Article (Scientific journals)
Asteroseismic modelling strategies in the PLATO era: I. Mean density inversions and direct treatment of the seismic information
Bétrisey, Jérôme; Buldgen, Gaël; Reese, Daniel et al.
2023In Astronomy and Astrophysics, 676, p. 10
Peer Reviewed verified by ORBi
 

Files


Full Text
BétriseyModelling2023.pdf
Publisher postprint (6.01 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Asteroseismology; Stars: fundamental parameters; Stars: interiors; Stars: solar-type; Density inversion; Mean density; Modelling strategies; Seismic information; Stars: Interiors; Stars: solar types; Stars:fundamental parameters; Stellar parameters; Surface effect; Astronomy and Astrophysics; Space and Planetary Science; astro-ph.SR; astro-ph.EP
Abstract :
[en] Context. Asteroseismology experienced a breakthrough in the last two decades thanks to the so-called photometry revolution with space-based missions such as CoRoT, Kepler, and TESS. Because asteroseismic modelling will be part of the pipeline of the future PLATO mission, it is relevant to compare some of the current modelling strategies and discuss the limitations and remaining challenges for PLATO. In this first paper, we focused on modelling techniques treating directly the seismic information. Aims. We compared two modelling strategies by directly fitting the individual frequencies or by coupling a mean density inversion with a fit of the frequency separation ratios. Methods. We applied these two modelling approaches to six synthetic targets with a patched atmosphere, for which the observed frequencies were obtained with a non-adiabatic oscillation code. We then studied ten actual targets from the Kepler LEGACY sample. Results. As is well known, the fit of the individual frequencies is very sensitive to the surface effects and to the choice of the underlying prescription for semi-empirical surface effects. This significantly limits the accuracy and precision that can be achieved for the stellar parameters. The mass and radius tend to be overestimated, and the age therefore tends to be underestimated. In contrast, the second strategy, which is based on mean density inversions and on the ratios, efficiently damps the surface effects and allows us to obtain precise and accurate stellar parameters. The average statistical precision of our selection of targets from the LEGACY sample with this second strategy is 1.9% for the mass, 0.7% for the radius, and 4.1% for the age. This is well within the PLATO mission requirements. The addition of the inverted mean density to the constraints significantly improves the precision of the stellar parameters by 20%, 33%, and 16% on average for the stellar mass, radius, and age, respectively. Conclusions. The modelling strategy based on mean density inversions and frequencies separation ratios showed promising results for PLATO because it achieved a precision and accuracy on the stellar parameters that meet the PLATO mission requirements with ten Kepler LEGACY targets. The strategy also left some margin for other unaccounted systematics, such as the choice of the physical ingredients of the stellar models or the stellar activity.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bétrisey, Jérôme ;  Observatoire de Genève, Université de Genève, Versoix, Switzerland
Buldgen, Gaël ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie ; Observatoire de Genève, Université de Genève, Versoix, Switzerland
Reese, Daniel ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie ; Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Université Paris Cité, Meudon, France
Farnir, Martin  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, United Kingdom
Dupret, Marc-Antoine ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Khan, Saniya;  Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Genève, Versoix, Switzerland
Goupil, Marie-Jo;  Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Université Paris Cité, Meudon, France
Eggenberger, Patrick;  Observatoire de Genève, Université de Genève, Versoix, Switzerland
Meynet, Georges;  Observatoire de Genève, Université de Genève, Versoix, Switzerland
Language :
English
Title :
Asteroseismic modelling strategies in the PLATO era: I. Mean density inversions and direct treatment of the seismic information
Publication date :
August 2023
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences
Volume :
676
Pages :
A10
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
SNSF - Swiss National Science Foundation
Funding text :
We would like to thank Takafumi Sonoi for providing the models and associated data from Sonoi et al. (2015). J.B. and G.B. acknowledge funding from the SNF AMBIZIONE grant No 185805 (Seismic inversions and modelling of transport processes in stars). P.E. and G.M. have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 833925, project STAREX). M.F. acknowledges the support STFC consolidated grant ST/T000252/1. Finally, this work has benefited from financial support by CNES (Centre National des Études Spatiales) in the framework of its contribution to the PLATO mission.
Commentary :
Accepted for publication in Astronomy & Astrophysics
Available on ORBi :
since 29 December 2023

Statistics


Number of views
22 (1 by ULiège)
Number of downloads
12 (0 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi