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Summary

Light has many non-image-forming functions including modulation of pupil size and

stimulation of alertness and cognition. Part of these non-image-forming effects may

be mediated by the brainstem locus coeruleus. The processing of sensory inputs can

be associated with a transient pupil dilation that is likely driven in part by the phasic

activity of the locus coeruleus. In the present study, we aimed to characterise the

task-evoked pupil response associated with auditory inputs under different light

levels and across two cognitive tasks. We continuously monitored the pupil of

20 young healthy participants (mean [SD] 24.05 [4.0] years; 14 women) whilst they

completed an attentional and an emotional auditory task whilst exposed to repeated

30–40-s blocks of light interleaved with darkness periods. Blocks could either consist

of monochromatic orange light (0.16 melanopic equivalent daylight illuminance (EDI)

lux) or blue-enriched white light of three different levels [37, 92, 190 melanopic EDI

lux; 6500 K]. For the analysis, 15 and then 14 participants were included in the atten-

tional and emotional tasks, respectively. Generalised linear mixed models showed a

significant main effect of light level on the task-evoked pupil responses triggered by

the attentional and emotional tasks (p ≤ 0.0001). The impact of light was different for

the target versus non-target stimulus of the attentional task but was not different for

the emotional and neutral stimulus of the emotional task. There is a smaller sustained

pupil size during brighter light blocks but, a higher light level triggers a stronger task-

evoked pupil response to auditory stimulation, presumably through the recruitment

of the locus coeruleus.

K E YWORD S

functional MRI, light, locus coeruleus, melanopsin, non-image-forming, transient pupil response

1 | INTRODUCTION

The non-image-forming (NIF) system (also termed non-visual sys-

tem) in the human retina detects environmental irradiance to medi-

ate the influences of light on many NIF functions, including

circadian entrainment (Berson et al., 2002), melatonin suppression

(Brainard et al., 2001), pupillary light responses (Gamlin et al., 2007;

Hattar et al., 2002), and stimulation of alertness and cognitive per-

formance (Vandewalle et al., 2009). Light's influence on human

alertness and cognition has been reported to be improved by high-

intensity white light and short wavelength light, but the impact of

light on cognition is complicated by being dependent on several fac-

tors, such as time of day, spectral composition, and intensity of the

light source (Siraji et al., 2022).
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The primary photoreceptors of the NIF system are intrinsically

photosensitive retinal ganglion cells (ipRGCs) (Mure, 2021; Provencio

et al., 2000), which express the photopigment melanopsin. Animal

studies have established that the ipRGCs project to various subcorti-

cal brain regions, including the suprachiasmatic nucleus (SCN) of the

hypothalamus, the site of the master circadian clock (Tri & Do, 2019).

The exact brain pathways involved in light's NIF functions for humans

is an area of continued and active research. The locus coeruleus (LC),

in the brainstem, receives indirect inputs from the SCN, and it is

hypothesised that the LC may be involved in mediating light's influ-

ence on alertness and cognition (Aston-Jones et al., 2001; Aston-

Jones & Cohen, 2005; Vandewalle et al., 2009). The LC is central to

cognition and alertness and a major source of noradrenaline (NA) in

the brain (Aston-Jones & Cohen, 2005). A previous neuroimaging

study, using a 3-Tesla magnetic resonance imaging (MRI) apparatus

reported that an area of the brainstem consistent with the location of

the LC is modulated by the wavelength of light whilst performing a

non-visual cognitive task (Vandewalle et al., 2007). The LC is a small

bilateral nucleus with a cylinder shape, �0.15 mm long and 2.5 mm in

diameter (�50.000 neurones in total), located in the brainstem (Keren

et al., 2009). Due to its small size, and its deep location near the fourth

ventricle, in vivo imaging of the LC is challenging such that it is diffi-

cult to assess its role in mediating the NIF impacts of light in humans.

Here, we emphasise that variation in pupil size may be an accessible

means to address this research question.

The autonomic nervous system regulates pupil size through the

control of two muscles in the pupil, the iris sphincter muscle that

causes the constriction of the pupil, and the dilatory muscle that pro-

motes the dilation of the pupil (Larsen & Waters, 2018). Pupil size is

dependent on the sympathovagal balance, with parasympathetic

activity promoting pupil constriction through recruitment of the iris

sphincter muscle via the midbrain Edinger–Westphal nucleus (EWN).

