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Abstract: Detecting skeletal or bone-related deformities in model and aquaculture fish is vital for
numerous biomedical studies. In biomedical research, model fish with bone-related disorders are
potential indicators of various chemically induced toxins in their environment or poor dietary
conditions. In aquaculture, skeletal deformities are affecting fish health, and economic losses are
incurred by fish farmers. This survey paper focuses on showcasing the cutting-edge image analysis
tools and techniques based on artificial intelligence that are currently applied in the analysis of
bone-related deformities in aquaculture and model fish. These methods and tools play a significant
role in improving research by automating various aspects of the analysis. This paper also sheds
light on some of the hurdles faced when dealing with high-content bioimages and explores potential
solutions to overcome these challenges.

Keywords: fish; skeletal deformities; bioimage analysis; aquaculture; biomedical; image processing;
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1. Introduction

In the realm of biomedical research, model fish species like zebrafish (Danio rerio),
and medaka (Oryzias latipes) are highly regarded as valuable vertebrate models. They
are extensively used in a variety of biomedical applications, encompassing drug testing,
morphometric screening, genome editing, toxicology assessments, and behavior analysis
in vertebrates [1–8]. These model fish exhibit significant genetic and metabolic pathway
similarities to both fish and mammals, sharing over 70% of their genes with humans [9–12].
Notably, zebrafish and medaka models are particularly advantageous due to their ease
of maintenance and reproduction. Together with other technical advantages such as
small size, low maintenance cost, high fecundity, and amenability to genetic engineering
tools, the reason these fish are so popular among scientists is their suitability for in vivo
imaging [13,14]. The embryonic and larval stages of these animals are translucent, allowing
for the application of advanced imaging technologies to observe biological processes in a
living animal. This property bears great potential for biomedical research when combined
with the availability of transgenic and mutant lines that allow modeling human skeletal
diseases and tracking specific organs and cell types with fluorescent markers [15]. Such
characteristics not only offer an incredible tool for fundamental research, but also greatly
benefit drug discovery. According to the Business Research Insights website, the global
zebrafish model services market size was USD 434.4 million in the year 2022 and is projected
to reach USD 618.23 million by the year 2031, with a compound annual growth rate (CAGR)
of 14.4% during the forecast period.

Fish is recognized as a valuable source of high-quality protein and essential nutrients
that are integral to a healthy human diet. Within the aquaculture industry, fish holds a
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primary position as the predominant source of cultivated seafood for human consumption.
According to the European Commission’s Ocean and Fisheries website, marine and fresh-
water fish constitute approximately 49% of the total aquaculture production. Commonly
consumed food fish species include gilthead seabream (Sparus aurata), meagre (Argyroso-
mus regius), and salmon (Salmo salar), which are saltwater species, while rainbow trout
(Oncorhynchus mykiss) is a freshwater counterpart. In their natural habitats, such as the
sea or rivers, healthy fish thrive without external interventions in terms of food and care.
However, in fish farms, fish are reared within controlled or artificial environments, such as
ponds, tanks, or cages, which necessitate external care and provisioning of food. Given the
escalating global demand for aquaculture products, the industry faces significant pressure
to enhance its supply. To meet this demand, fish farmers adopt intensive production prac-
tices, which can result in challenges like deteriorating water quality, higher fish density
per unit of water volume, and limited food availability for the fish. These factors may
contribute to stressed fish, the development of physical abnormalities, and susceptibility to
serious diseases [16]. Fish with disease or deformities are rejected by the potential retailers
or customers, thereby representing a significant economic loss to the fish farmers [17].
Major economic losses are directly due to the development of skeletal disorders altering
the external shape of reared fish, i.e., opercular and vertebral column deformities [18].
Moreover, tedious technical effort and time are required to manually cull out the deformed
fish from the productive cycle, which should be carried out as early as possible in order to
not waste resources on growing suboptimal fish.

