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ABSTRACT

Context. Asteroseismology experienced a breakthrough in the last two decades thanks to the so-called photometry revolution with
space-based missions such as CoRoT, Kepler, and TESS. Because asteroseismic modelling will be part of the pipeline of the future
PLATO mission, it is relevant to compare some of the current modelling strategies and discuss the limitations and remaining challenges
for PLATO. In this first paper, we focused on modelling techniques treating directly the seismic information.
Aims. We compared two modelling strategies by directly fitting the individual frequencies or by coupling a mean density inversion
with a fit of the frequency separation ratios.
Methods. We applied these two modelling approaches to six synthetic targets with a patched atmosphere, for which the observed
frequencies were obtained with a non-adiabatic oscillation code. We then studied ten actual targets from the Kepler LEGACY sample.
Results. As is well known, the fit of the individual frequencies is very sensitive to the surface effects and to the choice of the underlying
prescription for semi-empirical surface effects. This significantly limits the accuracy and precision that can be achieved for the stellar
parameters. The mass and radius tend to be overestimated, and the age therefore tends to be underestimated. In contrast, the second
strategy, which is based on mean density inversions and on the ratios, efficiently damps the surface effects and allows us to obtain
precise and accurate stellar parameters. The average statistical precision of our selection of targets from the LEGACY sample with this
second strategy is 1.9% for the mass, 0.7% for the radius, and 4.1% for the age. This is well within the PLATO mission requirements.
The addition of the inverted mean density to the constraints significantly improves the precision of the stellar parameters by 20%,
33%, and 16% on average for the stellar mass, radius, and age, respectively.
Conclusions. The modelling strategy based on mean density inversions and frequencies separation ratios showed promising results
for PLATO because it achieved a precision and accuracy on the stellar parameters that meet the PLATO mission requirements with
ten Kepler LEGACY targets. The strategy also left some margin for other unaccounted systematics, such as the choice of the physical
ingredients of the stellar models or the stellar activity.
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1. Introduction

With the launch of the space-based photometry missions CoRoT
(Baglin et al. 2009), Kepler (Borucki et al. 2010), and TESS
(Ricker et al. 2015) in the past two decades, asteroseismology
experienced a rapid development. The field will further expand
with the next-generation instrument of the future PLATO mis-
sion (Rauer et al. 2014). The data quality from these missions
enables the use of so-called seismic inversion techniques (see
Buldgen et al. 2022a), which were restricted to helioseismol-
ogy so far. In helioseismology, they were applied with tremen-
dous success (see e.g., Basu & Antia 2008; Kosovichev et al.
2011; Buldgen et al. 2019c; Christensen-Dalsgaard 2021, for
reviews). One of the key challenges of PLATO is the precision
requirements on the stellar parameters (1–2% in radius, 15%
in mass, and 10% in age for a Sun-like star). In this context
and considering the fact that asteroseismic modelling will be

part of the PLATO pipeline, it is relevant to combine the most
advanced modelling strategies exploiting seismic data, classi-
cal constraints (e.g., interferometric radius, luminosity, metallic-
ity, or effective temperature), and inversion techniques, and to
discuss the remaining challenges that could limit the precision
and accuracy of the stellar parameters estimated with PLATO
data. Among them, we highlight the so-called surface effects
(see e.g., Ball & Gizon 2017; Nsamba et al. 2018; Jørgensen et al.
2020, 2021; Cunha et al. 2021), the choice of the physical ingre-
dients (see e.g., Buldgen et al. 2019a; Bétrisey et al. 2022), and
the stellar activity, which will be the subject of a future article
in this series (see e.g., Broomhall et al. 2011; Santos et al. 2018,
2019a,b, 2021; Howe et al. 2020; Thomas et al. 2021).

Because various modelling strategies have been developed
over the years, we provide our discussion in a series of papers.
In this first article, we consider techniques that directly treat
the seismic information by fitting the individual frequencies
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or frequency separation ratios. In a future paper of this series,
we will consider techniques that treat the seismic informa-
tion indirectly by studying indicators that are orthogonalised
using the Gram-Schmidt procedure (Farnir et al. 2019, 2020).
As a side note, we remark that it is also possible to directly
treat the seismic information with the εnl matching technique
(Roxburgh & Vorontsov 2003; Roxburgh 2015, 2016), and that
a comparison between that technique and those presented in this
study would be relevant for a future study. In addition, other
modelling techniques also exist that can circumvent some of the
PLATO challenges, but they are more difficult to implement in a
pipeline. To only quote a few examples, it is possible to constrain
the stellar structure by applying the differential response tech-
nique (Vorontsov et al. 1998; Vorontsov 2001; Roxburgh et al.
2002a,b; Appourchaux et al. 2015), by using inversions based
on so-called seismic indicators (Reese et al. 2012; Buldgen et al.
2015a,b, 2018) that are then applied to a variety of targets
(Buldgen et al. 2016a,b, 2017, 2019a,b, 2022b; Bétrisey et al.
2022, 2023), or by constraining the properties of the convec-
tive core with an inversion of the frequency separation ratios
(Bétrisey & Buldgen 2022).

In Sect. 2 we introduce a new high-resolution grid of stan-
dard non-rotating stellar models, the Spelaion grid. In Sect. 3
we present the most advanced modelling techniques, which we
directly use on the asteroseismic data, together with the classi-
cal constraints and inversion techniques. We first apply them to
six synthetic targets with a patched atmosphere from Sonoi et al.
(2015), and in Sect. 4 we apply them to a selection of ten actual
targets from the Kepler LEGACY sample. Finally, we draw our
conclusions in Sect. 5.

2. The Spelaion grid

The Spelaion grid is a large high-resolution grid of standard non-
rotating models (∼5.1 million models) designed to cover main-
sequence stars between 0.8 and 1.6 solar masses. The grid can
deal with a large variety of chemical compositions and mix-
ing, with up to three dedicated free parameters (initial hydro-
gen mass fraction X0, initial metallicity Z0, and overshooting
αov). It has a high mesh resolution that brings two advantages.
First, the coupling with a minimisation algorithm that can inter-
polate within the grid allows for a very thorough exploration
of the parameter space. Second, the high resolution reduces the
issues with the interpolation of higher-mass stars. These stars can
have convective cores or mixed modes at low frequency, which
are difficult to capture with a grid with a lower resolution. The
low-order mixed modes are currently unlikely to be observed
in main-sequence stars with the actual instruments because they
are in a noisy region of the frequency spectrum. For each model
of the grid, we computed the theoretical adiabatic frequencies
between fixed boundaries in adimensional angular frequency.
This approximately corresponds to the modes with n ∼ 4−33 for
a solar model and a few more high radial orders for higher-mass
stars. This is a broad mode range that extends slightly beyond
the actual observational capabilities at low and high radial order.
For reference, the radial order of the frequency of maximum
power νmax of the targets considered in this work is about n = 21.
We considered l = 0, 1, 2 degrees because the grid is ultimately
designed to fit the r01 and r02 ratios.

The grid is composed of three subgrids that cover spe-
cific types of physics (standard, high metallicity, and overshoot-
ing). Their statistics and properties are summarised in Tables 1
and 2. The evolutionary sequences were computed with the
Liège evolution code (CLES; Scuflaire et al. 2008b), and for

Table 1. Statistics of Spelaion and its subgrids.

Tracks Models Modes

Spelaion 25 079 5 121 459 485 million
Metallic Sun 1176 149 398 13.5 million
Standard MS 7544 1341 813 126 million
Overshooting MS 20 930 4 600 562 439 million

Table 2. Mesh properties of the Spelaion subgrids.

Minimum Maximum Step

Metallic Sun
Mass (M�) 0.94 1.06 0.02
X0 0.64 0.71 0.01
Z0 0.020 0.040 0.001
Overshooting αov = 0.00
Standard MS
Mass (M�) 0.80 1.60 0.02
X0 0.67 0.74 0.01
Z0 0.008 0.030 0.001
Overshooting αov = 0.00
Overshooting MS
Mass (M�) 1.10 1.60 0.02
X0 0.68 0.74 0.01
Z0 0.008 0.030 0.001
Overshooting 0.00 0.20 0.05

each time-step, the frequencies were computed with the adi-
abatic Liège oscillation code (LOSC; Scuflaire et al. 2008a).
We used the AGSS09 abundances (Asplund et al. 2009), the
FreeEOS equation of state (Irwin 2012), and the OPAL opacities
(Iglesias & Rogers 1996), supplemented by the Ferguson et al.
(2005) opacities at low temperature and the electron conduc-
tivity by Potekhin et al. (1999) as physical ingredients of the
models. The microscopic diffusion was described using the for-
malism of Thoul et al. (1994), with the screening coefficients
of Paquette et al. (1986) and the nuclear reaction rates are from
Adelberger et al. (2011). The mixing-length parameter αMLT was
fixed at a solar calibrated value of 2.05, following the implemen-
tation of Cox & Giuli (1968). For the atmosphere modelling, we
used the T (τ) relation of model C of Vernazza et al. (1981).

In Fig. 1 we illustrate the Hertzsprung-Russell (HR) dia-
gram of the two sets of targets considered in this work, for
the synthetic targets and for the actual targets from the Kepler
LEGACY sample (hereafter abbreviated to LEGACY sample;
Lund et al. 2017). The evolutionary tracks correspond to a slice
of the Spelaion grid with X0 = 0.72, Z0 = 0.018, and αov = 0.00.

3. Modelling strategies

In this first paper, we focus on modelling strategies treat-
ing directly the seismic information, either in the form of
individual frequencies or in the form of frequency separa-
tion ratios. Over the years, a variety of methods have been
developed, such as Levenberg-Marquardt algorithms (see e.g.,
Frandsen et al. 2002; Teixeira et al. 2003; Miglio & Montalbán
2005), genetic algorithms (Charpinet et al. 2005; Metcalfe et al.
2009, 2014), Bayesian inference (Silva Aguirre et al. 2015, 2017;
Aguirre Børsen-Koch et al. 2022), machine-learning methods
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Fig. 1. HR diagram of the targets considered in this work. The
Sonoi et al. (2015) targets are denoted by the orange stars, and the
Kepler LEGACY targets are indicated by the blue stars. The grey lines
correspond to the evolutionary tracks from a slice of the Spelaion grid
with X0 = 0.72, Z0 = 0.018, and αov = 0.00.