Pupil dilation is dependent on the sympathetic system that starts at

the hypothalamus and the LC, leading to the inhibition of the activity

of the EWN causing pupil dilation through the constriction of the dila-

tor muscle (Larsen & Waters, 2018; Mathôt, 2018). However, pupil-

lary dilation can also be caused by inhibiting the parasympathetic

constriction pathway, through LC activity inhibiting the EWN, causing

relaxation of the constrictor muscles (Mathôt, 2018; Steinhauer

et al., 2015). There is research that suggests that pupil dilation due to

cognitive demand is due to inhibition of the parasympathetic pathway

(Steinhauer et al., 2004). The interplay between the sympathetic and

the parasympathetic systems determines the size of the pupil, with

environmental irradiance, mental effort, and fatigue influencing the

balance between the two systems (Larsen & Waters, 2018; Steinhauer

et al., 2004; Wang et al., 2018). Change in pupil size can be described

as a baseline response where pupil size is maintained for a longer

period of time or a faster phasic response (Beatty, 1982).

There is evidence to suggest that fluctuations in pupil size is a

proxy measure of the changes in brain arousal during cognitive activ-

ity. Specifically, the LC is proposed to be an important region in the

control of pupil dilation and changes in pupil diameter have been

hypothesised to be a readout of the activity of the NA neurones of

the LC (Costa & Rudebeck, 2016; Joshi & Gold, 2020). The LC-NA

system has two different modes, baseline tonic activity where there is

continuous spiking, and phasic activity, characterised by brief bursts

of high-frequency activity that can be spontaneous or in response to

salient stimuli (Aston-Jones & Cohen, 2005). Evidence for the link

between the LC and pupil size comes from the observation that the

neuronal activity of the LC fluctuates almost simultaneously with

changes in pupil diameter (Aston-Jones & Cohen, 2005). Further

direct evidence comes from research showing that the spiking activity

of the LC and the diameter of the pupil were also correlated during a

decision-making task in monkeys (Varazzani et al., 2015). Also, sponta-

neous LC activity correlated with pupil size in monkeys performing a

simple fixation task and an evoked pupil dilation occurred when the

LC was electrically microstimulated. In addition, other brain areas

(inferior colliculus, superior colliculus, anterior and posterior cingulate

cortex) also show a less reliable association between pupil size and

spontaneous LC activity, suggesting there is co-ordinated neuronal

activity in brain areas through LC-mediated arousal (Aston-Jones &

Cohen, 2005; Joshi et al., 2016; Nassar et al., 2012). The propagation

of LC signal is slow to brain areas due to having unmyelinated projec-

tions (Aston-Jones et al., 1985). Furthermore, human studies combin-

ing functional MRI (fMRI) and pupillometry have found activations in

the area of the brainstem compatible with the LC were linked to fluc-

tuations in pupil diameter, during resting state and for a novelty

detection task (de Gee et al., 2017; Murphy et al., 2014). The research

highlights that changes in pupil diameter are a relatively reliable

means to assess LC activity.

Changes in pupil diameter can also be induced in response to cog-

nitive effort which can be triggered by external stimuli (Joshi &

Gold, 2020; Mathôt, 2018). In response to an external task event, the

pupil dilates and then constricts back to baseline. This pupil response

to a task event is called the ‘task-evoked pupil response’ (TEPR).

These TEPRs can also be influenced by factors such as the demand of

the cognitive task and the performance (Aston-Jones & Cohen, 2005;

Kahneman & Beatty, 1966). The exact mechanism of the link between

the size of the pupil and the activity of the LC is still not known. How-

ever, studying TEPRs is nevertheless often considered a non-invasive

means to determine the ongoing alterations in the LC phasic activity

or arousal level during cognitive tasks.

The pupil is well known to adapt to changes in the light environ-

ment, with the pupil constricting at higher light levels mainly driven by

the parasympathetic system and dilation mainly being driven by the

sympathetic system in darkness (Joshi & Gold, 2020; Larsen &

Waters, 2018). This light-induced constriction is maintained by

ipRGCs, which innervate the pretectal olivary nucleus, which in turn

project to the EWN leading to pupil constriction by parasympathetic

drive (Joshi & Gold, 2020). However, whether the TEPRs are influ-

enced by light's NIF effects is currently not known. We, therefore,

decided to study the TEPRs under different light conditions. We mea-

sured pupil diameter during two cognitive tasks and examined the

effect of light level, expressed in melanopic (mel) equivalent daytime

illuminance (EDI) lux, on the TEPRs to auditory stimuli. We hypothe-

sised that the TEPRs would be greater under higher irradiance levels
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due to the stimulating NIF impact of light, potentially due to an

increase in either sympathetic or parasympathetic drive. To test this

hypothesis, we used eye tracking data from healthy young partici-

pants, who completed an attentional and an emotional auditory cogni-

tive task during a fMRI recording whilst exposed to different light

conditions.