To detect and classify the deformities in the reared or model fish, manual inspection
or analysis is employed, which requires significant time and technical effort. Moreover,
direct physical interaction with the fish can induce fear or stress that may reflect on its
behavior. Due to abnormal behavior or stress, fish can not swim or take proper diet, which
can lead to poor health of the fish [16]. To improve animal welfare both in aquaculture
and biomedical research, scientists are looking for methods requiring minimal manual
interaction with the animals, with more focus on their health and quality of life. Computer
vision is one such area that is increasingly being adopted by fish farmers and biomedical
researchers to monitor the health and/or behavioral changes of the animal/fish. It may
be helpful in identifying the causes of fish stress or any health hazard with minimal
interaction with the animal. Computer vision and image processing techniques can also
be helpful to speed up other routine procedures such as animal feeding [19], animal
sorting, and animal counting by automatizing these tasks. According to the website,
https://this.fish/blog/ai-guide-tracking-ais-explosive-growth-in-aquaculture/ (accessed
on 2 December 2023) “this.fish”, the top 10 artificial intelligence (AI) and software start-up
companies for the aquaculture industry have raised USD 282 million in the past 5 years,
illustrating the importance and prevalence of AI-based smart farming in aquaculture.

Nowadays, automatic or semi-automatic computer-vision-based image processing
techniques are being used in aquaculture industries and biomedical research to speed up the
detection and diagnosis of diseases in the fish under study. These computer-vision-based
techniques employ artificial intelligence methods such as machine learning or deep learning,
which not only speed up the diagnosis but are also helpful in improving the accuracy of the
detection. Deep learning represents a cutting-edge AI approach that empowers computers
to learn from data and perform tasks on par with human capabilities. It utilizes multi-
layered neural networks to directly acquire task-specific features from the data and make
informed decisions when confronted with unseen data after the learning process. This
methodology avoids the use of manually engineered features (as used in older image
processing approaches) and, instead, defines a learning process that autonomously extracts
features from the data, reducing the need for human intervention. In scenarios involving
image data, such as image analysis, specialized types of neural networks known as deep
convolutional neural networks (CNNs) have been designed. Such architectures play a
pivotal role in computer vision applications, including tasks like object classification, object
recognition, segmentation, and object counting. For the analysis of biomedical images,
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deep-learning-based convolutional neural networks (CNNs) are widely employed and
increasingly favored for their accuracy, which rivals human performance [20]. Although
debatable, CNNs are considered an imitation of the working of neurons in the human brain
for visual perception and understanding objects in the images. They use a set of consecutive
convolutional blocks or layers in order to understand the useful patterns for recognizing
the objects in the images. The fundamental component of a CNN is the convolutional layer,
comprising a collection of filters (or kernels), whose parameters are trained during the
learning process [21,22]. Convolutional layers excel in extracting features from images by
addressing spatial redundancy through weight sharing, and the features become more
distinct and informative while going deeper into the layers. The role of the activation layer
is to fire or activate the particular neurons while processing the information, and spatial
invariance is achieved using pooling layers. In the end, a condensed feature representation
is generated, encapsulating the essential content of the image in fully connected layers [23].
A typical CNN architecture for object classification tasks in images is shown in Figure 1.

Figure 1. A typical CNN architecture for image classification tasks.

In this paper, we review various computer-vision-based automatic and semi-automatic
image analysis methods and tools that are used in morphometric and phenotype studies
of the aquaculture and biomedical model fish. Our literature survey was performed
using searches in PubMed, Scopus, Google Scholar, Web of Science, Bioimage Informatics
Index (https://biii.eu (accessed on 2 October 2023)), and Papers With Code (https://
paperswithcode.com/ (accessed on 5 October 2023)) databases, and thanks to personal
communications with researchers in the field, including members of the BioMedAqu
project. A related, recent review appears in [24]. The latter, however, primarily focuses
on the application of AI algorithms for behavioral analysis, genomics and neuroscience in
zebrafish research, while our paper concentrates on the application of AI algorithms in the
analysis of bone-related deformities in biomedical and aquaculture fish species.

Our paper is structured as follows. In Section 2, we first highlight the popular imaging
techniques used in acquiring fish bioimages. In the following sections, we delve into the im-
age analysis techniques employed in biomedical (Section 3) and aquaculture investigations
(Section 4) to identify and categorize different types of bone-related deformities in both
model and food fish species. Table A1 in Appendix A focuses on user-friendly, AI-based
image analysis tools used in fish morphometric and phenotype research along with their
specifications. Finally, we also highlight the challenges encountered during the image
analysis tasks (Section 5) due to image acquisition settings, data scarcity, and algorithmic
constraints and requirements.

https://biii.eu
https://paperswithcode.com/
https://paperswithcode.com/
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2. Imaging Techniques Used in Fish Bioimages

