functional MRI; light; locus coeruleus; melanopsin; non-image-forming; transient pupil response; Cognitive Neuroscience; Behavioral Neuroscience; General Medicine
Abstract :
[en] Light has many non-image-forming functions including modulation of pupil size and stimulation of alertness and cognition. Part of these non-image-forming effects may be mediated by the brainstem locus coeruleus. The processing of sensory inputs can be associated with a transient pupil dilation that is likely driven in part by the phasic activity of the locus coeruleus. In the present study, we aimed to characterise the task-evoked pupil response associated with auditory inputs under different light levels and across two cognitive tasks. We continuously monitored the pupil of 20 young healthy participants (mean [SD] 24.05 [4.0] years; 14 women) whilst they completed an attentional and an emotional auditory task whilst exposed to repeated 30-40-s blocks of light interleaved with darkness periods. Blocks could either consist of monochromatic orange light (0.16 melanopic equivalent daylight illuminance (EDI) lux) or blue-enriched white light of three different levels [37, 92, 190 melanopic EDI lux; 6500 K]. For the analysis, 15 and then 14 participants were included in the attentional and emotional tasks, respectively. Generalised linear mixed models showed a significant main effect of light level on the task-evoked pupil responses triggered by the attentional and emotional tasks (p ≤ 0.0001). The impact of light was different for the target versus non-target stimulus of the attentional task but was not different for the emotional and neutral stimulus of the emotional task. There is a smaller sustained pupil size during brighter light blocks but, a higher light level triggers a stronger task-evoked pupil response to auditory stimulation, presumably through the recruitment of the locus coeruleus.
Disciplines :
Life sciences: Multidisciplinary, general & others
Beckers, Elise ; Université de Liège - ULiège > GIGA ; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
Sharifpour, Roya ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
Berger, Alexandre ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Sleep and chronobiology ; Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium ; Synergia Medical SA, Mont-Saint-Guibert, Belgium
Paparella, Ilenia ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Sleep and chronobiology
Aizpurua, Jose Fermin Balda; GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
Koshmanova, Ekaterina ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques
ERDF - European Regional Development Fund Fonds Léon Fredericq Siemens
Funding text :
The authors thank Christine Bastin, Annick Claes, Fabienne Collette, Christian Degueldre, Catherine Hagelstein, Gregory Hammad, Brigitte Herbillon, Patrick Hawotte, Sophie Laloux, Erik Lambot, Benjamin Lauricella, Zoé Leysens, André Luxen, Christophe Phillips, Pierre Maquet, and Eric Salmon for their help over the different steps of the study. This study was supported by the Belgian Fonds National de la Recherche Scientifique (FNRS; CDR J.0222.20), the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska‐Curie grant agreement No 860613, the Fondation Léon Frédéricq, ULiège—U. Maastricht Imaging Valley, ULiège‐Valeo Innovation Chair ‘Health and Well‐Being in Transport’ and Sanfran (LIGHT‐CABIN), the European Regional Development Fund (Biomed‐Hub), and Siemens. None of these funding sources had any impact on the design of the study nor on the interpretation of the findings. Alexandre Berger is supported by Synergia Medial SA and the Walloon Region (Industrial Doctorate Programme, convention n°8193). Elise Beckers is supported by the Maastricht University—Liège University Imaging Valley. Roya Sharifpour and Jose Fermin Balda Aizpurua are supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska‐Curie grant agreement No 860613. Islay Campbell, Ekaterina Koshmanova, Ilenia Paparella, Nasrin Mortazavi, Gilles Vandewalle are supported by the FRS‐FNRS. Siya Sherif was supported by ULiège‐Valeo Innovation Chair and Siemens Healthineers.