2 | METHODS

2.1 | Participants

A total of 20 healthy participants (mean [SD] age 24.05 [4.0] years;

14 women) gave their written informed consent to take part in the

study, which was approved by the Ethics Committee of the Faculty of

Medicine of the University of Liège. The participants were assessed

for the exclusion criteria with a semi-structured interview and ques-

tionnaires. None of the participants had a history of psychiatric and

neurological disorders, sleep disorders, the use of psychoactive drugs

or addiction. Participants had no history of night shift work during the

last year or recent transmeridian travel during the last 2 months;

excessive caffeine (>4 caffeine units/day) or alcohol consumption

(>14 alcohol units/week); and were not taking medication or smoking.

Their scores on the 21-item Beck Anxiety Inventory (Beck

et al., 1988) and the Beck Depression Inventory-II (Beck et al., 1961)

were minimal or mild (<17) and minimal (<14), respectively normal.

Women were not pregnant or breastfeeding. Participants reported no

history of ophthalmic disorders or auditory impairments and were

screened for colour blindness. Due to technical issues (see below),

15 and 14 participants were, respectively, included in the analyses of

the attentional and emotional tasks (Table 1).

Participants followed a loose sleep–wake schedule (±1 h from

habitual bedtime/wake-up time) during the 7 days preceding the labo-

ratory experiment to maintain realistic entrained life conditions and

avoid excessive sleep restriction across all participants. Sleep–wake

schedules were verified using wrist actigraphy and sleep diaries. They

were asked to refrain from caffeinated and alcohol-containing bever-

ages and excessive exercise for at least 3 days before the experiment.

Participants were familiarised with the MRI environment 1 week

before the experiment during an MRI session where structural images

of the brain were acquired.

2.2 | Experimental protocol

Most participants (N = 17) arrived at the laboratory 1.5–2 h after

habitual wake time, whilst a minority (N = three) were admitted to

the laboratory 1.5–2 h before habitual bedtime. The study will investi-

gate the effect time-of-day (morning versus evening) has on light

exposure on brain functions and behaviour in the future. For this

paper, all results presented are controlled for time-of-day differences.

Participants were first exposed for 5 min to a bright white light

(1000 lux) and were then maintained in dim light (<10 lux) for 45 min

to standardise participant light history before the fMRI session

(Figure 1a). During this period participants were given instructions

about the fMRI cognitive tasks and completed practice tasks. The

fMRI session consisted of participants completing an executive task

(25 min), an attentional task (15 min), and an emotional task (20 min)

(Figure 1b,c). Participants always completed the executive task first

and then the order of the following two tasks was pseudo-

randomised. Only the emotional and the attentional tasks are dis-

cussed in the present paper as they consisted of a stream of events,

where each sound potential triggers a TEPR.

An MRI-compatible light system (Supplementary Figure S1)

designed-in-laboratory was developed to ensure relatively uniform

and indirect illumination of participants’ eyes whilst in the MRI scan-

ner. An 8-m long MRI-compatible dual-branched optic fibre (Setra

Systems, MA, USA) transmitted light from a light box (SugarCUBE,

TABLE 1 Table of participants included in the analysis.

Total participants Oddball analysis Emotional analysis

Number of participants 20 15 14

Age, years, mean (SD) 24.05 (4.00) 24.33 (4.15) 24.07 (4.41)

Sex, male, n 6 5 4

Mood, BDI-II score, mean (SD) 6.94 (5.57) 6.0 (4.78) 6.83 (6.01)

Anxiety, BAI score, mean (SD) 6.55 (5.98) 5.71 (4.06) 7.66 (6.71)

Sleep quality, PSQI score, mean (SD) 4.27 (2.88) 3.78 (1.92) 4.41 (3.31)

Seasonality, SPAQ score, mean (SD) 1.05 (0.80) 1 (0.78) 1.16 (0.83)

Chronotype, HO score, mean (SD) 48.5 (9.26) 47.42 (9.72) 47.58 (6.98)

Daytime sleepiness, ESS score, mean (SD) 6.27 (3.21) 6.35 (2.79) 6.75 (3.57)

Years of education, mean (SD) 14.35 (3.12) 14.84 (2.47) 13.72 (3.40)

Note: columns for total number of participants who completed the study, and the number of participants included for each task. Refer to the main text for

references.

Abbreviations: BAI, Beck Anxiety Inventory; BDI-II, Beck Depression Inventory; ESS, Epworth Sleepiness Scale; HO, Horne and Östberg questionnaire;

PSQI, Pittsburgh Sleep Quality Index; SPAQ, Seasonal Pattern Assessment Questionnaire.
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Ushio America, CA, USA), that was stored in the MRI control room.

The dual end of the optic fibre was attached to a light stand fitted at

the back of the MRI coil. This allowed for equal illumination of the

participants’ eyes. A filter wheel (Spectral Products, AB300, NM,

USA) and optical fibre filters (a monochromatic orange light filter

[589mn; full width at half maximum: 10 nm] and a UV long bypass

[433–1650 nm] filter) were used to create the light conditions needed

for the experiment. Participants were asked to keep their eyes open

and try not to blink too much during the cognitive tasks.