One of the main advantages of using zebrafish as a model animal over other animals
is its transparent body during early, external development life stages, especially from
0 to 10 days post-fertilization (dpf). The transparent body of the larva makes it easy for
the biologists to see through its developing organs and bones during in vivo studies and
also helps to produce bioimage datasets using various image acquisition equipment [25,26].
Given that image acquisition precedes image analysis, it is crucial to employ suitable
imaging methods and protocols to ensure effective and accurate image analysis, particularly
when conducting AI-based image analysis. Due to the small size of the zebrafish and
medaka embryos and larvae, advanced optical microscopy imaging methods are employed
to capture maximum information at the microscopic level [27]. Microscopic imaging
methods necessitate a meticulous pipeline to be adhered to, ensuring the prevention of
unwarranted variations in acquisition adjustments and parameters that might introduce
artifacts capable of influencing the outcomes of image analysis algorithms [28]. Beyond
fundamental considerations like luminosity and focus control, special attention to the fish’s
positioning and the characteristics of the glass plates is also needed to mitigate potential
issues related to light refraction. This precautionary approach aims to prevent problems like
shadowed areas in the images that could disrupt the subsequent analysis [29]. Since most
phenotype and morphometric studies in biomedical research require capturing the fine-grained
information at the sub-cellular level, microscopy methods such as bright-field or fluorescence
microscopy are prevalent compared to other imaging approaches [30,31]. More recently, confocal
and light-sheet microscopy deliver three-dimensional images [32], while Raman spectroscopy,
Fourier-transform infrared spectroscopy, or mass spectrometry imaging are able to reveal the
spatial distribution of individual (bio)molecules or classes of molecules [33–36], resulting in
ever more high-content and demanding analysis requirements.

Apart from microscopy methods, X-ray radiography techniques are also popular in
biomedical and aquaculture research for analyzing the skeletal structures of the juvenile
and adult fish, including microCT imaging [37–39]. While microscopy imaging methods are
employed in the early life stages (embryonic and larval) of the model fish due to its body’s
optical clarity and small size, radiography methods are employed in the later life stages
to visualize hard tissues. The adult model fish serves as a distinct and valuable resource
for studying pathogenic and therapeutic aspects of adult human bone diseases. This is
attributed to the fact that certain functions such as bone turnover, repair, degeneration,
and metabolic responses are not fully mature in embryos [40]. Similarly, in aquaculture
research, radiography imaging methods are utilized for juvenile and adult fish for several
types of phenotype and morphometric studies [41,42].

3. Bioimage Analysis in Biomedical Research

In recent years, considerable progress has been obtained in the field of AI development.
In particular, deep-learning techniques are used for automatic image analysis in biomedical
sciences and are becoming the predominant choice in various morphometric and pheno-
typic studies [43,44]. For single-cell phenotype assays that require gathering intricate data
at the cellular or sub-cellular level to discern features linked to cellular shape, protein
localization, and intracellular movement, classifying phenotypes poses a notable challenge.
This challenge becomes more critical in scenarios involving high-content screening where
many high-resolution images are acquired. In such situations, deep-learning methods have
proven to be more effective than conventional approaches, as evidenced by the research
of [45,46]. In morphometric and phenotype research, segmenting various parts of the
fish is a key operation for analyzing development in the fish. For example, EmbryoNet
(version 1.0.1) [47] is a deep-learning-based software method to identify the phenotype
defects in the embryonic stage of the zebrafish. The aim of this approach is to bridge the gap
between observed phenotypic traits in embryos and the underlying molecular signaling
pathways responsible for those traits. The diverse set of observable traits or phenotypes
that researchers monitor during embryonic development include morphological changes,
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cellular behaviors, or other features. The problem of phenotype classification in zebrafish
in high-throughput screening using the end-to-end deep-learning method is described
in [48]. In this study, the authors tackle the challenge of categorizing morphological al-
terations in zebrafish found in multi-fish wells, which often have fish overlapping with
one another. Many morphometric studies involve analyzing the skeletal parts of the fish,
especially the jaws, operculum, and vertebral column. In order to analyze these parts,
researchers in the field of skeletal biology largely rely on advanced imaging techniques
followed by morphometric analysis of skeletal structures in animal models and human
patients [49]. This makes it possible to explore how specific molecular mechanisms translate
into phenotypic changes in both physiological and disease contexts. The great advantage
of such an approach is that it allows for translating qualitative biological information into
mathematical language, amenable to statistical analysis. Analyzing malformations during
early developmental stages offers other valuable insights into the potential toxicity of
chemicals. In [50], an automated software tool is developed to quantify the morphometric
defects during developmental toxicity screening in zebrafish embryos. In this approach,
morphometric features are extracted and organized in a hierarchical manner using length
and surface areas from contour information of different parts of the zebrafish candidate. In
order to detect certain features, information about previously detected features should also
be included. Finally, the detected features are the boundary coordinates of the contours of
the objects such as eyes, head, and swim bladder. of embryos. One of the highly sensitive
indicators of developmental toxicity is the absence or presence of abnormalities in the tail,
spine, or other parts of the fish.

