[en] This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Disciplines :
Sciences de la santé humaine: Multidisciplinaire, généralités & autres Anatomie (cytologie, histologie, embryologie...) & physiologie Sciences informatiques Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Kumar, Navdeep ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Marée, Raphaël ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Méthodes stochastiques
Geurts, Pierre ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Algorithmique des systèmes en interaction avec le monde physique
Muller, Marc ; Université de Liège - ULiège > Département des sciences de la vie
Langue du document :
Anglais
Titre :
Recent Advances in Bioimage Analysis Methods for Detecting Skeletal Deformities in Biomedical and Aquaculture Fish Species
Date de publication/diffusion :
14 décembre 2023
Titre du périodique :
Biomolecules
eISSN :
2218-273X
Maison d'édition :
MDPI, Suisse
Titre particulier du numéro :
Fish Model: Molecular and Cellular Basis of Bone Development and Homeostasis
Selderslaghs I.W. Hooyberghs J. Blust R. Witters H.E. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae Neurotoxicology Teratol. 2013 37 44 56 10.1016/j.ntt.2013.01.003 23357511
Rihel J. Prober D.A. Arvanites A. Lam K. Zimmerman S. Jang S. Haggarty S.J. Kokel D. Rubin L.L. Peterson R.T. et al. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation Science 2010 327 348 351 10.1126/science.1183090 20075256
Bugel S.M. Tanguay R.L. Multidimensional chemobehavior analysis of flavonoids and neuroactive compounds in zebrafish Toxicol. Appl. Pharmacol. 2018 344 23 34 10.1016/j.taap.2018.02.019
MacRae C.A. Peterson R.T. Zebrafish as tools for drug discovery Nat. Rev. Drug Discov. 2015 14 721 731 10.1038/nrd4627
Love D.R. Pichler F.B. Dodd A. Copp B.R. Greenwood D.R. Technology for high-throughput screens: The present and future using zebrafish Curr. Opin. Biotechnol. 2004 15 564 571 10.1016/j.copbio.2004.09.004
Scholz S. Fischer S. Gündel U. Küster E. Luckenbach T. Voelker D. The zebrafish embryo model in environmental risk assessment—Applications beyond acute toxicity testing Environ. Sci. Pollut. Res. 2008 15 394 404 10.1007/s11356-008-0018-z 18575912
Peterson R.T. MacRae C.A. Systematic approaches to toxicology in the zebrafish Annu. Rev. Pharmacol. Toxicol. 2012 52 433 453 10.1146/annurev-pharmtox-010611-134751
Braunbeck T. Kais B. Lammer E. Otte J. Schneider K. Stengel D. Strecker R. The fish embryo test (FET): Origin, applications, and future Environ. Sci. Pollut. Res. 2015 22 16247 16261 10.1007/s11356-014-3814-7
Hill A.J. Teraoka H. Heideman W. Peterson R.E. Zebrafish as a model vertebrate for investigating chemical toxicity Toxicol. Sci. 2005 86 6 19 10.1093/toxsci/kfi110
Ali S. Champagne D.L. Spaink H.P. Richardson M.K. Zebrafish embryos and larvae: A new generation of disease models and drug screens Birth Defects Res. Part Embryo Today Rev. 2011 93 115 133 10.1002/bdrc.20206
Strähle U. Scholz S. Geisler R. Greiner P. Hollert H. Rastegar S. Schumacher A. Selderslaghs I. Weiss C. Witters H. et al. Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations Reprod. Toxicol. 2012 33 128 132 10.1016/j.reprotox.2011.06.121
Pruvot B. Curé Y. Djiotsa J. Voncken A. Muller M. Developmental defects in zebrafish for classification of EGF pathway inhibitors Toxicol. Appl. Pharmacol. 2014 274 339 349 10.1016/j.taap.2013.11.006 24262764