Both tasks were programmed with Opensesame (3.2.8) (Mathôt

et al., 2012) and launched from a computer in the MRI control room.

Participants heard the auditory stimuli through MR-compatible head-

phones (Sensimetrics, Malden, MA) and the volume was set by the

participant before starting the tasks to ensure a good auditory percep-

tion of all the task stimuli. Participants used an MRI-compatible but-

ton box to respond to task items (Current Designs, Philadelphia, PA,

USA). During the attentional task, participants were exposed to 30 s

of light blocks separated by 15 s of darkness (<0.1 lux). The spectra of

the lights were assessed at the level of the end of the optic fibre

(AvaSpec-2048, Avantes, The Netherlands). Irradiance could not be

measured directly in the magnet, but the light source was calibrated

(840-C power meter, Newport, Irvine, CA, USA). The light conditions

used were a polychromatic, blue-enriched white light emitting diode

(LED) light (92 mel EDI lux; 6500 K) and a monochromatic orange light

(0.16 mel EDI lux). The light blocks were repeated seven times for

each light condition. During the emotional task, participants were

F IGURE 1 Experimental design. (a) General protocol. Time relative to scheduled wake-up/bedtime (h). Following standardisation of
immediate prior light exposure (see Methods), participants performed an executive (not discussed in the present paper), an attentional and
emotional task in functional magnetic resonance imaging (fMRI). (b) Detailed procedures of the attentional task (oddball). Time (s) relative to t0, a
time point arbitrarily chosen as the light onset of the session. The task consisted of a stream of standard sounds (80%) and pseudo-randomly
interspersed odd sounds (20%); participants were asked to identify the odd stimuli through a button press. Whilst completing the task
participants were exposed to blue-enriched white light (BEL; 92 melanopic [mel] equivalent daylight illuminance [EDI] lux; 6500 K) (MID) and a
monochromatic orange (0.16 mel EDI lux; 589mn) light. Light exposures lasted 30 s and were separated by 15-s periods of darkness. Odd (red)
and standard (white) stimuli were equally distributed across the two light conditions and darkness. (c) Detailed procedures of the emotional task.
Time (s) relative to t0, a time point arbitrarily chosen as the light onset of the session. The task consisted of a lure gender discrimination of
auditory vocalisations of the three pseudo-word types (‘goster’, ‘niuvenci’, or ‘figotleich’) whilst exposed to the alternating white BEL of three
different intensities (37, 92, 190 mel EDI lux; 6500 K) (LOW, MID, HIGH) and a monochromatic orange (0.16 mel EDI lux; 589mn) light. Light
exposures lasted 30–40 s and were separated by 15–20-s periods of darkness. Untold to the participants, vocalisations were pronounced with
angry (red bars) and neutral (white bars) prosody pseudo-randomly and equally distributed across the three light conditions.

F IGURE 2 Spectral power distribution of light conditions.
Orange: monochromatic orange light, 0.16 melanopic (mel) equivalent
daylight illuminance (EDI) lux, 589 mn; blue-enriched white light (BEL)
LOW, MID, and HIGH: light of three different intensities (37, 92,
190 mel EDI lux; 6500 K). See Table 2 for additional characteristics.
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exposed to 30–40-s periods of light blocks separated by 20 s of dark-

ness (<0.1 lux). The light conditions used were three different irradi-

ances of a polychromatic, blue-enriched white LED light (37, 92,

190 mel EDI lux; 6500 K) and a monochromatic orange light (0.16 mel

EDI lux) (Figure 2; Table 2). The light blocks were repeated five times

for each light condition.

2.3 | Attentional task

The attentional task used was a mismatch negativity or oddball

task (Kiehl & Liddle, 2003). Participants were asked to detect a rare

randomly occurring target (or odd) item in a stream of frequent stan-

dard items. They used the keypad to report the detection of the odd

items. Stimuli (n = 315) consisted of frequent standard (500 Hz,

100 ms) and odd tones (1000 Hz, 100 ms), presented 80% and 20%

of the time, respectively, in a pseudo-randomised order. The inter-

stimulus interval between stimuli was 2 s. Target and standard stimuli

were equally distributed across the two light conditions and the sepa-

rating darkness periods (Figure 1b). The instruction was to prioritise

accuracy over rapidity when responding.

2.4 | Emotional task

The emotional task used was a gender discrimination of auditory

vocalisations task (Banse & Scherer, 1996). Participants were asked to

use the keypad to indicate what they believed the gender of the per-

son pronouncing each token was. The gender classification was a lure

task ensuring participants paid attention to the auditory stimulation.

