[en] Thoroughbred (TB) racehorses undergo rigorous conditioning programs to optimize their physical and mental capabilities through varied exercise sessions. While conventional investigations focus on limited hematological and biochemical parameters, this field study employed untargeted metabolomics to comprehensively assess metabolic responses triggered by exercise sessions routinely used in TB conditioning. Blood samples were collected pre- and post-exercise from ten racehorses, divided into two groups based on exercise intensity: high intensity (n = 6, gallop at ± 13.38 m/s, 1400 m) and moderate intensity (n =4, soft canter at ± 7.63 m/s, 2500 m). Intensity was evaluated through monitoring of the speed, heart rate, and lactatemia. Resting and 30 min post-exercise plasma samples were analyzed using ultraperformance liquid chromatography coupled with high-resolution mass spectrometry. Unsupervised principal component analysis revealed exercise-induced metabolome changes, with high-intensity exercise inducing greater alterations. Following high-intensity exercise, 54 metabolites related to amino acid, fatty acid, nucleic acid, and vitamin metabolism were altered versus 23 metabolites, primarily linked to fatty acid and amino acid metabolism, following moderate-intensity exercise. Metabolomics confirmed energy metabolism changes reported by traditional biochemistry studies and highlighted the involvement of lipid and amino acid metabolism during routine exercise and recovery, aspects that had previously been overlooked in TB racehorses.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Bonhomme, Maëlle ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Patarin, Florence ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH)
Kruse, Caroline ; Université de Liège - ULiège > Département des sciences fonctionnelles (DSF) > Physiologie neuro-musculaire, de l'effort - Médecine sportive des animaux
François, Anne-Christine ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH)
Renaud, Benoît ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Couroucé, Anne; Equine Department, Oniris, National Vet School of Nantes, 101 Route de Gachet, 44300 Nantes, France ; UR 7450 Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France
Leleu, Claire; Equi-Test, La Lande, 53290 Grez-en-Bouère, France
Boemer, François ; Centre Hospitalier Universitaire de Liège - CHU > > Service de génétique
Toquet, Marie-Pierre; UR 7450 Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France ; LABÉO (Frank Duncombe), 1 Route de Rosel, 14280 Saint-Contest, France
Richard, Eric A.; UR 7450 Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France ; LABÉO (Frank Duncombe), 1 Route de Rosel, 14280 Saint-Contest, France
Seignot, Jérôme; Clinique Vétérinaire du Parc, 1 Avenue Malesherbes, 78600 Maisons-Laffitte, France
Wouters, Clovis ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
Votion, Dominique ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Médecine vétérinaire comparée
ULiège FSR - Université de Liège. Fonds spécial pour la recherche F.R.S.-FNRS - Fonds de la Recherche Scientifique IFCE - Institut Français du Cheval et de l'Équitation
Bower, M. A.; McGivney, B. A.; Campana, M. G.; Gu, J.; Andersson, L. S.; Barrett, E.; Davis, C. R.; Mikko, S.; Stock, F.; Voronkova, V.; Bradley, D. G.; Fahey, A. G.; Lindgren, G.; MacHugh, D. E.; Sulimova, G.; Hill, E. W. The Genetic Origin and History of Speed in the Thoroughbred Racehorse. Nat. Commun. 2012, 3 ( 1), 643, 10.1038/ncomms1644
France Galop . France Galop─Pour tout savoir sur les courses de galop en France. https://www.france-galop.com/fr (accessed June 08, 2023).
Davie, A. J. A Scientific Approach to Training Thoroughbreds. In Management of Lameness Causes in Sport Horses; Lindner, A., Ed.; Wageningen Academic Publishers: The Netherlands, 2006; pp 69- 83.