(Bellinger et al. 2016, 2019), or Markov chain Monte Carlo
methods (MCMC; Bazot et al. 2008; Gruberbauer et al. 2013;
Rendle et al. 2019).

In this study, we first investigate the fit of the individual
frequencies, with a focus on the impact of the surface effects.
Then, we test a more elaborate technique that uses frequency
separation ratios coupled with a mean density inversion. This
technique has been shown to be effective (Buldgen et al. 2019a;
Bétrisey et al. 2022). We also investigate the impact of the cor-
relations between the inverted mean density and the frequency
separation ratios, which were neglected in the past studies. For
all the minimisations, we used the AIMS software (Rendle et al.
2019), and we applied the two modelling strategies on synthetic
targets from Sonoi et al. (2015; models A to F). The frequencies
of these simulated targets were computed with the MAD oscil-
lation code. This code includes a non-adiabatic non-local time-
dependent convection modelling as detailed in Grigahcène et al.
(2005), adapted to the stratification of patched models fol-
lowing the prescriptions of Dupret et al. (2006). For each tar-
get and for the sake of realism, we adopted the observational
uncertainty of the frequencies of LEGACY targets with similar
mode ranges, namely KIC 9206432 (model B), KIC 10162436
(models C and E), and KIC 11081729 (models D and F). For
model A, which is a proxy of the Sun, we adopted the uncer-
tainties of Basu et al. (2009) that were partially revised by
Davies et al. (2014), degraded by a constant factor to mimic a
data quality similar to that of the Kepler mission. The classi-
cal constraints are the effective temperature, the metallicity, and
the absolute luminosity. When the inverted mean density was
added to the constraints, it was treated either as another classical
constraint or as a seismic constraint to account for the correla-
tion with the ratios. For the effective temperature, we adopted
an uncertainty of 90 K if Teff < 6000 K and 100 K otherwise,
and 0.1 dex for the metallicity. For the luminosity, we adopted
an uncertainty of 19% when L/L� <= 3, 15% when 3 < L/L� <
4.5, and 11% otherwise. This is in line with the results from
Silva Aguirre et al. (2017) for the LEGACY sample, assuming
conservative uncertainties considering the impact of extinction,
bolometric correction, and uncertainties on the spectral param-
eters when Gaia parallaxes are used. The uncertainties of the
effective temperature and of the metallicity are the typical uncer-
tainties recommended for surveys (see e.g., Furlan et al. 2018),

and we assumed that if Teff < 6000 K, a slightly better uncer-
tainty might be expected. We point out that assuming smaller
uncertainties on these quantities would not change the results
of our study because the fits are mainly driven by the seismic
constraints1. Finally, a conservative uncertainty of 0.6% was
assumed for the inverted mean density when it was considered a
classical constraint (see Sect. 3.3.1).

3.1. AIMS and convergence assessment

The AIMS software (Rendle et al. 2019) is an MCMC-based algo-
rithm that relies on the emcee package (Foreman-Mackey et al.
2013), which is an interpolation scheme to sample between the
grid points, and on a Bayesian approach to provide the posterior
probability distributions of the optimised stellar parameters. The
coupling of a high-resolution grid with the interpolation scheme
allows a very thorough exploration of the parameter space. For
the minimisations of this work, we used the standard MS subgrid
of Spelaion, and AIMS therefore included four free variables to
optimise (mass, age, and the chemical composition with X0 and
Z0). We considered uniform uninformative priors for all the free
variables, except for the age, for which we used a uniform distri-
bution with the range [0, 13.8] Gyr. We assumed that the true value
of the observations for the observational constraints were per-
turbed by some Gaussian-distributed random noise for the compu-
tation of the likelihoods. AIMS accepts two types of constraints:
the seismic constraints (individual frequencies, frequency separa-
tion ratios, radial frequency of lower order, inverted mean density,
etc.), for which all correlations are accounted for to first order, and
the classical constraints (stellar radius, absolute luminosity, effec-
tive temperature, metallicity, frequency of maximal power νmax,
inverted mean density, etc.), for which the correlations with the
seismic constraints are neglected. The inverted mean density is
an ambivalent constraint as it can be treated either as a classical
constraints or as a seismic constraint if the inversion coefficients
are provided (see Sect. 3.3.1).

By design, a run in AIMS is performed in two steps. First,
a burn-in phase is computed to identify the relevant part of
the parameter space, and then the solution run is performed.
By default, AIMS uses 250 walkers, 200 burn-in steps, and
200 steps for the solution. Hence, the stellar parameters are
based on 50 000 samples from the production run, which fol-
lows the 50 000 probability calculations from the burn-in phase.
This choice is a compromise between the required computa-
tional power and the control on the autocorrelation time. For
individual modelling, we recommend to modify these default
values to 800 walkers, 2000 burn-in steps, and 2000 steps for
the solution, however. In this configuration, the solution is based
on 1.6 million samples from the production run, which follows
the 1.6 million probability calculations from the burn-in phase.
This ensures that the autocorrelation time is much shorter than
the number of steps, at the expense of requiring higher compu-
tational power. We opted for this new configuration to have a
higher degree of confidence in our results, but some tests would
be required to find a good compromise in a pipeline. Along with
the solution, AIMS provides several diagnostic plots to ensure
that the MCMC converged successfully. These plots notably
include a triangle plot of the optimized parameters to confirm
that the solution is unique and that the interpolation was smooth,
the evolution of the walkers to ensure that they do not drift,
and the échelle diagram (Grec et al. 1983). They provide good
control on the reliability of the MCMC result, but these checks

1 For instance σνn,l/νn,l ∼ 0.01%, while σTeff
/Teff ∼ 1.6%.
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are manual and not pipeline-friendly. In Appendix D we provide
illustrations of the diagnostic plots for a successful convergence
(see Fig. D.1) and for the most common issues that may occur
(see Figs. D.2–D.6). We separated the convergence issues into
five categories for illustration purposes, but a run can be affected
by more than one issue. These categories are described in detail
in Appendix D, and we point out here that the most frequent
issues occurred when the walkers drifted during the sampling or
hit the grid boundaries.

3.2. Individual frequencies as constraints

3.2.1. Surface effects

Surface effects are related to the poor treatment of near sur-
face layers. In these regions, the mixing-length theory (MLT)
is an inaccurate description of convection because it does not
account for compressible turbulence, for example. The simplistic
treatment of convection is especially an issue in asteroseismol-
ogy because the perturbation of turbulent pressure can signifi-
cantly affect the oscillation frequencies. In addition, the thermal
timescales in the near surface layers are similar to the oscillation
periods, and the oscillations are thus highly non-adiabatic there
(Houdek & Dupret 2015). Semi-empirical prescriptions were
proposed to account for the structural contribution of the surface
effects (Kjeldsen et al. 2008; Ball & Gizon 2014; Sonoi et al.
2015). These prescriptions are described by one or two free
parameters that can be added to the optimised variables during
the minimisation.

In the following section, we define νobs as the observed fre-
quency and νmod as the theoretical adiabatic frequency that does
not include surface effects. Kjeldsen et al. (2008) treated the sur-
face effects with a power law in frequency,

δν

νmax
= a

(
νobs

νmax

)b

, (1)

where a and b are the parameters to be determined, δν = νobs −

νmod, and νmax is the frequency of maximum power, computed
following the scaling relation (Kjeldsen & Bedding 1995)

νmax

νmax,�
=

g

g�

(
Teff

Teff,�

)− 1
2

, (2)

where g� ' 27 420 cm s−2 (Prša et al. 2016; Tiesinga et al.
2021), Teff,� = 5777 K (Allen 1976), and νmax,� = 3090 µHz
(Huber et al. 2011). Originally, the parameter b = 4.9 was deter-
mined for the Sun, and the parameter a can then be found with
a least-squares minimisation. Sonoi et al. (2015) showed that b
varies significantly with the surface gravity and the effective tem-
perature and should therefore be determined using the scaling
relation

b = −3.16 log Teff + 0.184 log g + 11.7, (3)

or be treated as an additional free parameter if the prescrip-
tion is applied to other stars (see e.g., the case of HD 52265;
Lebreton & Goupil 2014).

Ball & Gizon (2014) proposed two corrections, a one-term
and a two-term correction, based on the mode inertia. The one-
term prescription is

δν = a3

(
ν

νac

)3/
I, (4)

and the two-terms prescription is

δν =

a−1

(
ν

νac

)−1

+ a3

(
ν

νac

)3/I, (5)

where I is the normalised mode inertia, and a−1 and a3 are
two coefficients to be added in the optimisation procedure. The
acoustic cut-off νac is computed using the scaling relation (2)
because νmax ∝ νac, as first suggested by Brown et al. (1991), and
we used νac,� = 5100 µHz (Jiménez 2006). Ball & Gizon (2014)
found that both corrections produced a good fit of the BiSON fre-
quencies (Broomhall et al. 2009), but Sonoi et al. (2015) pointed
out that they only worked well in limited frequency ranges of
their models, but not in the whole range.

Sonoi et al. (2015) proposed a correction based on patched
models, including averaged 3D hydrodynamical models of the
upper layer, allowing it to reproduce realistically the frequencies,
and based on the frequencies of the corresponding unpatched
models. They proposed a correction based on a Lorentzian
function,

δν

νmax
= α

1 − 1

1 +
(
νobs
νmax

)β
 , (6)

where α and β can be determined from the surface gravity and
effective temperature using the scaling relations

log |α| = 7.69 log Teff − 0.629 log g − 28.5, (7)
log β = −3.86 log Teff + 0.235 log g + 14.2, (8)

or be treated as free variables.
These prescriptions were investigated by several works

for main-sequence stars (Ball et al. 2016; Nsamba et al. 2018;
Jørgensen et al. 2019; Cunha et al. 2021) and for more evolved
stars (Ball & Gizon 2017; Jørgensen et al. 2020, 2021) using
either observational data or synthetic data based on 3D simu-
lations of the surface layers patching 1D models. These works
pointed out that the two-term correction of Ball & Gizon (2014)
is the most robust prescription in general, followed by the
Sonoi et al. (2015) correction. The Kjeldsen et al. (2008) pre-
scription is less robust and is not recommended in some cases.
They also showed that fitting the individual frequencies tends
to bias the estimated stellar parameters, especially by overesti-
mating the mass. For post-main-sequence stars, these biases are
significant because they are comparable to the PLATO precision
requirements (Jørgensen et al. 2021). In addition, Ball & Gizon
(2017) showed that the systematic uncertainty due to the choice
of the functional form of the surface effects can be up to twice
the statistical uncertainty.

