, S., (2021)Biochemical response and nutrient uptake of two arbuscular mycorrhiza- inoculated chamomile varieties under different osmotic stressesBotanical Studies, 62(1)https://doi.org/10.1186/s40529-021-00328-3.
Gebashe, F., Gupta, S., & Van, SJ., (2021)Disease management using biostimulants. In: Biostimulants for Crops from Seed Germination to Plant Development (pp411–425). Academic Press.
Zohara, F., Surovy, MZ., Khatun, A., Prince, MdFRK., Akanda, MdAM., Rahman, M., & Islam, MdT., (2019)Chitosan biostimulant controls infection of cucumber by Phytophthora capsici through suppression of asexual reproduction of the pathogen. Acta Agrobotanica, 72(1)https://doi.org/10.5586/aa.1763.
Manigundan, K., Joseph, J., Ayswarya, S., Vignesh, A., Vijayalakshmi, G., Soytong, K., & Radhakrishnan, M., (2020)Identification of biostimulant and microbicide compounds from Streptomyces spUC1A-3 for plant growth promotion and disease controlIntJAgricTechnol., 16, 1125–1144.
Mofokeng, MM., Araya, HT., Araya, NA., Makgato, MJ., Mokgehle, SN., Masemola, MC., & Amoo, SO., (2021)Integrating biostimulants in agrosystem to promote soil health and plant growthIn: Biostimulants for Crops from Seed Germination to Plant Development (pp87–108)Academic Press.
Jat, RS., Basak, BB., & Gajbhiye, NA., (2021)Organic manures and biostimulants fostered soil health and increased the harvest quality of the medicinal herb ashwagandha. Agronomy Journal, 113(1), 504–514https://doi.org/10.1002/agj2.20457.
Kaur, I., (2020)Seaweeds: Soil health boosters for sustainable agricultureIn: Soil Health (pp163–182)Springer, Cham.
Yousfi, S., Marín, J., Parra, L., Lloret, J., & Mauri, PV., (2021)A rhizogenic biostimulant effect on soil fertility and roots growth of turfgrassAgronomy, 11(3), 573. https://doi.org/10.3390/agronomy11030573.
Romanazzi, G., Sanzani, SM., Bi, Y., Tian, S., Gutiérrez, MP., & Alkan, N., (2016). Induced resistance to control postharvest decay of fruit and vegetablesPostharvest Biology and Technology, 122, 82–94https://doi.org/10.1016/j.postharvbio.2016.08.003.
Sattari, NR., Pahlavan, YM., & Bozorg-Amirkalaee, M., (2018)Effects of humic acid and plant growth-promoting rhizobacteria (PGPR) on induced resistance of canola to Brevicorynebrassicae LBulletin of Entomological Research, 109(4), 479–489https://doi.org/10.1017/s0007485318000779.
Bajpai, S., Shukla, PS., Asiedu, S., Pruski, K., & Prithiviraj, B., (2019)A biostimulant preparation of brown seaweed Ascophyllum Nodosum suppresses powdery mildew of strawberryThe Plant Pathology Journal, 35(5), 406–416https://doi.org/10.5423/ppj. oa.03.2019.0066.
Harris, BA., Poole, EM., & Pennisi, SV., (2022)Impact of biostimulant and cultural factors on whorled mountainmint (Pycnanthemum verticillatum (Michx.) PersVar. Pilosum (Nutt.) Cooperr.): Growth performance and assessment of arthropod visitation. Native Plants Journal, 23(1), 97–114https://doi.org/10.3368/npj.23.1.97.
Orpet, RJ., Cooper, WR., Beers, EH., & Nottingham, LB., (2021)Test of plant defense elicitors for arthropod pest suppression and PR‐1 gene induction in pear orchardsEntomologia Experimentalis et Applicata, 169(12), 1137–1146https://doi. org/10.1111/eea.13110.
Saour, G., Ismail, H., & Hashem, A., (2009)Impact of kaolin particle film, spirodiclofen acaricide, harpin protein, and an organic biostimulant on pear psylla Cacopsylla pyri (Hemiptera: Psyllidae)International Journal of Pest Management, 56(1), 75–79. https://doi.org/10.1080/09670870903156632. www.marketsandmarkets.com (accessed on 9 January 2023). www.biostimulants.eu (accessed on 9 January 2023).