Aston-Jones, G., Chen, S., Zhu, Y., & Oshinsky, M. L. (2001). A neural circuit for circadian regulation of arousal. Nature Neuroscience, 4(7), 732–738. https://doi.org/10.1038/89522
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. https://doi.org/10.1146/ANNUREV.NEURO.28.061604.135709
Aston-Jones, G., Foote, S. L., & Segal, M. (1985). Impulse conduction properties of noradrenergic locus coeruleus axons projecting to monkey cerebrocortex. Neuroscience, 15(3), 765–777. https://doi.org/10.1016/0306-4522(85)90077-6
Banse, R., & Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70(3), 614–636. https://doi.org/10.1037//0022-3514.70.3.614
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276–292. https://doi.org/10.1037/0033-2909.91.2.276
Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893–897. https://doi.org/10.1037/0022-006X.56.6.893
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571. https://doi.org/10.1001/ARCHPSYC.1961.01710120031004
Beckers, E., Campbell, I., Sharifpour, R., Paparella, I., Berger, A., Aizpurua, J. F. B., Koshmanova, E., Mortazavi, N., Talwar, P., Sherif, S., Jacobs, H. I. L., & Vandewalle, G. (2023). Impact of repeated short light exposures on sustained pupil responses in an fMRI environment. Journal of Sleep Research. Portico. https://doi.org/10.1111/jsr.14085
Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42(1), 33–84. https://doi.org/10.1016/S0165-0173(03)00143-7
Berson, D. M., Dunn, F. A., & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070–1073. https://doi.org/10.1126/science.1067262
Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–607. https://doi.org/10.1111/J.1469-8986.2008.00654.X
Brainard, G. C., Hanifin, J. R., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., & Rollag, M. D. (2001). Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. Journal of Neuroscience, 21(16), 6405–6412. https://doi.org/10.1523/jneurosci.21-16-06405.2001
Costa, V. D., & Rudebeck, P. H. (2016). More than meets the eye: The relationship between pupil size and locus Coeruleus activity. Neuron, 89(1), 8–10. https://doi.org/10.1016/J.NEURON.2015.12.031
de Gee, J. W., Colizoli, O., Kloosterman, N. A., Knapen, T., Nieuwenhuis, S., & Donner, T. H. (2017). Dynamic modulation of decision biases by brainstem arousal systems. eLife, 6. 1–36. https://doi.org/10.7554/ELIFE.23232
Gaggioni, G., Maquet, P., Schmidt, C., Dijk, D.-J., & Vandewalle, G. (2014). Neuroimaging, cognition, light and circadian rhythms. Frontiers in Systems Neuroscience, 8, 126. https://doi.org/10.3389/fnsys.2014.00126
Gamlin, P. D. R., McDougal, D. H., Pokorny, J., Smith, V. C., Yau, K. W., & Dacey, D. M. (2007). Human and macaque pupil responses driven by Melanopsin-containing retinal ganglion cells. Vision Research, 47(7), 946–954. https://doi.org/10.1016/J.VISRES.2006.12.015
Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252–269. https://doi.org/10.3758/CABN.10.2.252
Grandjean, D., Sander, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). The voices of wrath: Brain responses to angry prosody in meaningless speech. Nature Neuroscience, 8(2), 145–146. https://doi.org/10.1038/nn1392
Hattar, S., Liao, H. W., Takao, M., Berson, D. M., & Yau, K. W. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science, 295(5557), 1065–1070. https://doi.org/10.1126/science.1069609
Joshi, S., & Gold, J. I. (2020). Pupil size as a window on neural substrates of cognition. Trends in Cognitive Sciences, 24(6), 466–480. https://doi.org/10.1016/J.TICS.2020.03.005
Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus Coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221–234. https://doi.org/10.1016/J.NEURON.2015.11.028
Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science (New York, N.Y.), 154(3756), 1583–1585. https://doi.org/10.1126/SCIENCE.154.3756.1583
Keren, N. I., Lozar, C. T., Harris, K. C., Morgan, P. S., & Eckert, M. A. (2009). In vivo mapping of the human locus coeruleus. NeuroImage, 47(4), 1261–1267. https://doi.org/10.1016/J.NEUROIMAGE.2009.06.012
Kiehl, K. A., & Liddle, P. F. (2003). Reproducibility of the hemodynamic response to auditory oddball stimuli: A six-week test-retest study. Human Brain Mapping, 18(1), 42–52. https://doi.org/10.1002/HBM.10074
Larsen, R. S., & Waters, J. (2018). Neuromodulatory correlates of pupil dilation. Frontiers in Neural Circuits, 12. 1–9. https://doi.org/10.3389/FNCIR.2018.00021
Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of Cognition, 1(1), 1–23. https://doi.org/10.5334/JOC.18/METRICS/
Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324. https://doi.org/10.3758/S13428-011-0168-7