Spoorendonk K.M. Hammond C.L. Huitema L.F. Vanoevelen J. Schulte-Merker S. Zebrafish as a unique model system in bone research: The power of genetics and in vivo imaging J. Appl. Ichthyol. 2010 26 219 224 10.1111/j.1439-0426.2010.01409.x
Zon L.I. Peterson R.T. In vivo drug discovery in the zebrafish Nat. Rev. Drug Discov. 2005 4 35 44 10.1038/nrd1606 15688071
Driever W. Solnica-Krezel L. Schier A. Neuhauss S. Malicki J. Stemple D. Stainier D. Zwartkruis F. Abdelilah S. Rangini Z. et al. A genetic screen for mutations affecting embryogenesis in zebrafish Development 1996 123 37 46 10.1242/dev.123.1.37
Martos-Sitcha J.A. Mancera J.M. Prunet P. Magnoni L.J. Welfare and stressors in fish: Challenges facing aquaculture Front. Physiol. 2020 11 162 10.3389/fphys.2020.00162 32174844
Llorente I. Fernández-Polanco J. Baraibar-Diez E. Odriozola M.D. Bjørndal T. Asche F. Guillen J. Avdelas L. Nielsen R. Cozzolino M. et al. Assessment of the economic performance of the seabream and seabass aquaculture industry in the European Union Mar. Policy 2020 117 103876 10.1016/j.marpol.2020.103876
Verhaegen Y. Adriaens D. De Wolf T. Dhert P. Sorgeloos P. Deformities in larval gilthead sea bream (Sparus aurata): A qualitative and quantitative analysis using geometric morphometrics Aquaculture 2007 268 156 168 10.1016/j.aquaculture.2007.04.037
Hu W.C. Chen L.B. Huang B.K. Lin H.M. A computer vision-based intelligent fish feeding system using deep learning techniques for aquaculture IEEE Sens. J. 2022 22 7185 7194 10.1109/JSEN.2022.3151777
Santosh K. Das N. Ghosh S. Deep Learning Models for Medical Imaging Academic Press Cambridge, MA, USA 2021
Mostafa S. Wu F.X. Diagnosis of autism spectrum disorder with convolutional autoencoder and structural MRI images Neural Engineering Techniques for Autism Spectrum Disorder Elsevier Amsterdam, The Netherlands 2021 23 38
Shen D. Wu G. Suk H.I. Deep learning in medical image analysis Annu. Rev. Biomed. Eng. 2017 19 221 248 10.1146/annurev-bioeng-071516-044442
Guo Y. Liu Y. Oerlemans A. Lao S. Wu S. Lew M.S. Deep learning for visual understanding: A review Neurocomputing 2016 187 27 48 10.1016/j.neucom.2015.09.116
Fan Y.L. Hsu F.R. Wang Y. Liao L.D. Unlocking the potential of zebrafish research with artificial intelligence: Advancements in tracking, processing, and visualization Med. Biol. Eng. Comput. 2023 61 2797 2814 10.1007/s11517-023-02903-1 37558927
Hussain S. Aponte-Rivera R. Barghout R.M. Trapani J.G. Kindt K.S. In Vivo Analysis of Hair Cell Sensory Organs in Zebrafish: From Morphology to Function Developmental, Physiological, and Functional Neurobiology of the Inner Ear Humana New York, NY, USA 2022 175 220
Bauer B. Mally A. Liedtke D. Zebrafish embryos and larvae as alternative animal models for toxicity testing Int. J. Mol. Sci. 2021 22 13417 10.3390/ijms222413417 34948215
Mikut R. Dickmeis T. Driever W. Geurts P. Hamprecht F.A. Kausler B.X. Ledesma-Carbayo M.J. Marée R. Mikula K. Pantazis P. et al. Automated processing of zebrafish imaging data: A survey Zebrafish 2013 10 401 421 10.1089/zeb.2013.0886 23758125
Shamir L. Delaney J.D. Orlov N. Eckley D.M. Goldberg I.G. Pattern recognition software and techniques for biological image analysis PLoS Comput. Biol. 2010 6 e1000974 10.1371/journal.pcbi.1000974 21124870
Jeanray N. Marée R. Pruvot B. Stern O. Geurts P. Wehenkel L. Muller M. Phenotype classification of zebrafish embryos by supervised learning PLoS ONE 2015 10 e0116989 10.1371/journal.pone.0116989