We considered the prescriptions summarised in Table 3 when
we fitted the individual frequencies. We tested them first with
synthetic data whose frequencies were computed using an oscil-
lation code that accounts for non-adiabatic effects2, and then
with observational data. For the fit of the frequency separation
ratios, the surface effects were neglected because the ratios damp
them so efficiently that is not possible to estimate them with the
MCMC in this configuration. In this case, we accounted for them
in the mean density inversion.

2 Models A to F are patched models. Non-adiabatic frequencies com-
puted for these models therefore account for the main expected surface
effects.
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Table 3. Surface effect prescriptions.

Prescription Reference Parameters

K1 Kjeldsen et al. (2008) a free, b scaled
K2 Kjeldsen et al. (2008) a free, b free
BG1 Ball & Gizon (2014) a3 free
BG2 Ball & Gizon (2014) a−1 free, a3 free
S1 Sonoi et al. (2015) α free, β scaled
S2 Sonoi et al. (2015) α free, β free

3.2.2. Application to targets (Sonoi et al. 2015)

The direct-modelling strategy consists of fitting the individ-
ual frequencies and the classical constraints (surface metallic-
ity, effective temperature, and absolute luminosity). Except for
model A, the coefficients of the surface effects were poorly
estimated, even though the sampling was high (800 walkers,
2000 steps of burn-in, and 2000 steps for the solution). We there-
fore extended the burn-in to 8000 steps. This solved the issue
for models C, D, and F. The runs for model B still did not con-
verge successfully, and the stellar parameters of model E were
significantly biased. As discussed in more detail in Appendix B,
the impact of the non-adiabatic effects is much stronger for
models B to F than for the solar model (model A). When the
non-adiabaticity of oscillations is not taken into account in the
targets, which corresponds dealing with adiabatic frequencies
from the patched 3D simulations, we obtained similar stellar
parameters for models A, E, and F. The results of models B
and D are less accurate, and the minimisation failed for model C
because the grid boundary was reached. Although it is difficult to
draw robust conclusions with a statistics of only six targets, the
inaccuracies of models B and D indicate that the non-adiabatic
correction may be incompatible with the actual description of
surface effects. However, the convergence issues might also be
asign that there is a problem with the structure of the targets,
for example with the determination of the position of the con-
nection between the 1D structure and the 3D model of the upper
layers. To facilitate convergence of the MCMC, we discarded the
modes above 2400 µHz for model B and 1500 µHz for model E.
This worked for model B, but the stellar parameters of model E
were not improved. As we argue below with additional tests, this
disagreement likely originates from the structure of model E and
not from the surface effect prescription or from the non-adiabatic
correction.

In Figs. 2 and 3 we show the results of the fit of the individual
frequencies before and after manually discarding the runs with
issues. Except for the solar model (model A), only the BG2 and
K1 prescriptions produced runs without issues. For the unsuc-
cessful runs, the optimized stellar parameters were surprisingly
not significantly biased, as we expected. Although it sounds like
an advantage, the spread due to surface effects is much larger
than the individual uncertainties, as illustrated in Fig. 2, and it is
therefore incompatible with the PLATO precision requirements.
From a pipeline perspective, some of the issues, such as his-
tograms that are truncated at the grid boundaries, which was the
main issue, can be automatically identified with a high level of
confidence. However, other issues, such as an excessively peaked
distribution or walker drifts, are harder to identify automatically.
This type of problem is well suited for machine-learning meth-
ods, however, even though it would be difficult to build a robust
and comprehensive training set.

In Figs. 2 and 3 we tested the impact of the luminosity by
including or excluding it in the classical constraints, and veri-
fying that both results were consistent. This test is not manda-
tory for synthetic models, whose absolute luminosity is known
exactly (and therefore reliably), but it can point out issues with
the bolometric corrections or the extinction maps when the lumi-
nosity of an observational target is computed. As expected, all
the models in this section consistently reproduce the luminosity.

3.3. Frequency separation ratios as constraints

3.3.1. Mean density inversions

In this section, we present a three-step procedure that couples
fits of frequency separation ratios and a mean density inversion
to circumvent the issues due to surface effects. We recall that
the ratios are constructed by dividing the small separation by
the large separation, therefore suppressing the information about
the mean density. Our method uses a mean density inversion to
recover the lost information in a quasi-model-independent way.
We point out that this approach can provide stellar parameters of
a PLATO benchmark target whose precision meets the PLATO
requirements (Bétrisey et al. 2022). The procedure starts by fit-
ting the individual frequencies and the classical constraints as in
Sect. 3.2. Then, a mean density inversion is conducted on the
resulting model of this first minimisation. This allows us to con-
strain the mean density in a quasi-model-independent way and
add it to the constraints. If the inverted mean density is treated
as a classical constraint in AIMS because no detailed analysis
is conducted at this stage, a conservative uncertainty of 0.6% is
adopted on that quantity. Then, a second minimisation is con-
ducted, this time by fitting frequency separation ratios (r01 and
r02), the classical constraints, and the inverted mean density. The
r10 ratios can be used instead of the r01, but they should not be
used simultaneously because this will bias the results (Roxburgh
2018). We recall that the surface effects are accounted for in the
mean density inversion and are neglected in the fit of the ratios
with AIMS.

The inverted mean density is a combination of frequencies,
and it is therefore possible to treat it as a seismic constraint to
account for the correlations with the other seismic constraints.
We computed the inverted mean density using the generalised
definition of Reese et al. (2012),

ρ̄inv = ρ̄ref s2 with s =
1
2

∑
i

ci
νobs

i

νref
i

, (9)

where ci are the inversion coefficients that are optimised by the
inversion based on the frequency differences between the refer-
ence model (ref) and the observations (obs). The index i denotes
the identification pair (n, l) of the corresponding frequency.
The inverted mean density is therefore correlated with the fre-
quency separation ratios, as shown in Fig. 4, using model S
from Christensen-Dalsgaard et al. (1996) and observational data
from Lazrek et al. (1997). We implemented these correlations in
AIMS with two subtleties. First, the inversion coefficients should
be updated at each iteration of the MCMC. This would require
an interpolation of the model structure at each step, however,
which is numerically expensive and beyond the actual capabili-
ties of AIMS. Because the variation in the inversion coefficients
between similar models is small (see Appendix A), we neglected
this effect. We assumed constant coefficients, determined by the
original mean density inversion. Second, with the actual defini-
tion of s, the covariance matrix needs to be updated each time
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Fig. 2. MCMC results for the targets from Sonoi et al. (2015), using individual frequencies and different prescriptions of the surface effects
described in Table 3. Runs with convergence issues are included. For each target, two sets of classical constraints were considered, including the
absolute luminosity (upper line) or excluding it (bottom line). The dashed black lines represent the exact value and the grey boxes represent the
observational constraints.
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Fig. 3. Same as Fig. 2, but runs with convergence issues were discarded.
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the likelihood is updated as well, which is also numerically inef-
ficient. We therefore modified the definition of s by switching
the reference frequency with the observed frequency,

s′ =
1
2

∑
i

ci
νref

i

νobs
i

. (10)

This switch is only valid if νobs
i /νref

i ' 1, which occurs in the
limit s2 → 1. This amounts to swapping the roles of the observed
star and the reference model by determining the required cor-
rection for the former to reproduce the mean density of the
latter. If it is close to 1, then the two mean densities are simi-
lar to each other. This approximation allows us to compute the
covariance matrix only once at the beginning of the minimisa-
tion, which is numerically much more efficient. In addition, the
validity domain of the approximation is well verified because
the minimisation converges toward the region where s2 → 1.
For completeness, we compute in Appendix A the correlations
by implementing the two definitions in AIMS for the toy model.
The actual differences are very small and are negligible com-
pared to other sources of uncertainty. We note that this imple-
mentation has one drawback. It imposes that s2 → 1, but not that
ρ̄ref → ρ̄inv. Depending on the treatment of the surface effects
by the inversion, the first condition may imply the second or
not. If it does not, the optimal model may converge toward an
incorrect mean density while still fulfilling the first condition, or
it may simply not converge. To understand further when issues
may occur, it is worth recalling what the inversion does. It min-
imises the following cost function:

Jρ̄(ci) = FStruc + FUncert + FSurf , (11)

where FStruc accounts for the structural differences, FUncert
accounts for the observational uncertainties, and FSurf accounts
for the surface effects. The inversion therefore creates a balance
between the extraction of structural differences, in our case, to
provide a correction for the mean density of the reference model,
while minimising the observational uncertainties and accounting
for surface effects. While the first two terms are well understood
(see Reese et al. 2012),FSurf is semi-empirical, and in practice, it
introduces an instability in the inversion because it adds two free
variables to the minimisation. The degree of instability depends
on the strength of the surface effects, and in the worst-case sce-
nario, all the information from the relative frequency differences
can be used in the estimation of the surface effects, and no infor-
mation is left for extraction of the structural differences. In this
case, the inversion coefficients are poorly estimated, resulting in
coefficients with high amplitudes and large variations between
two consecutive coefficients. Under these conditions, the inver-
sion is unstable, and this instability is then propagated in AIMS,
causing the convergence issue we mentioned earlier. Although
some techniques exist with which the quality of an inversion
can be verified (see Reese et al. 2012; Buldgen et al. 2015a, or
Appendix A), they either require manual checks or a knowledge
of the structure of the observed target, and they are thus difficult
or impossible to adapt in a pipeline. We therefore developed a
new test to quantify the quality of an inversion. This test consists
of evaluating the Pearson correlation coefficient of the lag plot
(with lag = 1) of the inversion coefficients. The Pearson cor-
relation coefficient is defined as the covariance of two random
variables divided by the product of their standard deviations. For
a sample pair (x, y),