Mure, L. S. (2021). Intrinsically photosensitive retinal ganglion cells of the human retina. Frontiers in Neurology, 12. 1–10. https://doi.org/10.3389/FNEUR.2021.636330
Murphy, P. R., O'Connell, R. G., O'Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35(8), 4140–4154. https://doi.org/10.1002/hbm.22466
Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). Rational regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience, 15(7), 1040–1046. https://doi.org/10.1038/nn.3130
Paparella, I., Campbell, I., Sharifpour, R., Beckers, E., Berger, A., Aizpurua, J. F. B., Koshmanova, E., Mortazavi, N., Talwar, P., Degueldre, C., Lamalle, L., Sherif, S., Phillips, C., Maquet, P., & Vandewalle, G. (2023). Light modulates task-dependent thalamo-cortical connectivity during an auditory attentional task. Communications Biology, 6(1), 945. https://doi.org/10.1038/S42003-023-05337-5
Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F., & Rollag, M. D. (2000). A novel human opsin in the inner retina. Journal of Neuroscience, 20(2), 600–605. https://doi.org/10.1523/JNEUROSCI.20-02-00600.2000
Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1994). Locus coeruleus activity in monkey: Phasic and tonic changes are associated with altered vigilance. Brain Research Bulletin, 35(5–6), 607–616. https://doi.org/10.1016/0361-9230(94)90175-9
Sander, D., Grandjean, D., Pourtois, G., Schwartz, S., Seghier, M. L., Scherer, K. R., & Vuilleumier, P. (2005). Emotion and attention interactions in social cognition: Brain regions involved in processing anger prosody. NeuroImage, 28(4), 848–858. https://doi.org/10.1016/J.NEUROIMAGE.2005.06.023
Siraji, M. A., Kalavally, V., Schaefer, A., & Haque, S. (2022). Effects of daytime electric light exposure on human alertness and higher cognitive functions: A systematic review. Frontiers in Psychology, 12, 6079. https://doi.org/10.3389/FPSYG.2021.765750/BIBTEX
Steinhauer, S. R., Condray, R., & Pless, M. L. (2015). Pharmacological isolation of cognitive components influencing the pupillary light reflex. Journal of Ophthalmology, 2015, 1–7. https://doi.org/10.1155/2015/179542
Steinhauer, S. R., Siegle, G. J., Condray, R., & Pless, M. (2004). Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology, 52(1), 77–86. https://doi.org/10.1016/j.ijpsycho.2003.12.005
Szabadi, E. (2018). Functional Organization of the Sympathetic Pathways Controlling the pupil: Light-inhibited and light-stimulated pathways. Frontiers in Neurology, 9, 419676. https://doi.org/10.3389/FNEUR.2018.01069/BIBTEX
Tri, M., & Do, H. (2019). Melanopsin and the intrinsically photosensitive retinal ganglion cells: Biophysics to behavior. Neuron, 104, 205–226. https://doi.org/10.1016/j.neuron.2019.07.016
Vandewalle, G., Archer, S. N., Wuillaume, C., Balteau, E., Degueldre, C., Luxen, A., Dijk, D. J., & Maquet, P. (2011). Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis. Journal of Biological Rhythms, 26(3), 249–259. https://doi.org/10.1177/0748730411401736
Vandewalle, G., Maquet, P., & Dijk, D. J. (2009). Light as a modulator of cognitive brain function. In Trends in cognitive sciences (Vol. 13, pp. 429–438). Elsevier Ltd. https://doi.org/10.1016/j.tics.2009.07.004
Vandewalle, G., Schmidt, C., Albouy, G., Sterpenich, V., Darsaud, A., Rauchs, G., Berken, P. Y., Balteau, E., Dagueldre, C., Luxen, A., Maquet, P., & Dijk, D. J. (2007). Brain responses to violet, blue, and green monochromatic light exposures in humans: Prominent role of blue light and the brainstem. PLoS One, 2(11), e1247. https://doi.org/10.1371/journal.pone.0001247
Vandewalle, G., Schwartz, S., Grandjean, D., Wuillaume, C., Balteau, E., Degueldre, C., Schabus, M., Phillips, C., Luxen, A., Dijk, D. J., & Maquet, P. (2010). Spectral quality of light modulates emotional brain responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19549–19554. https://doi.org/10.1073/pnas.1010180107
Varazzani, C., San-Galli, A., Gilardeau, S., & Bouret, S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. The Journal of Neuroscience, 35(20), 7866–7877. https://doi.org/10.1523/JNEUROSCI.0454-15.2015
Viénot, F., Brettel, H., Dang, T.-V., & le Rohellec, J. (2012). Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods. Journal of the Optical Society of America A, 29(2), A366–A376. https://doi.org/10.1364/josaa.29.00a366
Wang, Y., Naylor, G., Kramer, S. E., Zekveld, A. A., Wendt, D., Ohlenforst, B., & Lunner, T. (2018). Relations between self-reported daily-life fatigue, hearing status, and pupil dilation during a speech perception in noise task. Ear and Hearing, 39(3), 573–582. https://doi.org/10.1097/AUD.0000000000000512