In the work of [29], a machine-learning-based phenotype classification method was
developed in which the pipeline comprises a dual-step strategy, beginning with a three-class
classification model. Initially, it separates images of “Dead” or “Chorion” from “Normal”
embryos before addressing other anomalies such as “downward curved tail”, “upward
curved tail” or “short tail” etc. When contrasted with manual classification, the automated
classification using machine learning yields a consensus agreement with biological experts’
voting in nine out of eleven assessed defects in 3-day-old zebrafish larvae, ranging from
90% to 100%. Another supervised machine learning approach to automatically classify the
absence or presence of malformation in the spine of the medaka fish embryo is discussed
in [51]. In that work, a dataset of 2D high-resolution microscopic images of medaka fish is
used. Feature extraction is performed, first by segmenting the embryo from the images.
Since many malformations are characterized by abnormal spine curvature, features such
as body length or curvature angle are then extracted. These features are then fed into a
machine-learning-based classifier for training. Since feature characterization depends on
the geometry of the body representation of the embryo, the authors admitted that their
method is not applicable when the tail of the deformed embryo makes a hook shape, hence
not universal to any type of malformation or failure with a high degree of severity in
the deformed tail. Figure 2 shows different types of deformities in the tail part of the
zebrafish embryo.

Many morphometric studies involve analyzing the skeletal parts of the fish, especially
jaws, operculum and the vertebral column. In order to analyze these parts, researchers
in the field of skeletal biology largely rely on advanced imaging techniques followed by
morphometric analysis of skeletal structures in animal models and human patients [49].
This makes it possible to explore how specific molecular mechanisms translate into pheno-
typic changes in both physiological and disease contexts. The great advantage of such an
approach is that it allows for translating qualitative biological information into mathemati-
cal language, amenable to statistical analysis. In the past few years, several zebrafish in
vivo assays for evaluating the osteogenic and mineralogenic activity of natural compounds
and synthetic drugs were developed [13]. Among these, the morphometric analysis of the
opercular bone in the zebrafish larva allows for an easy, cost-effective and fast evaluation
of the osteogenic bioactivity of molecules of interest [52]. As pointed out in [53], analyzing
the areas of the head and operculum regions in zebrafish larvae, along with quantifying the
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operculum-to-head ratio, serves as a reliable indicator of altered bone formation and miner-
alization. This method is well established and validated for screening bioactive molecules
with potential effects on bone health. As such, this assay has been successfully implemented
to identify natural extracts with promising pharmaceutical potential. However, obtaining
biological quantitative data from microscopic images is still largely performed manually.
With the aid of image processing software, operators manually segment specific regions of
interest (e.g., the eye, the head, or the trunk), and extract data such as pixel areas or fluores-
cence intensities [53]. This laborious and time-consuming process also suffers from poor
reproducibility due to operator-introduced biases. A set of various tools for the popular
open-source image analysis software such as ImageJ (v1.54g) were recently developed to
increase the automation of image processing obtained from the zebrafish operculum and
other zebrafish-based biological assays [54]. However, such tools still require substantial
input and supervision from the operator [41,55,56].

Figure 2. Different phenotypes in zebrafish tail. Larvae were imaged live under a dissecting mi-
croscope under transmitted light illumination: (A) Downward curved tail; (B) Upward curved tail;
(C) Short tail; (D) Normal phenotype [29].

In [57], a deep-learning-based image segmentation method is proposed for the seg-
mentation of the head and operculum area of zebrafish larvae from red channel fluores-
cence microscopy images. This approach allows for the complete automation of oper-
culum and head area segmentation, greatly reducing the variability related to operator-
introduced biases and, importantly, the time needed for extracting biological data from
microscopic images, therefore substantially increasing the throughput of such an assay.
This method reports a “Dice score” of 95%, which is calculated as the ratio of the over-
lapping area between the actual and predicted regions, excluding the background. The
model (https://github.com/navdeepkaushish/ (accessed on 4 November 2023)) is inte-
grated in an open-source, web based image analysis tool called Cytomine [58]. In Figure 3,
deep-learning-based operculum and head segmentation is shown.