Rogers, C. W.; Rivero, J. L. L.; van Breda, E.; Lindner, A.; Sloet van Oldruitenborgh-Oosterbaan, M. M. Describing Workload and Scientific Information on Conditioning Horses. Equine Comp. Exerc. Physiol. 2007, 4 ( 1), 1- 6, 10.1017/S1478061507727408
Eaton, M. D.; Evans, D. L.; Hodgson, D. R.; Rose, R. J. Maximal Accumulated Oxygen Deficit in Thoroughbred Horses. J. Appl. Physiol. 1995, 78, 1564- 1568, 10.1152/jappl.1995.78.4.1564
Rivero, J.-L. L. A Scientific Background for Skeletal Muscle Conditioning in Equine Practice. J. Vet. Med., A 2007, 54 ( 6), 321- 332, 10.1111/j.1439-0442.2007.00947.x
Votion, D. Metabolic Responses to Exercise and Training. Equine Sports Medicine and Surgery; Elsevier, 2014; pp 747- 767.
Harris, P. A.; Marlin, D. J.; Gray, J. Plasma Aspartate Aminotransferase and Creatine Kinase Activities in Thoroughbred Racehorses in Relation to Age, Sex, Exercise and Training. Vet. J. 1998, 155 ( 3), 295- 304, 10.1016/S1090-0233(05)80026-7
Kitaoka, Y.; Mukai, K.; Aida, H.; Hiraga, A.; Masuda, H.; Takemasa, T.; Hatta, H. Effects of High-Intensity Training on Lipid Metabolism in Thoroughbreds. Am. J. Vet. Res. 2012, 73 ( 11), 1813- 1818, 10.2460/ajvr.73.11.1813
Klein, D. J.; Anthony, T. G.; McKeever, K. H. Metabolomics in Equine Sport and Exercise. J. Anim. Physiol. Anim. Nutr. 2021, 105 ( 1), 140- 148, 10.1111/jpn.13384
Li, G.; Lee, P.; Mori, N.; Yamamoto, I.; Arai, T. Long Term Intensive Exercise Training Leads to a Higher Plasma Malate/Lactate Dehydrogenase (M/L) Ratio and Increased Level of Lipid Mobilization in Horses. Vet. Res. Commun. 2012, 36 ( 2), 149- 155, 10.1007/s11259-012-9515-0
Pösö, A. R.; Essen-Gustavsson, B.; Lindholm, A.; Persson, S. G. B. Exercise-Induced Changes in Muscle and Plasma Amino Acid Levels in the Standardbred Horse. Equine Exerc. Physiol. 1991, 3, 202
Sewell, D. A.; Harris, R. C. Adenine Nucleotide Degradation in the Thoroughbred Horse with Increasing Exercise Duration. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65 ( 3), 271- 277, 10.1007/BF00705093
Snow, D. H.; Mackenzie, G. Some Metabolic Effects of Maximal Exercise in the Horse and Adaptations with Training. Equine Vet. J. 1977, 9 ( 3), 134- 140, 10.1111/j.2042-3306.1977.tb04005.x
Westermann, C. M.; Dorland, B.; de Sain-van der Velden, M. G.; Wijnberg, I. D.; Van Breda, E.; De Graaf-Roelfsema, E.; Keizer, H. A.; Van der Kolk, J. H. Plasma Acylcarnitine and Fatty Acid Profiles during Exercise and Training in Standardbreds. Am. J. Vet. Res. 2008, 69 ( 11), 1469- 1475, 10.2460/ajvr.69.11.1469
Hollywood, K.; Brison, D. R.; Goodacre, R. Metabolomics: Current Technologies and Future Trends. Proteomics 2006, 6 ( 17), 4716- 4723, 10.1002/pmic.200600106
Schrimpe-Rutledge, A. C.; Codreanu, S. G.; Sherrod, S. D.; McLean, J. A. Untargeted Metabolomics Strategies─Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27 ( 12), 1897- 1905, 10.1007/s13361-016-1469-y