The purpose of the task was to trigger an emotional response as par-

ticipants were not told that 50% of the stimuli were pronounced with

angry prosodies. The 240 auditory stimuli were pronounced by pro-

fessional actors (50% women) and consisted of three meaningless

words (‘goster’, ‘niuvenci’, ‘figotleich’). The stimuli were expressed in

either an angry or neutral prosody, which has been validated by beha-

vioural assessments (Banse & Scherer, 1996) and in previous experi-

ments (Grandjean et al., 2005; Sander et al., 2005). The stimuli were

also matched for the duration (750 ms) and mean acoustic energy to

avoid loudness effects. During each 30–40-s light block, four angry

prosody stimuli and four neutral prosody stimuli were presented in a

pseudo-random order and delivered every 3–5 s. A total of 160 dis-

tinct voice stimuli (50% angry; 50% neutral) were distributed across

the four light conditions. The darkness period separating each light

block contained two angry and two neutral stimuli. A total of 80 dis-

tinct voice stimuli (50% angry; 50% neutral) were distributed across

the darkness periods (Figure 1c). Again, the instruction was to priori-

tise accuracy over rapidity when responding.

2.5 | Pupil

The right eye movements and the pupillary size was recorded continu-

ously with an infrared eye tracking system (Eyelink-1000, SR

Research, Osgoode, ON, Canada; sampling rate, 1000 Hz). Pupil data

were analysed using MATLAB R2019b (MathWorks, Natick, MA,

USA). Participants with >25% missing or corrupted eye-tracking data

were excluded. Blink events were replaced with linear interpolation

and the data were smoothed using the ‘rlowess’ a robust linear

regression function. The total amount of interpolated data included

was 21% ± 9% and 22% ± 9% for the attentional and the emotional

task, respectively. The transient pupil response was computed as the

change in the pupil diameter from before (baseline) and after (maxi-

mum) the auditory stimulus presentation. Baseline pupil diameter was

computed as the mean pupil diameter over 1 s before stimuli onset.

The maximum pupil diameter was defined as the maximum value over

a 1.5 s window following sound onset. TEPRs were computed as the

ratio between maximum and baseline diameter. For the attentional

TABLE 2 Light characteristics.

Characteristic Low BEL Mid BEL High BEL Monochromatic light (589 nm)

Photopic illuminance, lux 47 116 240 7.5

Peak spectral irradiance, nm 460 460 460 590

Melanopic EDI lux (ipRGCs) 37 92 190 0.16

Rhodopic EDI lux (rods) 39 97 201 0.94

Cyanopic EDI lux (S-cones) 32 79 163 0

Chloropic EDI lux (M-cones) 44 110 227 5

Erythropic EDI lux (L-cones) 46 113 233 8

Irradiance, μW/cm2 15 36 75 1.4

Photon flux, 1/cm2/s 4.12E+13 1.02E+14 2.10E+14 4.24E+12

Log photon flux, log₁₀ (1/cm2/s) 13.61 14.01 14.32 12.63

Narrowband peak – – – 589

Narrowband FWHM – – – 10

Note: additional light characteristics of the two light sources used. Blue-enriched white light (BEL) (low, mid, and high) and monochromatic light (589 nm).

Abbreviations: EDI, equivalent daylight illuminance; FWHM, full width at half-maximum; ipRGCs, intrinsically photosensitive retinal ganglion cells.
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task, one participant was excluded because they did not complete the

entire attentional task and four were excluded as there was >25%

missing or corrupt pupil data. Therefore, we included 15 participants

in the analysis of the oddball task (Table 1). For the emotional task,

two participants were excluded as there was >25% missing or corrupt

pupil data. One participant was excluded because he did not complete

the entire emotional task correctly and three were excluded due to

problems with the eye-tracking system. Therefore, we included 14 par-

ticipants in the analysis of the emotional task (Table 1).

2.6 | Statistical analyses

Statistical analyses were computed using the Statistical Analysis Sys-

tem (SAS) version 9.4 (SAS Institute, Cary, NC, USA) using individual

TEPRs segregated per stimulus type and light condition. Values were

considered outliers if they were > ± 3 standard deviations (SDs) across

the entire dataset and were therefore removed. Analyses consisted of

generalised linear mixed models (GLMM) seeking effects of light con-

dition (i.e., mel EDI lux level) on the TEPRs. TEPRs were set as the

dependent variable, with subject as a random factor (intercept), and

light condition and stimulus type as repeated measures (autoregres-

sive (1) correlation), together with the time of day, age, body mass

index and sex as covariates. GLMM were adjusted for the dependent

variable distribution. Post hoc contrasts were corrected for multiple

comparisons using a Tukey adjustment.