Kuchmiy A. Efimov G. Nedospasov S. Methods for in vivo molecular imaging Biochemistry 2012 77 1339 1353 10.1134/S0006297912120012
Abu-Siniyeh A. Al-Zyoud W. Highlights on selected microscopy techniques to study zebrafish developmental biology Lab. Anim. Res. 2020 36 12 10.1186/s42826-020-00044-2
Bruneel B. Witten P.E. Power and challenges of using zebrafish as a model for skeletal tissue imaging Connect. Tissue Res. 2015 56 161 173 10.3109/03008207.2015.1013193
Høgset H. Horgan C.C. Armstrong J.P. Bergholt M.S. Torraca V. Chen Q. Keane T.J. Bugeon L. Dallman M.J. Mostowy S. et al. In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy Nat. Commun. 2020 11 6172 10.1038/s41467-020-19827-1
Bennet M. Akiva A. Faivre D. Malkinson G. Yaniv K. Abdelilah-Seyfried S. Fratzl P. Masic A. Simultaneous Raman microspectroscopy and fluorescence imaging of bone mineralization in living zebrafish larvae Biophys. J. 2014 106 L17 L19 10.1016/j.bpj.2014.01.002
Fiedler I.A. Schmidt F.N. Wölfel E.M. Plumeyer C. Milovanovic P. Gioia R. Tonelli F. Bale H.A. Jähn K. Besio R. et al. Severely impaired bone material quality in chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta J. Bone Miner. Res. 2018 33 1489 1499 10.1002/jbmr.3445
da Silva K.M. Iturrospe E. Bars C. Knapen D. Van Cruchten S. Covaci A. van Nuijs A.L. Mass spectrometry-based zebrafish toxicometabolomics: A review of analytical and data quality challenges Metabolites 2021 11 635 10.3390/metabo11090635
Ding Y. Vanselow D.J. Yakovlev M.A. Katz S.R. Lin A.Y. Clark D.P. Vargas P. Xin X. Copper J.E. Canfield V.A. et al. Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography Elife 2019 8 e44898 10.7554/eLife.44898 31063133
Merrifield G.D. Mullin J. Gallagher L. Tucker C. Jansen M.A. Denvir M. Holmes W.M. Rapid and recoverable in vivo magnetic resonance imaging of the adult zebrafish at 7T Magn. Reson. Imaging 2017 37 9 15 10.1016/j.mri.2016.10.013 27751860
Babaei F. Hong T.L.C. Yeung K. Cheng S.H. Lam Y.W. Contrast-enhanced X-ray micro-computed tomography as a versatile method for anatomical studies of adult zebrafish Zebrafish 2016 13 310 316 10.1089/zeb.2016.1245 27058023
Carnovali M. Banfi G. Mariotti M. Zebrafish models of human skeletal disorders: Embryo and adult swimming together BioMed Res. Int. 2019 2019 1253710 10.1155/2019/1253710 31828085
Dellacqua Z. Di Biagio C. Costa C. Pousão-Ferreira P. Ribeiro L. Barata M. Gavaia P.J. Mattei F. Fabris A. Izquierdo M. et al. Distinguishing the Effects of Water Volumes versus Stocking Densities on the Skeletal Quality during the Pre-Ongrowing Phase of Gilthead Seabream (Sparus aurata) Animals 2023 13 557 10.3390/ani13040557 36830345
Beckmann M.C. Gilliam J.F. Langerhans R.B. X-ray imaging as a time-saving, non-invasive technique for diet analysis Fish. Res. 2015 161 1 7 10.1016/j.fishres.2014.05.015
Suganyadevi S. Seethalakshmi V. Balasamy K. A review on deep learning in medical image analysis Int. J. Multimed. Inf. Retr. 2022 11 19 38 10.1007/s13735-021-00218-1
Liu X. Gao K. Liu B. Pan C. Liang K. Yan L. Ma J. He F. Zhang S. Pan S. et al. Advances in deep learning-based medical image analysis Health Data Sci. 2021 2021 8786793 10.34133/2021/8786793
Dürr O. Sick B. Single-cell phenotype classification using deep convolutional neural networks J. Biomol. Screen. 2016 21 998 1003 10.1177/1087057116631284