Chen, F.; Dai, X.; Zhou, C.-C.; Li, K.-X.; Zhang, Y.-J.; Lou, X.-Y.; Zhu, Y.-M.; Sun, Y.-L.; Peng, B.-X.; Cui, W. Integrated Analysis of the Faecal Metagenome and Serum Metabolome Reveals the Role of Gut Microbiome-Associated Metabolites in the Detection of Colorectal Cancer and Adenoma. Gut 2022, 71 ( 7), 1315- 1325, 10.1136/gutjnl-2020-323476
Hang, D.; Yang, X.; Lu, J.; Shen, C.; Dai, J.; Lu, X.; Jin, G.; Hu, Z.; Gu, D.; Ma, H.; Shen, H. Untargeted Plasma Metabolomics for Risk Prediction of Hepatocellular Carcinoma: A Prospective Study in Two Chinese Cohorts. Int. J. Cancer 2022, 151 ( 12), 2144- 2154, 10.1002/ijc.34229
Wei, Y.; Jasbi, P.; Shi, X.; Turner, C.; Hrovat, J.; Liu, L.; Rabena, Y.; Porter, P.; Gu, H. Early Breast Cancer Detection Using Untargeted and Targeted Metabolomics. J. Proteome Res. 2021, 20 ( 6), 3124- 3133, 10.1021/acs.jproteome.1c00019
Le Moyec, L.; Robert, C.; Triba, M. N.; Bouchemal, N.; Mach, N.; Rivière, J.; Zalachas-Rebours, E.; Barrey, E. A First Step Toward Unraveling the Energy Metabolism in Endurance Horses: Comparison of Plasma Nuclear Magnetic Resonance Metabolomic Profiles Before and After Different Endurance Race Distances. Front. Mol. Biosci. 2019, 6, 45, 10.3389/fmolb.2019.00045
Le Moyec, L.; Robert, C.; Triba, M. N.; Billat, V. L.; Mata, X.; Schibler, L.; Barrey, E. Protein Catabolism and High Lipid Metabolism Associated with Long-Distance Exercise Are Revealed by Plasma NMR Metabolomics in Endurance Horses. PLoS One 2014, 9 ( 3), e90730 10.1371/journal.pone.0090730
Luck, M.; Le Moyec, L.; Barrey, E.; Triba, M.; Bouchemal, N.; Savarin, P.; Robert, C. Energetics of Endurance Exercise in Young Horses Determined by Nuclear Magnetic Resonance Metabolomics. Front. Physiol. 2015, 6, 198, 10.3389/fphys.2015.00198
Mach, N.; Ramayo-Caldas, Y.; Clark, A.; Moroldo, M.; Robert, C.; Barrey, E.; López, J. M.; Le Moyec, L. Understanding the Response to Endurance Exercise Using a Systems Biology Approach: Combining Blood Metabolomics, Transcriptomics and miRNomics in Horses. BMC Genomics 2017, 18 ( 1), 187, 10.1186/s12864-017-3571-3
Halama, A.; Oliveira, J. M.; Filho, S. A.; Qasim, M.; Achkar, I. W.; Johnson, S.; Suhre, K.; Vinardell, T. Metabolic Predictors of Equine Performance in Endurance Racing. Metabolites 2021, 11 ( 2), 82, 10.3390/metabo11020082
Nolazco Sassot, L.; Villarino, N. F.; Dasgupta, N.; Morrison, J. J.; Bayly, W. M.; Gang, D.; Sanz, M. G. The Lipidome of Thoroughbred Racehorses before and after Supramaximal Exercise. Equine Vet. J. 2019, 51 ( 5), 696- 700, 10.1111/evj.13064
Jang, H.-J.; Kim, D.-M.; Kim, K.-B.; Park, J.-W.; Choi, J.-Y.; Oh, J. H.; Song, K.-D.; Kim, S.; Cho, B.-W. Analysis of Metabolomic Patterns in Thoroughbreds before and after Exercise. Asian-Australas. J. Anim. Sci. 2017, 30 ( 11), 1633- 1642, 10.5713/ajas.17.0167