At later stages, skeletal development in teleosts progresses under the influence of
various biotic and abiotic factors. Consequently, the skeletal characteristics of these or-
ganisms are constantly shaped by environmental elements that interact with their genetic
makeup. Rearing density has been described as an environmental variable that influences
skeletal development, especially vertebral column formation in both small model and
larger aquaculture fish, and high densities have been reported as driving factors that induce
skeletal anomalies. In the work of [56], the authors provide comprehensive insights into

https://github.com/navdeepkaushish/S_Zebrafish_Head_Operculum_UNet_Segmentation
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the postcranial components of the medaka skeleton, and they investigate the structural and
cellular transformations associated with the emergence of skeletal anomalies. They give an
assessment of how rearing density impacts specific meristic counts (e.g., number of verte-
brae) and the variability in the occurrence and types of skeletal irregularities. A reliable
skeletal reference is provided to establish optimal laboratory conditions that can be used
for the assessment of future experimental setups. The work described in [59] implemented
a deep-learning model to automatically locate six important landmark positions on the ver-
tebral column of the medaka fish, thereby assisting the biomedical researchers in speeding
up the image analysis. The landmarks on the vertebral column are able to detect either
upwards/downwards shifts or deviations from the normal axis or elongations/restrictions
of the regions which could indicate vertebral body fusions or extranumerary vertebral
bodies. Figure 4 shows six landmark points on the microscopy image of a medaka juvenile
(40 dpf). For deep-learning model training and evaluation, a total number of 430 Alizarin-
red-stained microscopy images of 2560 × 1920 size were used. In terms of performance,
the authors reported an average Euclidean distance of about 9 pixels between actual and
predicted landmark locations, estimated on a set of images that were not seen during model
training. The model is integrated into the Cytomine image analysis tool [58].

Figure 3. Segmentation results obtained with deep learning on a zebrafish image [57]. Zebrafish
larvae were stained for mineralized tissues using Alizarin red and imaged using a fluorescence
microscope: (Left) Input image; (Right) Analyzed image.

Figure 4. Six landmark locations on a medaka juvenile stained with Alizarin red for calcified tissues
from microscopy dataset [59]. These landmarks are as follows: 1: rostral tip of the premaxilla; 2: base of
the neural arch of the 1st (anteriormost) abdominal vertebra bearing a rib; 3: base of the neural post-
zygapophyses of the first hemal vertebra (viz., vertebra with hemal arch closed by a hemaspine); 4: base
of the neural post-zygapophyses of the first preural vertebra; 5: base of the neural post-zygapophyses
of the preural-2 vertebra; 6: posteriormost (caudad) ventral extremity of the hypural 1.
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Osteoporosis is a metabolic bone condition resulting from an imbalance in the pro-
cesses of bone formation and resorption. This disrupted equilibrium leads to weakened
bones that are prone to fractures, even from minor incidents. With an increasingly aging
population, the prevalence of osteoporosis is on the rise, and currently, there are limited
pharmaceutical interventions available, particularly for enhancing the bone-building activ-
ity of osteoblasts [60]. Encouragingly, extensive genetic studies conducted on individuals
with low (LBM) and high bone mass (HBM) and genome-wide association studies (GWAS)
in the general population have revealed fresh insights into pathways containing key players
in bone formation [61–66]. These discoveries hold the potential for the development of
new drug targets. Such studies involve analyzing bone structures of the zebrafish model
in its earlier development stages. For quantification of the size and shapes of bone struc-
tures, anatomical landmark points are assigned to them for the geometric morphometric
analysis. Manually annotating these landmarks is a tedious and time-consuming process
that requires technical expertise as well. The work described in [59] uses deep learning
to automatically detect the landmark locations of various bone structures in zebrafish
larvae, thereby making the task of morphometric analysis easier for biologists. In this
work, 25 landmark locations for bone structures are targeted (see Figure 5 for a sample
image and its annotations), and a total of 113 microscopy images with size 2576 × 1932 are
used for the training and the evaluation of several CNN-based deep-learning models. The
authors reported an average distance between predicted and actual landmark locations of
about 11 pixels. The trained model is integrated into the Cytomine image analysis tool as a
software package called “S_Deep-Fish-Landmark-Prediction” (v1.2.0).