R =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
, (12)
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Fig. 4. Correlations between the inverted mean density and the r02 ratios
for our toy model, using model S from Christensen-Dalsgaard et al.
(1996) and observational data from Lazrek et al. (1997).
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Fig. 5. Estimates of the degree of instability in the mean density inver-
sion of the targets. The coefficients of the surface correction were esti-
mated by the inversion using the BG2 prescription. Targets in the high-
instability regime would require further investigation, while inversion
results in the low and intermediate regimes can be used without further
investigation.

where x = [x1, . . . , xN], y = [y1, . . . , yN], and x̄ and ȳ are the
mean of the vectors x and y, respectively. For the sake of con-
ciseness, we do not describe lag in detail here, but invite refer
to NIST/SEMATECH (2003) and Appendix A, where we pro-
vide illustrations of lag plots of targets in different instability
regimes, additional tests, and a more complete discussion of the
regime boundaries. To summarise, we identified three instability
regimes: high (R < 0.5), intermediate (0.5 < R < 0.75), and
low (0.75 < R). When a target is in the intermediate- or low-
instability regimes, we consider that the mean density inversion
can be trusted without further investigations. When a target is in
the high-instability regime, the result of the inversion should be
treated with caution. We remark that we identified three regimes,
but in a pipeline, it would be better to define a unique thresh-
old below which we reject the inversion. Based on the statis-
tics of this work, we would estimate this threshold to be around
R ∼ 0.6, but this would benefit from further investigations with
larger statistics. In Fig. 5 we show the R coefficient of the tar-
gets we considered. Half of the Sonoi et al. (2015) targets lie
in the high-instablity regime as a result of the issues mentioned
in Sect. 3.2.2 (see also Appendix B), while only one of the ten
LEGACY targets is in the high-instability regime.

As a side note, we remark that by adding the inverted mean
density in the constraints, we re-introduce some uncertainty due

A10, page 7 of 26



Bétrisey, J., et al.: A&A 676, A10 (2023)

Table 4. Precision of the stellar parameters obtained by fitting the frequency separation ratios for the models of Sonoi et al. (2015).

List of Stellar mass Stellar radius Stellar age

Constraints no ρ̄inv no corr. incl. corr. no ρ̄inv no corr. incl. corr. no ρ̄inv no corr. incl. corr.

Model A
[Fe/H],Teff , L, r01, r02, νnmin,l=0 0.8% 0.8% 0.7% 0.3% 0.3% 0.3% 1.9% 1.9% 1.8%
[Fe/H],Teff , L, r01, r02 3.7% 0.9% 0.8% 2.6% 0.4% 0.3% 2.4% 2.0% 1.9%
[Fe/H],Teff , r01, r02 3.7% 0.9% 0.8% 2.7% 0.4% 0.3% 2.5% 2.0% 1.9%
[Fe/H], L, r01, r02 4.1% 0.9% 0.8% 2.9% 0.4% 0.3% 2.5% 2.0% 2.0%
Teff , L, r01, r02 3.6% 0.9% 0.8% 2.6% 0.4% 0.3% 2.5% 1.9% 1.8%
[Fe/H],Teff , L,R01,R02 4.2% 1.4% 1.4% 3.2% 0.6% 0.5% 4.2% 3.3% 3.3%
[Fe/H],Teff , L, r02 3.9% 2.0% 2.2% 2.8% 0.7% 0.8% 3.7% 2.7% 2.2%
[Fe/H],Teff , L, r01 4.7% 1.7% 1.7% 4.1% 0.6% 0.6% 4.0% 4.1% 4.0%

Model B
[Fe/H],Teff , L, r01, r02, νnmin,l=0 3.6% 3.8% 3.6% 1.3% 1.2% 1.3% 21.4% 18.0% 18.8%

Model C
[Fe/H],Teff , L, r01, r02 4.3% 3.1% 2.8% 4.3% 1.1% 1.1% 10.5% 5.3% 4.9%

Model D
[Fe/H],Teff , L, r01, r02 6.7% 4.1% 4.0% 6.5% 1.4% 1.4% 17.4% 16.8% 16.3%

Model E
[Fe/H],Teff , L, r01, r02, νnmin,l=0 2.1% 2.1% 2.2% 0.9% 0.8% 0.8% 4.8% 5.0% 4.0%

Model F
[Fe/H],Teff , L, r01, r02 6.5% 3.1% 3.2% 5.1% 1.1% 1.1% 14.8% 12.2% 11.9%

Notes. We considered three prescriptions to include the inverted mean density in the constraints: not including it (no ρ̄inv), including it as a
classical constraint (no corr.), or including it as a seismic constraint to account for the correlations with the ratios (incl. corr.). The lowest-order
radial frequency is denoted by νnmin ,l=0, and R01 and R02 are the frequency separation ratios derived by assuming observational uncertainties twice
as large on the individual frequencies.

to the surface effects, but they only affect one constraint with this
approach.

3.3.2. Application to the sample of Sonoi et al. (2015)

By fitting the frequency separation ratios and the classical con-
straints (metallicity, effective temperature, and luminosity), the
relative separations between the frequency ridges can be repro-
duced, but in general not their position. This results in a horizon-
tal shift in the échelle diagram. The addition of the inverted mean
density mitigates this issue but may be insufficient, as was the case
for models B and E (see Fig. B.3). In this case, we considered an
additional seismic constraint, the lowest-order radial frequency,
because this frequency is least affected by the surface effects. This
addition fixes the position of the ridges, but can bring (or empha-
sise) other minimisation issues, notably a drift of walkers that
biases the results (see the end of Sect. 4.2 for further details).
These issues did not occur with the models of this section.

We tested three prescriptions to include the inverted mean
density in the constraints: we did not include it, we included
it as a classical constraint, or we included it as a seismic con-
straint. By classical constraints, we imply that the likelihoods
were computed assuming that the true value of the observa-
tions were perturbed by some Gaussian-distributed random noise
(and we note that other distributions are also supported by the
software), while AIMS accounts for all the correlations for a
seismic constraint. A comparison of the three prescriptions is
shown in Table 4. When the inverted mean density is added to
the constraints, the precision of the stellar mass and radius is
significantly improved. The precision of the stellar age is mostly
dominated by the seismic information contained in the ratios,
and a gain in precision is likely to be an indirect consequence of

a gain in the precision of the stellar mass and radius. The preci-
sion of the stellar parameters by considering the inverted mean
density as a classical or seismic constraint is roughly equiva-
lent, but the sources of the uncertainties are different. In the for-
mer case, we assumed an arbitrary uncertainty of 0.6% for the
inverted mean density, which accounts for the statistical uncer-
tainties (∼0.1−0.2%) as well as for the systematic uncertainties
due to the choice of the physical ingredients or the prescription
for surface effects. Although these effects are difficult to esti-
mate without an individual and detailed analysis of each target,
they are unlikely to exceed 0.6%, which is considered as a very
large uncertainty for an inversion. As a reference, for Kepler-93,
which is a well-behaved target with moderate surface effects, the
total uncertainty of the mean density was 0.2% (Bétrisey et al.
2022). Since this arbitrary choice affects the maximum preci-
sion that can be achieved for the stellar parameters, a detailed
analysis of several benchmark targets could be relevant to refine
this choice in certain mass ranges or types of chemical compo-
sition, for example. Conversely, when the inverted mean density
is treated as a seismic constraint, we can account for the corre-
lations with the ratios, but not for the systematics. As shown in
Fig. 6 in orange and green, both prescriptions have an equivalent
accuracy. Because both prescriptions lead to a similar precision
and accuracy, we would recommend treating the mean density
as a classical constraint because it is more stable.

3.4. Comparison and discussion

In Fig. 6
we compare the results between the modelling strategy that

fit the individual frequencies and the strategy that fit the fre-
quency separation ratios and the inverted mean density. For the
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Fig. 6. Accuracy comparison between the results of the modelling strategies that fit the individual frequencies (blue) or the frequency separations
ratios by treating the inverted mean density as a classical (orange) or seismic (green) constraint for the Sonoi et al. (2015) targets. For model A,
we show the results of the model using the following constraints: [Fe/H],Teff , L, r01, r02. For models B–F, we used the constraints listed in Table 4.

fit of the individual frequencies (blue), we selected the mod-
els with the BG2 prescription for the surface effects and the
absolute luminosity in the classical constraints because it pro-
vided the most robust models, and for the ratios, we selected
the results based on the inverted mean density treated as a
classical constraint (orange) or as a seismic constraint (green).
The stellar parameters are systematically biased with the fit of
the individual frequencies. The mass and radius are overesti-
mated, and as a consequence, the age is underestimated. These
biases are related to the treatment of the surface effects, which
is too simplistic to accurately model the complex processes in
upper stellar layers. These biases were expected because they
are already documented in the literature for other types of stars
(Ball & Gizon 2017; Nsamba et al. 2018; Jørgensen et al. 2020,
2021; Cunha et al. 2021). In addition, the fit of the frequencies
has another issue, as was also observed in Rendle et al. (2019),
Buldgen et al. (2019a), and Bétrisey et al. (2022). The uncer-
tainty is underestimated because the frequencies constitute a set
of constraints that contains too many precise elements, which
results in peaked distributions. The fit of the individual frequen-
cies therefore tended to estimate precise but inaccurate stellar
parameters. In contrast, the fit of the frequency separation ratios,
which damp the surface effects, provided more accurate results.
Except for model E, the stellar mass and radius are indeed con-
sistently reproduced. We note some slight inaccuracies in the
stellar ages that are likely related to the differences in the phys-
ical ingredients between the Sonoi et al. (2015) targets and our
grid of models. Especially the abundances are different, as is the
value assumed for the mixing-length parameter that is fixed at a
solar-calibrated value of 2.05 in our grid. Because the MCMC
cannot modify this parameter, it compensates for this by modi-

fying the helium mass fraction and the metallicity, resulting in
a bias in the stellar age and absolute luminosity. Although it is
tempting to let αMLT be an additional free parameter to avoid
this type of issue, it would be numerically extremely expensive,
especially if the overshooting is also free. For model E, none of
the models of this work was able to reproduce its stellar param-
eters. No improvements were observed when the non-adiabatic
correction of the frequencies was removed. This raises the ques-
tion whether there is a structural issue with model E, either in
the 1D structure of the model itself, in the 3D simulation of the
upper layers, or in the connection between the two, or whether
the semi-empirical formalism of the surface effects is not suit-
able for this target.