Ohnuma, K.; Uchida, T.; Leung, G. N.-W.; Ueda, T.; Obara, T.; Ishii, H. Establishment of a Post-Race Biomarkers Database and Application of Pathway Analysis to Identify Potential Biomarkers in Post-Race Equine Plasma. Drug Test. Anal. 2022, 14 ( 5), 915- 928, 10.1002/dta.3041
Ueda, T.; Tozaki, T.; Nozawa, S.; Kinoshita, K.; Gawahara, H. Identification of Metabolomic Changes in Horse Plasma after Racing by Liquid Chromatography-High Resolution Mass Spectrometry as a Strategy for Doping Testing. J. Equine Sci. 2019, 30 ( 3), 55- 61, 10.1294/jes.30.55
Wang, T.; Zeng, Y.; Ma, C.; Meng, J.; Wang, J.; Ren, W.; Wang, C.; Yuan, X.; Yang, X.; Yao, X. Plasma Non-Targeted Metabolomics Analysis of Yili Horses Raced on Tracks With Different Surface Hardness. J. Equine Vet. Sci. 2023, 121, 104197, 10.1016/j.jevs.2022.104197
Henneke, D. R.; Potter, G. D.; Kreider, J. L.; Yeates, B. F. Relationship between Condition Score, Physical Measurements and Body Fat Percentage in Mares. Equine Vet. J. 1983, 15 ( 4), 371- 372, 10.1111/j.2042-3306.1983.tb01826.x
Wouters, C. P.; Toquet, M.-P.; Renaud, B.; François, A. C.; Fortier-Guillaume, J.; Marcillaud-Pitel, C.; Boemer, F.; De Tullio, P.; Richard, E. A.; Votion, D.-M. Metabolomic Signatures Discriminate Horses with Clinical Signs of Atypical Myopathy from Healthy Co-Grazing Horses. J. Proteome Res. 2021, 20 ( 10), 4681- 4692, 10.1021/acs.jproteome.1c00225
Giacomoni, F.; Le Corguillé, G.; Monsoor, M.; Landi, M.; Pericard, P.; Pétéra, M.; Duperier, C.; Tremblay-Franco, M.; Martin, J.-F.; Jacob, D.; Goulitquer, S.; Thévenot, E. A.; Caron, C. Workflow4Metabolomics: A Collaborative Research Infrastructure for Computational Metabolomics. Bioinformatics 2015, 31 ( 9), 1493- 1495, 10.1093/bioinformatics/btu813
Guitton, Y.; Tremblay-Franco, M.; Le Corguillé, G.; Martin, J.-F.; Pétéra, M.; Roger-Mele, P.; Delabrière, A.; Goulitquer, S.; Monsoor, M.; Duperier, C.; Canlet, C.; Servien, R.; Tardivel, P.; Caron, C.; Giacomoni, F.; Thévenot, E. A. Create, Run, Share, Publish, and Reference Your LC-MS, FIA-MS, GC-MS, and NMR Data Analysis Workflows with the Workflow4Metabolomics 3.0 Galaxy Online Infrastructure for Metabolomics. Int. J. Biochem. Cell Biol. 2017, 93, 89- 101, 10.1016/j.biocel.2017.07.002
Smith, C. A.; Want, E. J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78 ( 3), 779- 787, 10.1021/ac051437y
Dunn, W. B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J. D.; Halsall, A.; Haselden, J. N.; Nicholls, A. W.; Wilson, I. D.; Kell, D. B.; Goodacre, R. Procedures for Large-Scale Metabolic Profiling of Serum and Plasma Using Gas Chromatography and Liquid Chromatography Coupled to Mass Spectrometry. Nat. Protoc. 2011, 6 ( 7), 1060- 1083, 10.1038/nprot.2011.335
Do, K. T.; Wahl, S.; Raffler, J.; Molnos, S.; Laimighofer, M.; Adamski, J.; Suhre, K.; Strauch, K.; Peters, A.; Gieger, C.; Langenberg, C.; Stewart, I. D.; Theis, F. J.; Grallert, H.; Kastenmüller, G.; Krumsiek, J. Characterization of Missing Values in Untargeted MS-Based Metabolomics Data and Evaluation of Missing Data Handling Strategies. Metabolomics 2018, 14 ( 10), 128, 10.1007/s11306-018-1420-2
Kowarik, A.; Templ, M. Imputation with the R Package VIM. J. Stat. Software 2016, 74, 1- 16, 10.18637/jss.v074.i07
Liquet, B.; Cao, K.-A. L.; Hocini, H.; Thiébaut, R. A Novel Approach for Biomarker Selection and the Integration of Repeated Measures Experiments from Two Assays. BMC Bioinf. 2012, 13 ( 1), 325, 10.1186/1471-2105-13-325
Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K. A. mixOmics: An R Package for ‘omics Feature Selection and Multiple Data Integration. PLoS Comput. Biol. 2017, 13 ( 11), e1005752 10.1371/journal.pcbi.1005752
Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D. S.; Xia, J. MetaboAnalyst 4.0: Towards More Transparent and Integrative Metabolomics Analysis. Nucleic Acids Res. 2018, 46 ( W1), W486- W494, 10.1093/nar/gky310
Xia, J.; Wishart, D. S. Metabolomic Data Processing, Analysis, and Interpretation Using MetaboAnalyst. Curr. Protoc. Bioinf. 2011, 34 ( 1), 14.10.1- 14.10.48, 10.1002/0471250953.bi1410s34
Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. Roy. Stat. Soc. B 1995, 57 ( 1), 289- 300, 10.1111/j.2517-6161.1995.tb02031.x
Sumner, L. W.; Amberg, A.; Barrett, D.; Beale, M. H.; Beger, R.; Daykin, C. A.; Fan, T. W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J. L.; Hankemeier, T.; Hardy, N.; Harnly, J.; Higashi, R.; Kopka, J.; Lane, A. N.; Lindon, J. C.; Marriott, P.; Nicholls, A. W.; Reily, M. D.; Thaden, J. J.; Viant, M. R. Proposed Minimum Reporting Standards for Chemical Analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3 ( 3), 211- 221, 10.1007/s11306-007-0082-2
Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D. S. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminf. 2016, 8 ( 1), 61, 10.1186/s13321-016-0174-y
Wishart, D. S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B. L.; Berjanskii, M.; Mah, R.; Yamamoto, M.; Jovel, J.; Torres-Calzada, C.; Hiebert-Giesbrecht, M.; Lui, V. W.; Varshavi, D.; Varshavi, D.; Allen, D.; Arndt, D.; Khetarpal, N.; Sivakumaran, A.; Harford, K.; Sanford, S.; Yee, K.; Cao, X.; Budinski, Z.; Liigand, J.; Zhang, L.; Zheng, J.; Mandal, R.; Karu, N.; Dambrova, M.; Schiöth, H.; Greiner, R.; Gautam, V. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50 ( D1), D622- D631, 10.1093/nar/gkab1062
Piccione, G.; Arfuso, F.; Fazio, F.; Bazzano, M.; Giannetto, C. Serum Lipid Modification Related to Exercise and Polyunsaturated Fatty Acid Supplementation in Jumpers and Thoroughbred Horses. J. Equine Vet. Sci. 2014, 34 ( 10), 1181- 1187, 10.1016/j.jevs.2014.07.005
Pösö, A. R.; Viljanen-Tarifa, E.; Soveri, T.; Oksanen, H. E. Exercise-Induced Transient Hyperlipidemia in the Racehorse. J. Vet. Med., A 1989, 36 ( 1-10), 603- 611, 10.1111/j.1439-0442.1989.tb00771.x