3 | RESULTS

The performance of both tasks was high, with a mean (SD) 96.6%

(0.5%) of detection of target sounds during the attentional (oddball)

task and 93.9% (7.21%) button response during the emotional (gender

classification) task. In line with the literature (Sander et al., 2005;

Vandewalle et al., 2010), for the emotional task, reaction times (RTs)

were faster for neutral stimuli with a mean (SD) of 1192 (182.8) ms

compared to 1234 (199.8) ms RT for emotional prosody vocal stimula-

tion (p = 0.0004) suggesting that the task was successful in triggering

a differential response according to the emotional content. As no

response was collected for the standard tone in the oddball task, RT

could not be compared between stimulus types for the attentional

task. Although not relevant to the task and not compromising any

emotional effect (Grandjean et al., 2005), gender detection accuracy

for the emotional task (mean [SD] 79% [11%]) was slightly lower than

what has previously been reported for the task (Sander et al., 2005).

For both tasks, there were no significant main effects of the light level

on RTs (F < 2.1, p ≥ 0.1) and accuracy (F < 2.1, p ≥ 0.1), and there was

no light exposure by stimulus type interaction for the emotional task

(F[4,34.04] = 0.25, p = 0.9). This was expected to ensure that beha-

vioural performance differences unspecific to light exposure would

significantly bias neuroimaging results (Paparella et al., 2023).

It is well established that pupil size changes in response

to variations in environmental irradiance. In a joint paper

(Beckers et al., 2023), we notably confirmed this and reported that

the sustained constriction of the pupil increased with higher light

levels in the same sample of participants who completed the same

protocol. In contrast to the joint paper (Beckers et al., 2023), here,

we consider whether changes in light conditions, as indexed by mel

F IGURE 3 Task-evoked pupil response (TEPRs) across light
conditions and stimulus type. (a) TEPRs under the different light
conditions during the attentional (oddball) task (N = 15; mean [SD]
age 24.33 [4.15] years; 10 women). Individual average TEPRs were
computed per stimulus type and light condition. TEPRs were
significantly higher for target versus standard stimulations
(p < 0.0001), as well as under higher versus lower melanopic
equivalent daylight illuminance (EDI) light levels (p < 0.0001).
A significant light condition by stimulus type was also found
(p = 0.02) and post hoc analyses indicated that TEPRs significantly
increased with higher light irradiance for the standard but not the
target stimulations. (b) TEPRs under different light levels during the
emotional task (N = 14; mean [SD] age 24.0 [4.41] years; 10 women).
Individual average TEPRs were computed per stimulus type and light
condition. There was no significant difference between neutral and

emotional stimulations (p = 0.8) whilst TEPRs were greater under
higher versus lower melanopic light levels (p < 0.0001). There was no
light condition by stimulus type interaction (p = 0.7).
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EDI lux, impact the TEPRs for an attentional and emotional task.

Both tasks consist of streams of events that putatively trigger

TEPRs, and both have two types of auditory stimulations. We

hypothesised that the TEPRs would be greater under higher light

levels due to the stimulating NIF impact of light.

To characterise the effect of light conditions on TEPRs for the

attentional task, an initial GLMM was conducted with TEPRs during

the oddball task as the dependent variable. The results yielded signifi-

cant main effects of stimulus type (target and standard tones;

F[1,1548] = 189.27, p ≤ 0.0001) and light condition (F[2,1548] = 13.71,

p ≤ 0.0001). Importantly, the GLMM detected a significant interaction

between stimulus type and light condition (F[2,1548] = 3.65, p = 0.02)

(Figure 3a). Post hoc analyses first indicated that TEPRs were larger

for target versus standard stimuli (p ≤ 0.0001). They further indicated

that TEPRs were smaller during darkness as compared to the blue-

enriched white light condition (92 mel EDI lux; p ≤ 0.0001) but TEPRs

during darkness were not significantly different when compared to

the orange (0.16 mel EDI lux; p = 0.1) light condition. However,

TEPRs were significantly larger under the blue-enriched white light

(92 mel EDI lux; p = 0.002) when compared to the orange

light (0.16 mel EDI lux). Finally, post hoc analyses indicated that

TEPRs significantly increased with higher light irradiance for the stan-

dard (p ≤ 0.0001) but not the target stimuli (p > 0.2).

The second GLMM, with TEPRs during the emotional task as the

dependent variable, led to a significant main effect of light condition

(F[4,1072] = 77.78, p ≤ 0.0001). Despite there being a qualitative differ-

ence between angry and neutral stimuli, there was no significant main

effect of stimulus type (F[1,1072] = 0.06, p = 0.8) (Figure 3b). In addi-

tion, there was no interaction between stimulus type and light condi-

tion (F[4,1073] = 0.5, p = 0.7). Post hoc analysis showed a significant

difference between darkness and all four light conditions

(p ≤ 0.0001), as well as between the orange (0.16 mel EDI lux) light

and the blue-enriched white light conditions (37, 92, 190 mel EDI lux;

p ≤ 0.0001). There was no significant difference between the blue-

enriched white light conditions (37, 92, 190 mel EDI lux; p ≥ 0.7).