Figure 5. Sample image of zebrafish with 25 landmark locations. Alizarin red staining was performed
on fixed larvae and imaged under a dissecting microscope. The landmark locations are annotated
as follows: 1 and 24: Maxilla; 2 and 23: Branchiostegal ray 2; 3 and 11: Opercle; 4, 12, 13, and 14:
Cleithrum; 5 and 19: Anguloarticular; 6 and 25: Ceratobranchial; 7 and 8: Hyomandibular; 9 and
20: Entopterygoid; 10: Notochord; 21, 15, and 18: Parasphenoid; 17 and 22: Dentary; 16: showing
anterior end marking.

4. Bioimage Analysis in Aquaculture

The aquaculture industry plays a crucial role in providing a substantial food source
for human consumption [67]. However, it faces mounting pressure to meet the growing
demand for food supply. A decade ago, farmers relied on manual methods for various
tasks, including sorting fish by size, identifying diseased individuals, removing deformed
or deceased fish from healthy stock, and counting fish numbers. In addition, traditional
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invasive methods involve physically removing fish from the water and having an expert
inspect them to identify potential diseases [68]. In recent times, deep-learning-based image
processing techniques have emerged as an approach in the aquaculture sector to address
the limitations of manual and labor-intensive procedures [43,69]. These methods offer the
advantage of being less time-consuming and requiring less technical expertise. Importantly,
they are non-invasive by nature, contributing to improved fish health and the promotion of
sustainable aquaculture practices.

Although traditional machine learning techniques have been employed in aquaculture
research for over a decade, there is a recent surge in the popularity of computer vision-
based deep-learning methods, primarily because of their high performance and easy-to-use
traits [70]. While relatively new in the aquaculture field, deep-learning analysis methods
are proving beneficial by expediting routine tasks for fish farmers in a non-intrusive
manner [69]. Simultaneously, they assist technicians and researchers within the aquaculture
industry in identifying and categorizing fish disorders and deformities.

Recently [71], a method based on deep learning has been introduced for the non-
invasive measurement of meagre fish length and weight. The approach uses stereo images
of fish as inputs of a deep-learning object detector. This detector identifies and outlines
individual fish by creating bounding boxes around them. Subsequently, each bounding
box is employed to extract an image of the individual fish, which is then processed through
a pre-trained CNN to pinpoint two significant landmarks on the fish: the snout tip and the
base of the middle caudal rays. A landmark detection algorithm calculates the fish’s length
in pixels by measuring the distance between these two landmarks. Finally, the pixel-based
length is converted to physical units by using calibration data.

The European aquaculture sector places increasing importance on the production of
gilthead seabream (Sparus aurata) [17]. However, the occurrence of skeletal deformities in
farmed gilthead seabream poses a significant challenge for the industry [72]. This issue re-
sults in economic losses, negatively affects consumers’ perception of aquaculture, and raises
concerns about the welfare of the fish [73]. While previous efforts have predominantly
concentrated on reducing the occurrence of skeletal anomalies during the hatchery phase,
current research is directed toward addressing the subsequent pre-ongrowing phase, where
more severe deformities impacting the fish’s external appearance often occur [41]. Consid-
ering that the pre-ongrowing phase primarily occurs in land-based facilities, it serves as
the final opportunity for farmers to implement quality controls and remove deformed fish
before transferring them to sea cages. Additionally, the pre-ongrowing phase offers a more
effective means of sorting and quality assurance compared to culling during or at the end of
the hatchery phase. While fish with severe cranial anomalies can be readily identified and
removed at the end of larval rearing due to the early development of their skull bones, verte-
bral axis deformities are infrequent at this stage, and they often manifest in more advanced
developmental stages, which makes them harder to detect [74]. The work in [41] aims
to ascertain whether tank volume or stocking density is a primary factor influencing the
development of skeletal anomalies during the pre-ongrowing phase in gilthead seabream.
The authors found that higher stocking densities led to a higher incidence of specific cranial
and axial deformities in the fish. This research provides valuable insights for the aquacul-
ture industry and offers practical applications for fish farmers to enhance the skeletal and
morphological quality of farmed gilthead seabream. The research is further exploited with
the following observations in mind: (1) Bone elements that were incompletely fused were
treated as separate elements; (2) Supernumerary bones with typical morphology were not
classified as anomalies but were accounted for in variations in meristic counts. Conversely,
supernumerary elements with abnormal shapes were categorized as anomalies; (3) Only
variations in shape that were distinctly and unequivocally identifiable were recognized
as skeletal anomalies. For instance, deviations in the vertebral axis that were linked to
deformation of the involved vertebrae were considered anomalies. Such morphometric
features are marked by selecting 19 landmark locations over the fish. Any deviations in
these landmark points indicate a potential anomaly in the vertebral column and overall
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shape of the fish. A sample image from the dataset with annotated landmarks is shown in
Figure 6.