4. Application to LEGACY targets

In this section, we apply the two modelling strategies of Sect. 3
to ten targets from the Kepler LEGACY sample (Lund et al.
2017) with the best data quality. We divided these targets into
two categories that differed by the set of classical constraints
considered. The 16 Cyg binary system is one of the best-studied
systems from an asteroseismic point of view (see Buldgen et al.
2022b, and references therein). The constraints on 16 Cyg A
and B are therefore at another level than the other targets in the
LEGACY sample. An interferometric radius was available for
these targets (White et al. 2013), and we considered the follow-
ing classical constraints: effective temperature, metallicity, and
interferometric radius. They are summarised in Table 5. We pre-
ferred the interferometric radius because it is more constraining
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Table 5. Classical constraints and observed luminosity of the 16 Cyg
binary system.

Teff (K) [Fe/H] (dex) R (R�) L (L�)

16 Cyg A 5839 ± 42 0.096 ± 0.026 1.22 ± 0.02 1.56 ± 0.05
16 Cyg B 5809 ± 39 0.052 ± 0.021 1.12 ± 0.02 1.27 ± 0.04

Notes. Teff and R from White et al. (2013), [Fe/H] from Ramírez et al.
(2009), and L from Metcalfe et al. (2012).

and more accurately determined than the absolute luminosity,
which depends on the bolometric correction and extinction map
considered. For the eight other targets, we considered three sets
of constraints summarised in Table 6. As discussed in Sect. 3.2.2,
this is to ensure that the luminosity is estimated consistently with
the following formula:

log
(

L
L�

)
= −0.4

(
mλ + BCλ − 5 log d + 5 − Aλ − Mbol,�

)
, (13)

where mλ is the magnitude, BCλ is the bolometric correction,
and Aλ is the extinction, given a band λ, in our case, the 2MASS
Ks-band. We inferred the extinction with the dust map from
Green et al. (2018) and computed the bolometric correction fol-
lowing Casagrande & VandenBerg (2014, 2018). We adopted a
solar bolometric correction of Mbol,� = 4.75. The distance d
in pc from Gaia EDR3 (Gaia Collaboration 2021) was com-
puted by testing two approaches: by inverting the parallax cor-
rected according to Lindegren et al. (2021), or by using the
distance from Bailer-Jones et al. (2021). Both methods led to
consistent results, and we adopted the luminosity based on the
latter distances as our observational constraint. The precision
of the Ks magnitude of Pinocha is very low, which results in a
poorly constrained luminosity. In addition, this target and Arthur
are flagged as unreliable by Gaia. The RUWE indicator (renor-
malised unit weight error) is expected to be about one for single-
star sources. If this indicator is much larger than one, as is the
case for Arthur and Pinocha, it may indicate that the source is
not single or that another issue affected the astrometric solution.
We summarise the constraints of the second category of targets
in Table 7.

4.1. Individual frequencies as constraints

In Fig. 7 we show the results of the fit of the individual frequen-
cies and the different sets of classical constraints by considering
different prescriptions for the surface effects. We removed the
models with convergence issues that result from the treatment of
the surface effects. With the K2 and S2 prescriptions, the MCMC
could not find optimal values for the free coefficients associated
with the surface effects correction. For the other unsuccessful
runs, the MCMC hit the grid boundaries by trying to compen-
sate for the other MCMC free parameters (mass, radius, and
initial chemical composition with X0 and Z0) to force an inap-
propriate value for the free parameters of the surface effects. In
comparison to the results of Sect. 3.2 with the Sonoi et al. (2015)
targets, more prescriptions lead to successful MCMC runs. This
difference is most likely due to surface effects, which are weaker
with the LEGACY targets and are therefore easier to reproduce.
Although some of the results with the BG1 prescription did not
show the usual convergence issues, they appear as outliers in
Fig. 7. We recommend considering them with caution because
they failed to reproduce the high frequencies, which affects the
estimate of the mass and radius.

Table 6. Classical constraints for the second category of targets.

Classical constraints

set 1 Teff , [Fe/H], L
set 2 Teff , [Fe/H], νmax
set 3 Teff , [Fe/H]

Except for Arthur and Doris, the absolute luminosity esti-
mated by the models is consistent with the observed value,
regardless of the set of classical constraints considered. As
explained in the previous section, the luminosity of Arthur is
flagged as unreliable, but because the fit is mainly driven by
the seismic information, the results of the models that include
or exclude the luminosity in the constraints are almost identi-
cal. This shows that when the luminosity is not very precisely
constrained, it plays a small role on the final parameters. If the
inverted mean density or/and the radial frequency of lower order
are not included in the constraints, the situation may be differ-
ent and the luminosity should only be included if it is reliable.
Because the luminosity of Pinocha is poorly constrained, we did
not consider set 1 of the classical constraints because it is equiv-
alent to set 3 in these conditions.

As illustrated in Fig. 7, the systematic uncertainty due to the
choice of the prescription for the surface effects is much larger
than the individual uncertainties. Except for particular cases that
are probably coincidental (e.g., ages of Arthur and Nunny), this
systematic is several times larger than the statistical uncertainty.
In addition, as for Sonoi et al. (2015), the numerical cost of each
minimisation was high because we had to use 8000 steps of burn-
in, which is very demanding from the perspective of a pipeline.

4.2. Frequency separation ratios as constraints

As in Sect. 3.3, we fitted the frequency separation ratios along
with the classical constraints and considered the same three pre-
scriptions to include the inverted mean density. The results are
summarised in Table 8. Just like with the Sonoi et al. (2015) tar-
gets, if the inverted mean density is part of the constraints, the
precision of the stellar mass and radius is significantly improved.
We found comparable precision by treating the mean density as a
classical or seismic constraint. However, the convergence of the
latter was less stable with real observations, which again favours
the recommendation to keep using the mean density as a clas-
sical constraint. Moreover, we observed drifts with some of the
models that included the radial frequency of lower order. In these
cases, we did not include this constraint, which resulted in ridges
whose position is slightly less well reproduced. For the model of
16 Cyg A that treats the mean density as a seismic constraint,
the estimated mass was too low and incompatible with the litera-
ture (see e.g., Buldgen et al. 2022b) or the other set of constraints
that we tested. Even though the diagnostic plots did not show any
issues, we consider this result unreliable and probably due to an
undetected shift during the minimisation linked with the lowest-
order radial frequency. These drifts are a recurrent disadvantage
of including the lowest-order radial frequency in the constraints.
Even when we assume a more conservative uncertainty on this
quantity, it does not prevent these drifts from occurring, and if
the uncertainty is too large, it no longer constrains the position of
the ridges. From the perspective of a pipeline, we do not recom-
mend to use this quantity. The drifts must be detected manually,
and this is sometimes difficult even for an experienced modeller.
In addition, even though the inverted mean density may lead to
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Table 7. Observational constraints for the second category of LEGACY targets.

KIC Nickname Teff [Fe/H] L νmax References
(K) (dex) (L�) (µHz)

6116048 Nunny 6033 ± 100 −0.23 ± 0.10 1.85 ± 0.07 2126.9 ± 5.3 1
6225718 Saxo2 6203 ± 100 −0.17 ± 0.10 2.13 ± 0.08 2364.2 ± 4.8 2
8006161 Doris 5488 ± 100 0.34 ± 0.10 0.69 ± 0.03 3574.7 ± 11.0 1
8379927 Arthur 6067 ± 150 −0.10 ± 0.15 – 2795.3 ± 6.0 3
9139151 Carlsberg 6043 ± 100 0.05 ± 0.10 1.60 ± 0.06 2690.4 ± 11.8 2
10454113 Pinocha 6177 ± 100 −0.07 ± 0.10 – 2357.2 ± 8.7 1
12009504 Dushera 6179 ± 100 −0.08 ± 0.10 2.70 ± 0.11 1865.6 ± 7.0 1
12258514 Barney 5964 ± 60 0.00 ± 0.10 2.95 ± 0.11 1512.7 ± 3.1 1

Notes. (1) Lund et al. (2017); (2) frequencies and νmax from Lund et al. (2017), Teff and [Fe/H] from Furlan et al. (2018); (3) frequencies from
Roxburgh (2017), Teff , [Fe/H], and νmax from Lund et al. (2017). The luminosity L is estimated using the spectroscopic parameters and Eq. (13).
For Arthur, the RUWE Gaia indicator flags the parallax measurement as unreliable, and for Pinocha, the Ks-magnitude measurement is unreliable.
Therefore, we could not estimate the absolute luminosity of these two targets reliably.
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Fig. 7. MCMC results for the LEGACY targets, using different prescriptions of the surface effects described in Table 3. The runs with convergence
issues were manually discarded. The modelling of Barney was more challenging, and MCMC runs converged successfully only with the BG2
surface effect prescription. For each target, three sets of classical constraints were considered: set 1 (bottom line), set 2 (middle line), and set 3
(upper line). The grey boxes represent the observational constraints.

an imperfect anchoring of the frequency ridges, it mostly occurs
for the most complicated cases, and the resulting slight bias on
the stellar parameters is less significant than the bias due to a
drift of the walkers.

4.3. Comparison and discussion

In Fig. 8 we compare the results between the fit of the indi-
vidual frequencies, the fit of the frequency separation ratios,
and the literature (Silva Aguirre et al. 2015, 2017; Farnir et al.
2020). For the individual frequencies, we selected the models
that include the absolute luminosity in the constraints, except
for Arthur, Doris, and Pinocha. For these targets, the luminosity

estimated with Eq. (13) is considered unreliable, and we selected
models that constrain the frequency of the maximum power νmax
instead. For the fit of the ratios, we selected the models treating
the mean density as a classical constraint, and the literature val-
ues come from Farnir et al. (2020) for 16 Cyg A and B, and from
the YMCM algorithm (Silva Aguirre et al. 2015, 2017) other-
wise. We note that Silva Aguirre et al. (2017) used older refer-
ences for some of the physical ingredients, in particular, they
used the GS98 abundances (Grevesse & Sauval 1998) and the
nuclear rates from Adelberger et al. (1998). Hence, although our
results are consistent with the literature, we can observe some
slight differences that are due the differences in the physics of
the models. In addition, as with the Sonoi et al. (2015) targets,

A10, page 11 of 26



Bétrisey, J., et al.: A&A 676, A10 (2023)

Table 8. Precision of the stellar parameters by fitting the frequency separation ratios for our selection of LEGACY targets.