4 | DISCUSSION

The TEPRs consist of transient pupil dilations triggered by the proces-

sing of stimulations over diverse cognitive domains. They are consid-

ered to be at least in part driven by a transient increase in the phasic

activity of the LC-NA system and potentially other brain areas (Joshi

et al., 2016; Larsen & Waters, 2018). In the present study, we tested

whether the TEPRs evoked by auditory stimulus during two cognitive

tasks would be larger under higher ambient light levels, when the

parasympathetic drive to the pupil is high, to investigate whether

light's NIF impacts on cognitive brain activity could potentially be

mediated through the LC. To test this hypothesis, we analysed eye

tracking data from young healthy participants who completed an

attentional and an emotional cognitive task during an fMRI protocol

whilst exposed to different light conditions. The results reveal that

when there is a smaller sustained pupil size at higher light levels

(Beckers et al., 2023), the TEPRs to auditory stimulus were larger

under higher light irradiances, as indexed by mel EDI lux. Although this

main finding was detected for both the attentional and emotional

tasks, we further observed task-specific differences in the impact light

irradiance has on the different types of stimuli of each task.

The LC is involved in the processing of salient events through an

increase in its phasic activity (Berridge & Waterhouse, 2003). The

oddball task, which mimics novelty/salience detection has been previ-

ously used to assess the phasic activity of the LC (Rajkowski

et al., 1994), whilst the LC is also known to be important for emotional

processing (Aston-Jones & Cohen, 2005; Bradley et al., 2008). The

oddball task was reported to trigger TEPRs (both in the visual and

auditory modality) that were larger for the odd target stimuli, which is

in line with our findings (Gilzenrat et al., 2010; Murphy et al., 2014).

Similarly, TEPRs were also reported using emotional tasks (Aston-

Jones & Cohen, 2005; Bradley et al., 2008). Pupil size depends on the

parasympathetic–sympathetic balance and transient pupil dilation is

thought to reflect an increase in arousal due to an increase in the sym-

pathetic tone (Larsen & Waters, 2018). Although recent investigations

have indicated that it is likely not the sole driver of transient pupil

dilation, in vivo animal studies support that transient increases in

pupil size were directly related to the firing of the neurones of the LC

(Costa & Rudebeck, 2016). Our findings could suggest therefore that

the phasic activity of the LC related to an ongoing cognitive process is

likely to be affected by changes in ambient light level. Light is known

to increase arousal and have wake-promoting effects and can cause

the activation of the pupil dilation pathway via the LC, through indi-

rect sympathetic influence by stimulating the SCN, and the dorsome-

dial hypothalamus (Mathôt, 2018). The LC could also cause pupil

dilation via sympathetic drive by its projection to the intermedio-

lateral column and potential through projections to the superior colli-

culus (Mathôt, 2018; Szabadi, 2018). Alternatively, our results could

be interpreted as transient inhibition of the parasympathetic constric-

tion pathway, through EWN inhibition by the LC, leading to an

increase in pupil dilation under higher light levels (Steinhauer

et al., 2015). Transient inhibition of parasympathetic signal may

indeed be the primary pathway involved in pupil dilation caused by

arousal and cognition (Steinhauer et al., 2004; Szabadi, 2018).

The LC is a good candidate to mediate the impact of light on

human alertness and cognition through an effect on other subcortical

and cortical structures (Aston-Jones & Cohen, 2005). The thalamus

pulvinar could likely be one of these downstream structures, as it is

the most consistently affected by light in previous investigations on

the impact of light on non-visual cognitive brain activity (Vandewalle

et al., 2009). Other structures and nuclei, e.g., within the hypothala-

mus or basal forebrain, could also be implicated, whilst the recruit-

ment of limbic and cortical areas would depend on the ongoing

cognitive processes (Gaggioni et al., 2014). Our results indicate that

the impact of increasing light level is stronger for standard compared

with target stimulation. We interpret this as a ceiling effect for TEPRs

elicited by target stimulations that cannot be further increased, whilst

the milder TEPRs triggered by standard stimulations in darkness or at

lower light levels can continue to be increased under higher ambient
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light. In line with this interpretation, the impact of light on non-visual

cognitive brain activity was previously found to be reduced in the eve-

ning during the wake-maintenance zone, when the endogenous circa-

dian signal promoting wakefulness is strong and therefore when

alertness could not be further increased by lights influence

(Vandewalle et al., 2011). In contrast, light's impact was increased in

the morning following sleep deprivation, when the circadian signal is

weaker but the need for sleep is high due to sleep loss. Therefore,

alertness can benefit from the external stimulating impact of light

(Vandewalle et al., 2011). If our interpretation is correct, this could

mean that light can only affect the activity of the LC when it is not

already highly recruited by the processing of a salient stimulation.

Even though the average TEPR to target stimuli remains stable across

light conditions, the variance of TEPR was larger for target stimuli.

We cannot rule out that it contributed to the absence of difference

between light conditions for target stimuli.

The situation is different if we consider the emotional task as we

find no difference between the TEPRs triggered by the emotional and

neutral simulations. This could call into question the emotional

valence of the stimuli included in the task. However, the

emotional task has been previously extensively validated and was suc-

cessful in triggering differential brain responses to emotional versus

neutral stimulations, including in studies interested in the NIF effects

of light (Banse & Scherer, 1996; Grandjean et al., 2005; Vandewalle

et al., 2010). We also find that RTs were significantly slower in

response to emotional versus neutral stimulations, which is in line

with the literature and supports that the emotional valence of the

stimuli was perceived by the participants (Sander et al., 2005;

Vandewalle et al., 2010). Yet, the emotional response may not be

strong and/or different enough from the response to neutral stimuli

to be detected with 15 subjects. Auditory emotional stimuli are

indeed considered to be less effective at provoking an emotional

response when compared to visual emotional stimuli (Bradley

et al., 2008). It may also be that the unexpected occurrence of neutral

stimulations (stimulations were pseudo-randomly delivered every 3–

5 s) triggers a TEPR that is similar to the emotional stimuli. Our results

further indicate that given the relatively mild response elicited in dark-

ness or at lower light levels, TEPRs could be increased by increasing

light levels. The maximum increase seems to be reached already with

the lower level of polychromatic, blue-enriched white light (37 mel

EDI lux) to ceiling thereafter. Interestingly, the maximum TEPRs for

both the oddball and emotional tasks seem to lay on average around

1.25, i.e., a 25% increase on average in pupil size compared to baseline

(cf. Figure 2).

4.1 | Study limitations

We emphasise that our study has limitations. The light conditions

included do not allow for determining which of the human photore-

ceptors are mostly contributing to the TEPRs. Rods, cones, and

ipRGCs could equally be involved with differential recruitment at the

different light levels we used (Mure, 2021). Future research could use

metameric light sources with which the wavelength compositions can

be manipulated to differentially recruit one photoreceptor type whilst

leaving the others relatively similarly recruited (Viénot et al., 2012).

We are also unable to say conclusively to what extent the sympa-

thetic and/or parasympathetic system contributes to the increase in

TEPRs under higher light levels. The LC is considered the centre point

of the NA pupil control pathway and contains sympathetic and para-

sympathetic premotor neurones (Szabadi, 2018). Yet other nuclei may

affect pupil size and TEPRs and contribute to our results (Joshi

et al., 2016). We stress that we did not have access to the brain activ-

ity associated with TEPRs. The assumptions made regarding the

recruitment of the LC can only be verified using the fMRI data

acquired simultaneously with the pupil data. Further research using

drugs that lead to the alteration of pupil size control, through the

modification of the activity/transmission of the sympathetic or para-

sympathetic NA neurones may elucidate the contribution of sympa-

thetic or parasympathetic systems to increase in TEPRs under higher

light levels (Steinhauer et al., 2015).

Finally, during a goal-oriented task, the phasic activity of the LC

facilitates task-related behaviours to optimise performance, and tonic

activity is involved in task disengagement and search for alternative

behaviours. Switching between these two modes allows to maximise

utility (Aston-Jones & Cohen, 2005). Therefore, it can be hypothe-

sised that we only investigated the phasic activity of the LC, as both

tasks used in the study are stream-of-conscious tasks and do not

involve the exploration of alternative behaviours at the cost of task

performance. However, we cannot rule out the possibility of tonic

activity affecting the results.

5 | CONCLUSION

Overall, this study shows that the NIF impacts of light can be detected

when focusing on pupil size with transient pupil dilation induced by

increasing light levels. This is true for two different auditory cognitive

tasks whilst increased transient pupil dilation may only be possible if

TEPRs are not already at maximum. Future research is needed to con-

clude if it is the sympathetic or parasympathetic drive that is causing

the increase in TEPRs under higher light levels. There is a putative link

between LC phasic activity and transient pupil dilation (Costa &

Rudebeck, 2016), alternatively, transient pupil dilation may be due to

the transient inhibition of the parasympathetic signal (Steinhauer

et al., 2015). The results presented here provide further support for

the involvement of the LC in the stimulating impact of light on alert-

ness and cognition.
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