Rist, M. J.; Roth, A.; Frommherz, L.; Weinert, C. H.; Krüger, R.; Merz, B.; Bunzel, D.; Mack, C.; Egert, B.; Bub, A.; Görling, B.; Tzvetkova, P.; Luy, B.; Hoffmann, I.; Kulling, S. E.; Watzl, B. Metabolite Patterns Predicting Sex and Age in Participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) Study. PLoS One 2017, 12 ( 8), e0183228 10.1371/journal.pone.0183228
Dallmann, R.; Viola, A. U.; Tarokh, L.; Cajochen, C.; Brown, S. A. The Human Circadian Metabolome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 ( 7), 2625- 2629, 10.1073/pnas.1114410109
Kim, K.; Mall, C.; Taylor, S. L.; Hitchcock, S.; Zhang, C.; Wettersten, H. I.; Jones, A. D.; Chapman, A.; Weiss, R. H. Mealtime, Temporal, and Daily Variability of the Human Urinary and Plasma Metabolomes in a Tightly Controlled Environment. PLoS One 2014, 9 ( 1), e86223 10.1371/journal.pone.0086223
Bae, H.; Lam, K.; Jang, C. Metabolic Flux between Organs Measured by Arteriovenous Metabolite Gradients. Exp. Mol. Med. 2022, 54 ( 9), 1354- 1366, 10.1038/s12276-022-00803-2
Essén-Gustavsson, B.; Ronéus, N.; Pösö, A. Metabolic Response in Skeletal Muscle Fibres of Standardbred Trotters after Racing. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 1997, 117 ( 3), 431- 436, 10.1016/S0305-0491(97)00140-5
Alberghina, D.; Piccione, G.; Amorini, A. M.; D’Urso, S.; Longo, S.; Picardi, M.; Tavazzi, B.; Lazzarino, G. Modulation of Circulating Purines and Pyrimidines by Physical Exercise in the Horse. Eur. J. Appl. Physiol. 2011, 111 ( 3), 549- 556, 10.1007/s00421-010-1673-6
Nikolaidis, M. G.; Mougios, V. Effects of Exercise on the Fatty-Acid Composition of Blood and Tissue Lipids. Sports Med. 2004, 34 ( 15), 1051- 1076, 10.2165/00007256-200434150-00004
Essén-gustavsson, B.; Jensen-Waern, M. Effect of an Endurance Race on Muscle Amino Acids, pro- and Macroglycogen and Triglycerides. Equine Vet. J. 2002, 34 ( S34), 209- 213, 10.1111/j.2042-3306.2002.tb05420.x
Hackl, S.; Van Den Hoven, R.; Zickl, M.; Spona, J.; Zentek, J. The Effects of Short Intensive Exercise on Plasma Free Amino Acids in Standardbred Trotters. J. Anim. Physiol. Anim. Nutr. 2009, 93 ( 2), 165- 173, 10.1111/j.1439-0396.2007.00801.x
Blomstrand, E.; Newsholme, E. A. Effect of Branched-Chain Amino Acid Supplementation on the Exercise-Induced Change in Aromatic Amino Acid Concentration in Human Muscle. Acta Physiol. Scand. 1992, 146 ( 3), 293- 298, 10.1111/j.1748-1716.1992.tb09422.x
Dunnett, M.; Harris, R. C. Influence of Oral SS-Alanine and L-Histidine Supplementation on the Carnosine Content of the Gluteus Medius. Equine Vet. J. 1999, 31 ( S30), 499- 504, 10.1111/j.2042-3306.1999.tb05273.x
Dunnett, M.; Harris, R. C.; Dunnett, C. E.; Harris, P. A. Plasma Carnosine Concentration: Diurnal Variation and Effects of Age, Exercise and Muscle Damage. Equine Vet. J. 2002, 34 ( S34), 283- 287, 10.1111/j.2042-3306.2002.tb05434.x