List of Stellar mass Stellar radius Stellar age

constraints no ρ̄inv no corr. incl. corr. no ρ̄inv no corr. incl. corr. no ρ̄inv no corr. incl. corr.

16 Cyg A
[Fe/H],Teff ,R, r02, νnmin,l=0 2.7% 2.7% 0.9% 0.9% 0.9% 0.3% 1.6% 1.5% 1.3%
[Fe/H],Teff ,R, r01, r02 2.4% 0.8% 0.5% 1.6% 0.4% 0.2% 1.4% 1.4% 1.4%

16 Cyg B
[Fe/H],Teff ,R, r02, νnmin,l=0 2.4% 2.4% 2.4% 0.8% 0.8% 0.8% 1.8% 1.6% 1.4%

Arthur
[Fe/H],Teff , L, r01, r02, νnmin,l=0 3.1% 2.5% 2.9% 1.2% 1.0% 1.1% 7.5% 5.8% 6.3%

Barney
[Fe/H],Teff , L, r01, r02 2.1% 1.1% 1.1% 1.9% 0.5% 0.4% 5.6% 4.3% 3.8%

Carlsberg
[Fe/H],Teff , L, r01, r02, νnmin,l=0 2.8% 2.5% 2.3% 1.0% 0.9% 0.9% 7.2% 6.6% 6.6%
[Fe/H],Teff , L, r01, r02 3.7% 2.6% 2.8% 2.3% 0.9% 1.0% 6.8% 6.7% 6.9%

Doris
[Fe/H],Teff , L, r01, r02 1.0% 0.7% 0.7% 1.5% 0.3% 0.2% 2.5% 2.2% 2.2%

Dushera
[Fe/H],Teff , L, r01, r02, νnmin,l=0 2.3% 2.4% 1.8% 0.8% 0.8% 0.7% 7.2% 5.5% 4.0%

Nunny
[Fe/H],Teff , L, r01, r02, νnmin,l=0 1.0% 1.0% 1.0% 0.4% 0.4% 0.4% 4.6% 3.4% 3.0%

Pinocha
[Fe/H],Teff , L, r01, r02, νnmin,l=0 2.5% 2.2% 2.3% 1.0% 0.8% 0.9% 8.0% 7.8% 7.9%

Saxo2
[Fe/H],Teff , L, r01, r02, νnmin,l=0 1.7% 1.5% 1.8% 0.7% 0.6% 0.7% 4.9% 3.3% 4.7%
[Fe/H],Teff , L, r01, r02 2.7% 1.7% 1.8% 1.9% 0.6% 0.8% 6.6% 3.6% 5.1%

Notes. We considered three prescriptions to include the inverted mean density in the constraints: not including it (no ρ̄inv), including it as a classical
constraint (no corr.), or including it as a seismic constraint to account for the correlations with the ratios (incl. corr.).

the fit of the individual frequencies tends to overestimate the sta-
tistical precision of the stellar parameters. Finally, we note that
we provide in Table C.1 the optimal stellar parameters of the
LEGACY targets studied.

5. Conclusions

We introduced in Sect. 2 a new high-resolution grid of stellar
models of main-sequence stars with solar masses between 0.8
and 1.6. Then, in Sect. 3, we presented two modelling strategies
that focus on a direct exploitation of the seismic information.
We discussed the issues occurring with a fit of the individual fre-
quencies, and presented a more elaborate modelling technique
that combines mean density inversions and a fit of the frequency
separation ratios to damp the surface effects and provide pre-
cisely and accurately constrained stellar parameters. We also dis-
cussed and compared three options to include the inverted mean
density in the constraints. In Sect. 3 we applied the two mod-
elling strategies to six synthetic targets from Sonoi et al. (2015),
but including a consistent treatment of non-adiabatic effects, and
in Sect. 4, we conducted the same tests on a sample of ten Kepler
LEGACY targets.

The current treatment of the surface effects with semi-
empirical prescriptions constitutes an important limiting factor
in terms of precision, accuracy, and numerical cost. This corrob-
orates what was observed in previous studies for other targets
(Ball & Gizon 2017; Nsamba et al. 2018; Jørgensen et al. 2020,
2021). The procedure that combines the mean density inversion

and the ratios can significantly improve the precision and accu-
racy of the stellar parameters, especially the mass and the radius,
but would benefit from an improvement in the understanding of
surface effects because it would allow us to further improve the
maximum precision and accuracy that can be achieved. We rec-
ommend to treat the inverted mean density as a classical con-
straint and to assume a conservative precision. Further studies
of benchmark targets would be welcomed to refine this conser-
vative precision in certain mass ranges and to test whether and
how it is impacted by the chemical composition and overshoot-
ing. The treatment of the inverted mean density as a seismic con-
straint to account for the correlations with the ratios achieves a
comparable precision, but in a less stable manner, and it is there-
fore less strongly recommended.

We placed this work in the context of PLATO and showed
that it was possible to obtain stellar parameters that are pre-
cise enough to meet the PLATO precision requirements for
ten Kepler LEGACY targets by using the mean density inver-
sions (see Table 8). The numerical cost of the procedure will
be challenging for a pipeline. The first step consists of fitting
the individual frequencies, thus obtaining a reference model for
the mean density inversion in order to circumvent the surface
effects. In addition to a better understanding of these effects,
PLATO would also benefit from a thorough characterisation of
the systematics that are due to the choice of the physical ingre-
dients because it also impacts the maximum precision that can
be achieved for the stellar parameters (see e.g., Bétrisey et al.
2022). Finally, we recommend using the following set of
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Fig. 8. Comparison between the results of the modelling strategy that fits individual frequencies (blue), the modelling strategy that fits frequency
separations ratios and the inverted mean density (orange), and the literature (brown and green). The grey boxes represent the observational
constraints.

constraints if used in a pipeline: r01, r02, [Fe/H], Teff , L if reli-
able, and ρ̄inv. This was the most robust set, and the benefits from
the radial frequency of lowest order are too small in comparison
to the biases that it may introduce.
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Appendix A: Mean density inversion. Numerical
treatment and interpretation of the results

For a more complete description of inversions, we refer to
Reese et al. (2012), Bétrisey et al. (2022), Bétrisey & Buldgen
(2022), or Buldgen et al. (2022a). The mean density inversion
used in this work is based on the structure inversion equation,
which directly relates the frequency perturbation to the structural
perturbation (Dziembowski et al. 1990),

δνn,l

νn,l =

∫ R

0
Kn,l
ρ,Γ1

δρ

ρ
dr +

∫ R

0
Kn,l

Γ1,ρ

δΓ1

Γ1
dr + O(δ2), (A.1)

where ν is the oscillation frequency, ρ is the density,
Γ1 =

(
∂ ln P
∂ ln ρ

)
ad

is the first adiabatic exponent, P is the pressure,

and Kn,l
ρ,Γ1

and Kn,l
Γ1,ρ

the corresponding structural kernels. We used
the definition

δx
x

=
xobs − xref

xref
, (A.2)

where ‘ref’ stands for reference and ‘obs’ stands for observed.
For a mean density inversion, the idea is then to combine the
equations (A.1) to compute a correction of the mean density
of the reference model based on the observed frequency differ-
ences. In practice, the following cost function is minimised:

Jρ̄(ci) =

∫ 1

0

(
Kavg − Tρ̄

)2dx + β

∫ 1

0
K2

crossdx + λ

2 −∑
i

ci


+ tan θ

∑
i(ciσi)2

〈σ2〉
+ FSurf(ν), (A.3)

where x = r/R, and the averaging kernelKavg and the cross-term
kernel Kcross are related to the structural kernels,

Kavg =
∑

i

ciKi
ρ,Γ1

(A.4)

Kcross =
∑

i

ciKi
Γ1,ρ

. (A.5)

The balance between the amplitudes of the different terms dur-
ing the fitting is adjusted with trade-off parameters, β and θ. The
idea is to obtain a good fit of the target function, in our case,
Tρ̄(x) = 4πx2 ρ

ρR
with ρR = M

R3 , while reducing the contribution
from the cross-term and of the observational errors on the indi-
vidual frequencies σi. An accurate inversion result is ensured
by a good fit of the target function by the averaging kernel. In
addition, we defined 〈σ2〉 =

∑N
i σ

2
i , where N is the number of

observed frequencies. The λ symbol is a Lagrange multiplier,
and the coefficients ci are the inversion coefficients. The surface
term is denoted by FSurf(ν) and is implemented using Eq. (5) for
the Ball & Gizon (2014) prescription and the linearised version
of Eq. (6) for the Sonoi et al. (2015) prescription.

The first term in Eq. (A.3) is the main term, the equivalent of
the usual least-squares term in other minimisations techniques.
The second term is related to the second structural variable. The
structural kernels are based on a structural pair, while we are
only interested in one of the variables, in our case, the density.
Hence, the idea is to ensure that the contribution of this cross
term is as small as possible. The third term is a normalisation
term to ensure that the coefficients give the correct result for a
homologous transformation, and the fourth term accounts for
the observational uncertainty. For the cross term, the idea is to
ensure that its contribution is as small as possible. Finally, the

last term should be treated with caution because it allows us to
take the surface effects into account, but at the expense of the
fit of the target function. Asteroseismology works with a limited
number of frequencies (about 50 for high-quality targets) com-
pared to helioseismology (a few thousand targets). Hence, the
seismic information may be completely used by the additional
free variables introduced with the surface term, and no struc-
tural differences can be extracted by the inversion. In this case,
the target function is poorly reproduced by the averaging kernel,
and the inversion coefficients tend to take high amplitudes with
large variations between two consecutive coefficients. The target
function is also poorly reproduced when the data quality is low,
either due to high observational uncertainties or because too few
frequencies are observed.

Hence, verifying how the target function is reproduced by
the averaging kernels constitutes a good visual test to assess
how the inversion behaves. In an effort of automation, we might
be tempted to assess the quality of the inversion with the L2
norm similarly to Backus & Gilbert (1968), Backus & Gilbert
(1970), Pijpers & Thompson (1994), Rabello-Soares et al.
(1999), Reese et al. (2012), or Buldgen et al. (2015a),

||Kavg||
2
2 =

∫ R

0

(
Kavg − Tρ̄

)2
dr. (A.6)

However, this approach can only be trusted for inversions with
reference models that have a target function with a similar ampli-
tude. This condition was fulfilled in the papers that we quoted,
but in our study, we analysed targets that are spread across a
wide mass span. The amplitudes of the target functions are there-
fore not comparable (see e.g. Fig. A.1a and Fig. A.1d), and the
absolute value of the L2 norm cannot be used as a quality indi-
cator of the inversion. Hence, we constructed a new test based
on the inversion coefficients. When the inversion behaves opti-
mally, the coefficients form smooth structures, as illustrated in
Fig. A.1a. Hence, the autocorrelation of the coefficients is rele-
vant because an instability in the inversion tends to destroy these
structures. In these conditions, the coefficients seem to be dis-
tributed more randomly. To measure the autocorrelation, we pro-
duced the lag plot of the coefficients (with lag = 1), where the
coefficients present a linear correlation, as illustrated in the third
column of Fig. A.1. Physically, we interpret this behaviour as
a consequence of the incomplete independence of the frequen-
cies. The frequencies follow an asymptotic behaviour within the
same harmonic degree, which implies that the seismic infor-
mation contained in the frequencies may be redundant. This
affects the inversion, which selects some of the same seismic
information in multiple frequencies, thus generating the smooth
structures in the inversion coefficients. The linear correlation of
the coefficients observed with the lag plot is likely related to
the linear formalism at the basis of the inversion. To quantify
the degree of instability of the inversion, we used the Pearson
correlation coefficient R, a low value that corresponds to a high
degree of instability. We identified three instability regimes, high
(R < 0.5), intermediate (0.5 < R < 0.75), and low (0.75 < R). If
R < 0.5, further investigations are required. The boundaries of
the different regimes are empirical and were determined based
on our limited sample of 16 targets, on the analysis of the aver-
aging kernels, on the lag plots, and on our experience of inver-
sions. We also point out that these regimes were identified for
mean density inversions and that further investigations should
be conducted for other types of inversions. From a pipeline per-
spective, we recommend to define a unique threshold, however,
below which we reject the result of the inversion, in our case, at
R ∼ 0.6, and refine this threshold with a larger statistics.
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(d) Averaging kernel of model E

Radial order
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
A
m

pl
it
ud

e
of

in
ve

rs
io

n
co

effi
ci

en
ts

l = 0 l = 1 l = 2

(e) Inversion coefficients of model E
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(f) Lag plot of inversion coefficients of model E
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(g) Averaging kernel of model B
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(h) Inversion coefficients of model B
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(i) Lag plot of inversion coefficients of model B
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(j) Averaging kernel of Saxo2
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(k) Inversion coefficients of Saxo2
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(m) Averaging kernel of Dushera
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Fig. A.1. Comparison of the averaging kernels (left column), inversion coefficients (middle column), and lag plots (right column) of models A,
E and B, Saxo2, and Dushera by considering different implementations for the surface effects in the inversion. The surface effects are neglected
(orange; NoS), the surface effects are treated as free variables in the inversion in InversionKit (green and blue; IK), with the BG2 and S2 prescrip-
tions, respectively, and the frequencies are corrected before the inversion with the optimized coefficients from AIMS (red).
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Fig. A.2. Inversion coefficients of the models of Kepler-93 from
Bétrisey et al. (2022), for which various physical ingredients were
considered. The differences between the coefficients of the different
models are very small. Hence, the lines in this figure are nearly-
indistinguishable.

In Fig. A.1 we illustrate models that are representative of
the different instability regimes. The three first rows correspond
to results for synthetic models, that is, models A, E, and B,
while the last two rows corresponds to LEGACY targets, that
is, Saxo2 and Dushera. Model A and Saxo2 are representative
of a robust inversion. The instability is low and the target func-
tion is well reproduced, regardless of the surface prescription
we considered. Model E is representative of an inversion in the
intermediate regime. The target function is less well reproduced,
especially at the surface, but the main features of the central
regions are still captured by the inversion. We note that the S2
prescription is more unstable than the BG2 prescription. Finally,
model B and Dushera are representative of high-instability inver-
sions. The target function is poorly reproduced, the central fea-
tures are missed, and the amplitude of the averaging kernel
diverges at the surface. In the lag plot, the coefficients that
include surface effects (in green) are significantly different from
the coefficients that do not include them (in orange). In these
conditions, the inversion could not see the structural differences
and therefore did not correct the reference mean density. Hence,
using the results of an unstable inversion amounts to admitting
that the mean density of the reference model is robust, which is
a reasonable assumption because it comes from an MCMC run
in a grid. However, some caution should be considered because
an unstable inversion can also provide a non-negligible correc-
tion of the mean density, which would in that case be a numer-
ical artefact resulting from the poor fit of the target function by
the averaging kernel. In our study, we identified four targets in
the high-instability regime, models B, D, F, and Dushera, and a
numerical artefact only affected the results of model F. To test
the impact of using inversion coefficients in the high-instability
regime, we did not discard these targets, and we point out that
the conservative precision that we adopted when treating the
inverted mean density as a classical constraint accounts, at least
partially, for this kind of systematics.

In Fig. A.2 we show the inversion coefficients of the mod-
els of Kepler-93 from Bétrisey et al. (2022), which include dif-
ferent sets of physical ingredients. Changing the physics slightly
shifts the position of the global minimum in the parameter space.
Hence, these models generate a scatter of similar models in a
confined region of the parameter space. The MCMC generates
a scatter of similar models in a confined region of the parame-
ter space with a random walk algorithm. Although the form of
the scatter is different in these two cases, the assumption of con-

Table A.1. Approximate and exact correlations between the inverted
mean density and the r02 ratios for the toy model.

n corrapprox
ρ̄inv,r02(n) correxact

ρ̄inv,r02(n)

11 0.111971 0.112293
12 0.075914 0.076130
13 0.072055 0.072263
14 0.047814 0.047955
15 0.009646 0.009666
16 -0.004499 -0.004491
17 -0.026609 -0.026703
18 -0.032226 -0.032323
19 -0.064974 -0.065117
20 -0.075464 -0.075570
21 -0.085204 -0.085319
22 -0.098082 -0.098188
23 -0.073656 -0.073620
24 -0.069512 -0.069540
25 -0.052201 -0.052204
26 -0.021957 -0.021940
27 -0.017685 -0.017678
28 -0.013870 -0.013856
29 -0.005165 -0.005139
30 0.003003 0.002978
31 0.009338 0.009505
32 0.004755 0.004769

Notes. The toy model is model S from Christensen-Dalsgaard et al.
(1996), and the observational data are from Lazrek et al. (1997).

stant coefficients only requires the models to be similar enough
in the parameter space to be valid. As illustrated in Fig. A.2,
the variations between the coefficients of Kepler-93 are negli-
gible. It is therefore reasonable to assume constant coefficients
for all the MCMC steps. In Table A.1 we show the exact and
approximated correlations of the toy model, computed with Eqs.
(9) and (10), respectively. The differences are very small, about
0.3% on average, and are therefore negligible compared to other
sources of uncertainty. If the set of constraints is changed, it
would invalidate our assumption. A different frequency set, even
by removing or adding only one frequency, would significantly
change the inversion coefficients. This could occur when one
of the observed frequencies is not in some of the precomputed
frequency sets of the grid. To avoid this issue, we computed
extended frequency ranges in our grid, including low- and high-
order modes that are currently not observable.

Appendix B: Supplementary data for the targets of
Sonoi et al. (2015)

In Figs. B.1 and B.2 we show how the non-adiabatic effects
impact the individual frequencies. The adiabatic part of the fre-
quencies comes from a 3D simulation of the upper stellar layers
patching a 1D model. For the solar model (model A), the non-
adiabatic correction estimated by MAD is small, of the order of
a few µHz, while for model B, which is a higher-mass star, the
impact is significant, up to 20 µHz for the highest-order frequen-
cies. Models C, D, E, and F have corrections with magnitudes
similar to model B. For all the models, the non-adiabatic cor-
rection is significantly larger than the observational uncertain-
ties, up to more than an order of magnitude larger in the most
extreme cases. We verified that the large separation was correctly
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Fig. B.1. Impact of the non-adiabatic effects on the individual frequen-
cies of model A.
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Fig. B.2. Impact of the non-adiabatic effects on the individual frequen-
cies of model B.

estimated by the non-adiabatic oscillation code. Whether correc-
tions as large as this are physically realistic is beyond the scope
of this study and would require further investigations.

In Fig. B.3 we show an illustration of an imperfect anchor-
ing. In this example, the inverted mean density was part of the
constraints, but proved to be insufficient to perfectly anchor the
frequency ridges. This offset in the échelle diagram implies that
the stellar parameters are slightly biased. In this example, the
offset is small, and the stellar parameters are therefore not sig-
nificantly affected. We note that adding the frequency of the low-
est radial order in this case leads to walker drifts that were more
problematic than the imperfect anchoring.

In Fig. B.4 we show the impact of different surface effect pre-
scriptions on the mean density. Theoretically, the mean density
should not be affected, regardless of the prescription. In prac-
tice, however, the choice of the prescription affects the modelled
frequencies and therefore the large separation and the mean den-
sity. When the mean density is poorly reproduced, it implies that
the underlying surface effects prescription performs poorly. For
this test, we considered two sets of frequencies by including the
non-adiabatic correction (labelled ‘nad’) or excluding it (labelled
‘ad’). For each frequency set, we considered the following ways
of determining the mean density:
1. The BG2 prescription, whose coefficients are optimised with

AIMS by fitting the individual frequencies (green).
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Fig. B.3. Illustration of an imperfect anchoring of the frequency ridges.
The observed frequencies are shown in red. The cyan frequencies cor-
respond to the model based on the median of the posterior distributions
of the MCMC run, and the orange model shows the best MCMC model,
which minimises the χ2.

2. The BG2 prescription, whose coefficients are optimised
within the mean density inversion (blue).

3. The BG2 prescription, whose coefficients are optimised with
AIMS by fitting the individual frequencies, and a mean den-
sity inversion is conducted based on the relative difference
between the corrected frequencies and the observed frequen-
cies (orange).