Dong B. Shao L. Da Costa M. Bandmann O. Frangi A.F. Deep learning for automatic cell detection in wide-field microscopy zebrafish images Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) Brooklyn, NY, USA 16–19 April 2015 772 776
Čapek D. Safroshkin M. Morales-Navarrete H. Toulany N. Arutyunov G. Kurzbach A. Bihler J. Hagauer J. Kick S. Jones F. et al. EmbryoNet: Using deep learning to link embryonic phenotypes to signaling pathways Nat. Methods 2023 20 815 823 10.1038/s41592-023-01873-4 37156842
Ishaq O. Sadanandan S.K. Wählby C. Deep fish: Deep learning–based classification of zebrafish deformation for high-throughput screening SLAS Discov. Adv. Life Sci. R&D 2017 22 102 107
Allen M.R. Krohn K. Skeletal imaging Basic and Applied Bone Biology Elsevier Amsterdam, The Netherlands 2014 93 113
Teixidó E. Kießling T.R. Krupp E. Quevedo C. Muriana A. Scholz S. Automated morphological feature assessment for zebrafish embryo developmental toxicity screens Toxicol. Sci. 2019 167 438 449 10.1093/toxsci/kfy250 30295906
Genest D. Puybareau É. Léonard M. Cousty J. De Crozé N. Talbot H. High throughput automated detection of axial malformations in Medaka embryo Comput. Biol. Med. 2019 105 157 168 10.1016/j.compbiomed.2018.12.016 30654166
Rosa J.T. Tarasco M. Gavaia P.J. Cancela M.L. Laizé V. Screening of Mineralogenic and Osteogenic Compounds in Zebrafish—Tools to Improve Assay Throughput and Data Accuracy Pharmaceuticals 2022 15 983 10.3390/ph15080983 36015130
Tarasco M. Laizé V. Cardeira J. Cancela M.L. Gavaia P.J. The zebrafish operculum: A powerful system to assess osteogenic bioactivities of molecules with pharmacological and toxicological relevance Comp. Biochem. Physiol. Part Toxicol. Pharmacol. 2017 197 45 52 10.1016/j.cbpc.2017.04.006 28457946
Tarasco M. Cordelieres F.P. Cancela M.L. Laizé V. ZFBONE: An ImageJ toolset for semi-automatic analysis of zebrafish bone structures Bone 2020 138 115480 10.1016/j.bone.2020.115480 32534223
Westhoff J.H. Steenbergen P.J. Thomas L.S. Heigwer J. Bruckner T. Cooper L. Tönshoff B. Hoffmann G.F. Gehrig J. In vivo high-content screening in zebrafish for developmental nephrotoxicity of approved drugs Front. Cell Dev. Biol. 2020 8 583 10.3389/fcell.2020.00583
Di Biagio C. Dellacqua Z. Martini A. Huysseune A. Scardi M. Witten P.E. Boglione C. A baseline for skeletal investigations in Medaka (Oryzias latipes): The effects of rearing density on the postcranial phenotype Front. Endocrinol. 2022 13 893699 10.3389/fendo.2022.893699
Kumar N. Carletti A. Gavaia P.J. Muller M. Cancela M.L. Geurts P. Marée R. Deep Learning Approaches for Head and Operculum Segmentation in Zebrafish Microscopy Images Proceedings of the Computer Analysis of Images and Patterns: 19th International Conference, CAIP 2021 Virtual Event 28–30 September 2021 154 164
Marée R. Rollus L. Stévens B. Hoyoux R. Louppe G. Vandaele R. Begon J.M. Kainz P. Geurts P. Wehenkel L. Collaborative analysis of multi-gigapixel imaging data using Cytomine Bioinformatics 2016 32 1395 1401 10.1093/bioinformatics/btw013
Kumar N. Biagio C.D. Dellacqua Z. Raman R. Martini A. Boglione C. Muller M. Geurts P. Marée R. Empirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimages Proceedings of the European Conference on Computer Vision Springer Cham, Switzerland 2022 470 486
Bergen D.J. Kague E. Hammond C.L. Zebrafish as an emerging model for osteoporosis: A primary testing platform for screening new osteo-active compounds Front. Endocrinol. 2019 10 6 10.3389/fendo.2019.00006 30761080
Caetano da Silva C. Ostertag A. Raman R. Muller M. Cohen-Solal M. Collet C. wnt11f2 Zebrafish, an Animal Model for Development and New Insights in Bone Formation Zebrafish 2023 20 1 9 10.1089/zeb.2022.0042 36795617
Foessl I. Bassett J. Bjørnerem Å. Busse B. Calado Â. Chavassieux P. Christou M. Douni E. Fiedler I.A. Fonseca J.E. et al. Bone phenotyping approaches in human, mice and zebrafish–Expert overview of the EU cost action GEMSTONE (“GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork”) Front. Endocrinol. 2021 12 1476 10.3389/fendo.2021.720728
Dietrich K. Fiedler I.A. Kurzyukova A. López-Delgado A.C. McGowan L.M. Geurtzen K. Hammond C.L. Busse B. Knopf F. Skeletal biology and disease modeling in zebrafish J. Bone Miner. Res. 2021 36 436 458 10.1002/jbmr.4256
Caetano da Silva C. Edouard T. Fradin M. Aubert-Mucca M. Ricquebourg M. Raman R. Salles J.P. Charon V. Guggenbuhl P. Muller M. et al. WNT11, a new gene associated with early onset osteoporosis, is required for osteoblastogenesis Hum. Mol. Genet. 2022 31 1622 1634 10.1093/hmg/ddab349 34875064
Cotti S. Huysseune A. Larionova D. Koppe W. Forlino A. Witten P.E. Compression fractures and partial phenotype rescue with a low phosphorus diet in the Chihuahua zebrafish osteogenesis imperfecta model Front. Endocrinol. 2022 13 851879 10.3389/fendo.2022.851879 35282456
Tonelli F. Bek J.W. Besio R. De Clercq A. Leoni L. Salmon P. Coucke P.J. Willaert A. Forlino A. Zebrafish: A resourceful vertebrate model to investigate skeletal disorders Front. Endocrinol. 2020 11 489 10.3389/fendo.2020.00489
Tacon A.G. Metian M. Fish matters: Importance of aquatic foods in human nutrition and global food supply Rev. Fish. Sci. 2013 21 22 38 10.1080/10641262.2012.753405
Toni M. Manciocco A. Angiulli E. Alleva E. Cioni C. Malavasi S. Review: Assessing fish welfare in research and aquaculture, with a focus on European directives Animal 2019 13 161 170 10.1017/S1751731118000940 29717679
Yang X. Zhang S. Liu J. Gao Q. Dong S. Zhou C. Deep learning for smart fish farming: Applications, opportunities and challenges Rev. Aquac. 2021 13 66 90 10.1111/raq.12464
Li D. Du L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish Artif. Intell. Rev. 2022 55 4077 4116 10.1007/s10462-021-10102-3
Tonachella N. Martini A. Martinoli M. Pulcini D. Romano A. Capoccioni F. An affordable and easy-to-use tool for automatic fish length and weight estimation in mariculture Sci. Rep. 2022 12 15642 10.1038/s41598-022-19932-9 36123379
Hough C. Manual of control of malformations in fish aquaculture. Science and Practice Federation of European Aquaculture Producers RapidPRess Luxembourg 2009 Volume 150
Dara M. Carbonara P. La Corte C. Parrinello D. Cammarata M. Parisi M.G. Fish Welfare in Aquaculture: Physiological and Immunological Activities for Diets, Social and Spatial Stress on Mediterranean Aqua Cultured Species Fishes 2023 8 414 10.3390/fishes8080414
Boglione C. Costa C. Skeletal deformities and juvenile quality Sparidae Wiley Hoboken, NJ, USA 2011 233 294
Lubin A. Otterstrom J. Hoade Y. Bjedov I. Stead E. Whelan M. Gestri G. Paran Y. Payne E. A versatile, automated and high-throughput drug screening platform for zebrafish embryos Biol. Open 2021 10 bio058513 10.1242/bio.058513 34472582
Kithcart A. MacRae C.A. Using zebrafish for high-throughput screening of novel cardiovascular drugs Basic Transl. Sci. 2017 2 1 12 10.1016/j.jacbts.2017.01.004