Yamano, S.; Eto, D.; Hiraga, A.; Miyata, H. Recruitment Pattern of Muscle Fibre Type during High Intensity Exercise (60-100% VO2max) in Thoroughbred Horses. Res. Vet. Sci. 2006, 80 ( 1), 109- 115, 10.1016/j.rvsc.2005.04.006
San-Millán, I.; Stefanoni, D.; Martinez, J. L.; Hansen, K. C.; D’Alessandro, A.; Nemkov, T. Metabolomics of Endurance Capacity in World Tour Professional Cyclists. Front. Physiol. 2020, 11, 578, 10.3389/fphys.2020.00578
Modoux, M.; Rolhion, N.; Mani, S.; Sokol, H. Tryptophan Metabolism as a Pharmacological Target. Trends Pharmacol. Sci. 2021, 42 ( 1), 60- 73, 10.1016/j.tips.2020.11.006
Staniszewska, M.; Kowalik, S.; Sadok, I.; Kędzierski, W. The Influence of Exercise Intensity on Tryptophan Metabolites in Thoroughbred Horses. Pharmaceuticals 2023, 16 ( 1), 107, 10.3390/ph16010107
Kędzierski, W.; Sadok, I.; Kowalik, S.; Janczarek, I.; Staniszewska, M. Does the Type of Exercise Affect Tryptophan Catabolism in Horses?. Animal 2021, 15 ( 11), 100377, 10.1016/j.animal.2021.100377
Martin, K. S.; Azzolini, M.; Lira Ruas, J. The Kynurenine Connection: How Exercise Shifts Muscle Tryptophan Metabolism and Affects Energy Homeostasis, the Immune System, and the Brain. Am. J. Physiol.: Cell Physiol. 2020, 318 ( 5), C818- C830, 10.1152/ajpcell.00580.2019
Arfuso, F.; Assenza, A.; Fazio, F.; Rizzo, M.; Giannetto, C.; Piccione, G. Dynamic Change of Serum Levels of Some Branched-Chain Amino Acids and Tryptophan in Athletic Horses After Different Physical Exercises. J. Equine Vet. Sci. 2019, 77, 12- 16, 10.1016/j.jevs.2019.02.006
Assenza, A.; Bergero, D.; Tarantola, M.; Piccione, G.; Caola, G. Blood Serum Branched Chain Amino Acids and Tryptophan Modifications in Horses Competing in Long-Distance Rides of Different Length. J. Anim. Physiol. Anim. Nutr. 2004, 88 ( 3-4), 172- 177, 10.1111/j.1439-0396.2004.00493.x
Brown, S. J.; Huang, X.-F.; Newell, K. A. The Kynurenine Pathway in Major Depression: What We Know and Where to Next. Neurosci. Biobehav. Rev. 2021, 127, 917- 927, 10.1016/j.neubiorev.2021.05.018
Blomstrand, E. A Role for Branched-Chain Amino Acids in Reducing Central Fatigue. J. Nutr. 2006, 136 ( 2), 544S- 547S, 10.1093/jn/136.2.544S
Newsholme, E. A.; Blomstrand, E.; Ekblom, B. Physical and Mental Fatigue: Metabolic Mechanisms and Importance of Plasma Amino Acids. Br. Med. Bull. 1992, 48 ( 3), 477- 495, 10.1093/oxfordjournals.bmb.a072558
Farris, J. W.; Hinchcliff, K. W.; McKeever, K. H.; Lamb, D. R.; Thompson, D. L. Effect of Tryptophan and of Glucose on Exercise Capacity of Horses. J. Appl. Physiol. 1998, 85 ( 3), 807- 816, 10.1152/jappl.1998.85.3.807
Manore, M. M. Vitamin B6 and Exercise. Int. J. Sport Nutr. 1994, 4 ( 2), 89- 103, 10.1123/ijsn.4.2.89
Garcia, E. I. C.; Elghandour, M. M. M. Y.; Khusro, A.; Alcala-Canto, Y.; Tirado-González, D. N.; Barbabosa-Pliego, A.; Salem, A. Z. M. Dietary Supplements of Vitamins E, C, and β-Carotene to Reduce Oxidative Stress in Horses: An Overview. J. Equine Vet. Sci. 2022, 110, 103863, 10.1016/j.jevs.2022.103863