4. The S2 prescription, whose coefficients are optimised within
the mean density inversion (red).

5. The S2 prescription, whose coefficients are derived with the
scaling relations of Sonoi et al. (2015; Eqs. 10 and 11). The
individual frequencies from the reference models were cor-
rected before the mean density inversion was carried out.

6. Damping surface effects with AIMS by fitting frequency sep-
aration ratios and treating the inverted mean density as a clas-
sical constraint (purple).

7. Damping surface effects with AIMS by fitting frequency sep-
aration ratios and treating the inverted mean density as a seis-
mic constraint (brown).
The synthetic targets fall into four categories. The first cat-

egory is composed of model A, where all the estimated mean
densities are consistent. They all fall within ∼ 0.2%, which is
the precision that we would expect for this type of star (model
A is similar to Kepler-93; Bétrisey et al. 2022). The mean den-
sity obtained with the fit of the individual frequencies is already
very accurate and the inversion confirms this value, as well as
the fit of the ratios. There is no significant difference when
the non-adiabatic effects are included or excluded. The second
category is composed of models E and F. These models have
consistent mean densities when the non-adiabatic effects are
included or excluded. The dispersion of the mean densities is
larger than what we would expect for an actual observed tar-
get. This raises the question to which extend synthetic mod-
els are representative of actual observed targets, and it ques-
tions the performance of the 3D patching. The third category
is composed of models B and D. There is a significant difference
when the non-adiabatic effects are included or excluded. We
interpret this difference as an indication that the non-adiabatic
correction is incompatible with the surface effect prescriptions.
These results are expected because these prescriptions were not
designed to describe corrections as strong as the one predicted
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Fig. B.4. Mean density of the Sonoi et al. (2015) targets estimated using different techniques to account for the surface effects or damp them.
The dashed and dot-dashed black lines correspond to the mean density of the reference model with and without the non-adiabatic correction,
respectively. The exact mean density is shown by the solid black line. Each panel is divided into two parts, separated by a solid grey line. The
lower part shows the results using the frequencies that include the non-adiabatic correction (labelled nad), and the upper part is based on the
frequencies that do not include this correction (labelled ad). For model C, there are no ad results because the MCMC that provides the reference
model did not converge successfully with this set of frequencies.

by the non-adiabatic effects. Further investigations and statistics
are required to test whether the limitations lie in the formalism
of the non-adiabatic effects, in the surface effect prescriptions,
or in both of them. The last category is composed of model
C. The MCMC of fitting the individual frequencies excluding
the non-adiabatic correction failed to converge because it hit
the grid boundaries. This behaviour was unexpected because the
actual stellar parameters of model C should fall within the grid,
which raises the question whether there is an issue with the 3D
patching. This issue could also originate from differences in the
physical ingredients, especially in the mixing-length parameter.
Finally, we point out that the fitting frequency separation ratios
efficiently damp these issues, as shown by the purple and brown
results.

The surface effects can directly be accounted for in the inver-
sion or by correcting the frequencies before carrying out the
inversion. Both versions performed equivalently with the BG2
prescription, but not with the S2 prescription. This latter per-
forms poorly with the pre-corrected frequencies because it sig-
nificantly overestimated the frequencies differences, resulting in a
shift towards the left in the HR diagram, which is then interpreted
by the inversion as a reference mean density that is too small. The
inversion therefore wrongly corrected the model towards a higher
mean density. Accounting for the S2 prescription directly in the
inversion also performs poorly. The inversion cannot robustly
determine the prescription coefficients, and a non-negligible cor-
rection would be the result of the poor fit of the target function
and not of a difference in the physical structure.
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Appendix C: Supplementary data for the LEGACY targets

Table C.1. Stellar parameters of the targets selected from the LEGACY sample.

M R Age ρ̄ Y Z Teff L νmax
(M�) (R�) (Myr) (g/cm3) (%) (%) (K) (L�) (µHz)

16 Cyg A 1.08 ± 0.03 1.226 ± 0.011 7079 ± 109 0.824 ± 0.001 0.26 ± 0.02 0.019 ± 0.001 5827 ± 21 1.56 ± 0.01 2203.9 ± 22.6
16 Cyg B 1.01 ± 0.02 1.105 ± 0.009 7057 ± 111 1.057 ± 0.001 0.27 ± 0.02 0.017 ± 0.001 5788 ± 27 1.23 ± 0.01 2555.2 ± 24.5
Arthur 1.21 ± 0.03 1.154 ± 0.011 1545 ± 90 1.115 ± 0.004 0.24 ± 0.01 0.018 ± 0.003 6065 ± 62 1.62 ± 0.04 2750.7 ± 29.7
Barney 1.27 ± 0.01 1.610 ± 0.007 4059 ± 176 0.429 ± 0.003 0.30 ± 0.02 0.027 ± 0.002 5985 ± 17 3.00 ± 0.04 1487.3 ± 7.7
Carlsberg 1.21 ± 0.03 1.170 ± 0.011 2076 ± 138 1.065 ± 0.003 0.24 ± 0.02 0.019 ± 0.002 6050 ± 47 1.65 ± 0.03 2668.1 ± 27.5
Doris 1.01 ± 0.01 0.936 ± 0.003 5617 ± 125 1.728 ± 0.011 0.26 ± 0.00 0.030 ± 0.002 5237 ± 31 0.59 ± 0.01 3726.0 ± 24.5
Dushera 1.21 ± 0.03 1.417 ± 0.012 3516 ± 192 0.600 ± 0.002 0.28 ± 0.02 0.019 ± 0.002 6170 ± 32 2.62 ± 0.05 1802.1 ± 14.6
Nunny 1.06 ± 0.01 1.240 ± 0.004 5847 ± 201 0.783 ± 0.001 0.26 ± 0.01 0.012 ± 0.001 6058 ± 17 1.87 ± 0.02 2079.3 ± 7.9
Pinocha 1.33 ± 0.03 1.299 ± 0.010 1599 ± 125 0.855 ± 0.004 0.24 ± 0.01 0.022 ± 0.003 6197 ± 47 2.24 ± 0.04 2349.1 ± 22.3
Saxo2 1.25 ± 0.02 1.268 ± 0.008 2457 ± 80 0.864 ± 0.003 0.24 ± 0.01 0.018 ± 0.002 6174 ± 34 2.10 ± 0.03 2323.6 ± 14.3

Notes. These are the results of the fit of the frequency separation ratios, the classical constraints (metallicity and effective temperature for all the
targets, and the luminosity except for Arthur, Doris, and Pinocha), and the inverted mean density treated as a classical constraint.

In Table C.1 we provide the optimal stellar parameters of our
subsample of LEGACY targets, determined with the procedure
that couples the mean density inversions and frequency separa-
tion ratios. For these fits, we treated the inverted mean density as
a classical constraint.

Appendix D: Supplementary diagnostic plots for
AIMS convergence

In Fig. D.1 we show an illustration of the diagnostic plots
of a successful convergence with AIMS. The échelle dia-
gram is consistent and the temporal evolution of the walk-
ers is flat, indicating that the burn-in phase was success-
ful and that the walkers reached the global minimum in
the parameter space. The triangle plot of the radius and
optimised variables (mass, chemical composition, and age)
is consistent and the posterior distributions show uni-modal
distributions, which shows that the MCMC found the global
minimum.

In Fig. D.2 we show an illustration of an unsuccessful con-
vergence due to a drift of the walkers during the iterations of the
MCMC. This issue means that the MCMC is still in the burn-in
phase.

In Fig. D.3 we show an illustration of an unsuccessful con-
vergence due to an issue that occurred while we tried to fit the
lowest-order radial frequency. The MCMC sees a second suspi-

cious local minimum and traps the walkers in it, thus biasing the
stellar parameters.

In Fig. D.4 we show an illustration of an unsuccessful con-
vergence due to walkers hitting the grid boundaries during the
minimisation. This is the main issue we encountered in our
study. Histograms with sharp features are not necessarily a sign
that the grid is too small. It can indicate that there are significant
physical differences between the grid models and the observed
target, and that the MCMC is trying to compensate for this with
the free variables at its disposal. A typical indicator of this issue
is an excessively high metallicity.

In Fig. D.5 we show an illustration of an unsuccessful con-
vergence due to excessively peaked posterior distributions. This
issue is slightly tricky because excessively peaked posterior dis-
tributions do not necessarily imply that the minimisation failed.
However, it questions whether the interpolation was successful.
In this illustration, the posterior distributions are multi-modal,
indicating that the walkers were stuck on grid points and that the
interpolation was unsuccessful.

In Fig. D.6 we show an illustration of an unsuccessful con-
vergence due to the surface prescription. In this case, the BG1
prescription was used. This prescription is known to have dif-
ficulties in reproducing the high frequencies, which is what we
observe in the illustration. Although the other diagnostic plots
do not show irregularities, the fact that the prescription fails to
reproduce the high frequencies can significantly bias the stellar
parameters.
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Fig. D.1. Diagnostic plots of a MCMC run with successful convergence. The median parameters are denoted in cyan, and the best MCMC model,
for which the χ2 is lowest, is denoted in orange.
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Fig. D.2. Illustration of walkers drifting during the MCMC iterations. In this case, the walkers are still drifting after a burn-in of 2000 steps. The
median parameters are denoted in green, and the best MCMC model, for which the χ2 is lowest, is denoted in purple.
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Fig. D.3. Illustration of an issue that occurs while trying to fit the lowest -order radial frequency. The MCMC sees a second local minimum and
traps the walkers in it. The median parameters are denoted in cyan, and the best MCMC model, for which the χ2 is lowest, is denoted in orange.
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Fig. D.4. Illustration of a run that hit the grid boundaries. The median parameters are denoted in green, and the best MCMC model, for which the
χ2 is lowest, is denoted in purple.
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Fig. D.5. Illustration of a run with an excessively peaked posterior distribution. The median parameters are denoted in green, and the best MCMC
model, for which the χ2 is lowest, is denoted in purple.
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Fig. D.6. Illustration of the difficulty with which the BG1 surface prescription reproduces the high frequencies. The median parameters are denoted
in green, and the best MCMC model, for which the χ2 is lowest, is denoted in purple.
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