Laleh N.G. Muti H.S. Loeffler C.M.L. Echle A. Saldanha O.L. Mahmood F. Lu M.Y. Trautwein C. Langer R. Dislich B. et al. Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology Med. Image Anal. 2022 79 102474 10.1016/j.media.2022.102474
Mac Namee B. Cunningham P. Byrne S. Corrigan O.I. The problem of bias in training data in regression problems in medical decision support Artif. Intell. Med. 2002 24 51 70 10.1016/S0933-3657(01)00092-6
Havaei M. Davy A. Warde-Farley D. Biard A. Courville A. Bengio Y. Pal C. Jodoin P.M. Larochelle H. Brain tumor segmentation with deep neural networks Med. Image Anal. 2017 35 18 31 10.1016/j.media.2016.05.004
Rubens U. Mormont R. Paavolainen L. Bäcker V. Pavie B. Scholz L.A. Michiels G. Maška M. Ünay D. Ball G. et al. BIAFLOWS: A collaborative framework to reproducibly deploy and benchmark bioimage analysis workflows Patterns 2020 1 100040 10.1016/j.patter.2020.100040 33205108
Paul-Gilloteaux P. Tosi S. Hériché J.K. Gaignard A. Ménager H. Marée R. Baecker V. Klemm A. Kalaš M. Zhang C. et al. Bioimage analysis workflows: Community resources to navigate through a complex ecosystem F1000Research 2021 10 320 10.12688/f1000research.52569.1 34136134
Mormont R. Geurts P. Marée R. Comparison of deep transfer learning strategies for digital pathology Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops Salt Lake City, UT, USA 18–22 June 2018 2262 2271
Shorten C. Khoshgoftaar T.M. A survey on image data augmentation for deep learning J. Big Data 2019 6 60 10.1186/s40537-019-0197-0
Hartley M. Kleywegt G.J. Patwardhan A. Sarkans U. Swedlow J.R. Brazma A. The BioImage archive–building a home for life-sciences microscopy data J. Mol. Biol. 2022 434 167505 10.1016/j.jmb.2022.167505 35189131
Ras G. Xie N. van Gerven M. Doran D. Explainable Deep Learning: A Field Guide for the Uninitiated J. Artif. Int. Res. 2022 73 329 396 10.1613/jair.1.13200
Sun M. Yang X. Xie Y. Deep learning in aquaculture: A review J. Comput. 2020 31 294 319
Rastegari H. Nadi F. Lam S.S. Abdullah M.I. Kasan N.A. Rahmat R.F. Mahari W.A.W. Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends Smart Agric. Technol. 2023 4 100187 10.1016/j.atech.2023.100187
Kelasidi E. Svendsen E. Robotics for Sea-Based Fish Farming Encyclopedia of Smart Agriculture Technologies Springer Berlin/Heidelberg, Germany 2023 1 20
Wang C. Li Z. Wang T. Xu X. Zhang X. Li D. Intelligent fish farm—The future of aquaculture Aquac. Int. 2021 29 2681 2711 10.1007/s10499-021-00773-8
Sawaki R. Sato D. Nakayama H. Nakagawa Y. Shimada Y. ZF-AutoML: An Easy Machine-Learning-Based Method to Detect Anomalies in Fluorescent-Labelled Zebrafish Inventions 2019 4 72 10.3390/inventions4040072
Carreira M.J. Vila-Blanco N. Cabezas-Sainz P. Sánchez L. Zftool: A software for automatic quantification of cancer cell mass evolution in zebrafish Appl. Sci. 2021 11 7721 10.3390/app11167721
Reischl M. Bartschat A. Liebel U. Gehrig J. Müller F. Mikut R. ZebrafishMiner: An open source software for interactive evaluation of domain-specific fluorescence in zebrafish Curr. Dir. Biomed. Eng. 2017 3 199 202 10.1515/cdbme-2017-0042
Navarro A. Lee-Montero I. Santana D. Henríquez P. Ferrer M.A. Morales A. Soula M. Badilla R. Negrín-Báez D. Zamorano M.J. et al. IMAFISH_ML: A fully-automated image analysis software for assessing fish morphometric traits on gilthead seabream (Sparus aurata L.), meagre (Argyrosomus regius) and red porgy (Pagrus pagrus) Comput. Electron. Agric. 2016 121 66 73 10.1016/j.compag.2015.11.015