Figure 6. Sample X-ray image of pre-ongrowing phase gilthead seabream with 19 landmarks [59].
The image was obtained in air, on euthanized fish. The landmark locations are as follows: A: frontal
tip of premaxillary; B: rostral head point in line with the eye center; C: dorsal head point in line with
the eye center; D: dorsal extremity of the 1st predorsal bone; E: edge between the dorsal 1st hard
ray pterygophore and hard ray; F: edge between the dorsal 1st soft ray pterygophore and soft ray;
G: edge between the dorsal last soft ray pterygophore and soft ray; H: dorsal concave inflexion point
of caudal peduncle; I: middle point between the bases of hypurals 2 and 3 (fork); L: ventral concave
inflexion point of caudal peduncle; M: edge between the anal last pterygophore and ray; N: edge
between the anal 1st ray pterygophore and ray; O: insertion of the pelvic fin on the body profile;
P: preopercle ventral insertion on body profile; Q: frontal tip of dentary; R: neural arch insertion on
the 1st abdominal vertebral body; S: neural arch insertion on the 1st hemal vertebral body; T: neural
arch insertion on the 6th hemal vertebral body; U: between the pre- and post-zygapophyses of the 1st
and 2nd caudal vertebral bodies.

The work of automatically identifying these landmark locations is described in [59],
where a deep-learning methodology was devised to identify the landmark locations on
the radiography images of gilthead seabream. The deep-learning-based CNN is trained
on 748 images of varying sizes and is evaluated on 100 test images, yielding an average
distance of about 5 pixels between true and predicted landmarks. The method is integrated
into the Cytomine image analysis tool.

5. Challenges in Bioimage Analysis Tasks

While traditional and deep-learning methods are valuable for various tasks in biomed-
ical and aquaculture research, they are often challenged by complexities arising from factors
like image acquisition, noise, multi-modality, or domain changes. Many of the methods
described earlier are tailored to specific issues or rely on particular fish species and their
image characteristics. A universal model capable of simultaneously addressing multiple
tasks does not currently exist. In this section, we underscore the challenges posed by these
factors and their implications for image analysis tasks. We also explore potential solutions
that can be employed to tackle these issues.

5.1. High-Content, High-Throughput Imaging

Modern imaging instruments, combined with robotic devices, lead to vast amounts of
high-resolution images that allow more specific and detailed analysis [5,75,76]. However,
they will also generate terabytes of data with gigapixel images. Moreover, different types
of confocal microscopy, time-lapse (video), or microCT methods deliver three-dimensional
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images that further increase the data load [31,33–35]. Analyzing and handling high-content
images and observing features at the cellular or sub-cellular level become a bottleneck.
Even for the current state-of-the-art analysis methods, it is very challenging to find infor-
mative patterns for processing vast amounts of complex structured data. The challenges
encountered while processing these high-content image data of zebrafish have previously
been discussed in [27] with regard to image quality, annotation, and storage. With the huge
size of high-content images, it becomes imperative for the current existing image processing
methods to process them in more standardized and generic ways. The authors emphasized
the general requirement for the design of a workflow, information on the imaging data
(metadata information) being analyzed, and availability of the storage infrastructure such
as data center support. Image processing methods must include some preprocessing for
noise reduction, correction of inhomogeneous illumination, and correction of attenuation
before applying analysis methods. Usually, these preprocessing steps are application in-
dependent and can be easily found in many standard image processing toolboxes. While
deep-learning-based approaches are better performing than their traditional counterparts
in image analysis tasks, they still suffer from performance issues while dealing with high-
resolution biomedical imaging. If the objects are very small in size, have distorted shapes,
or the annotations are not fully outlined, these models can not perform well. Proper and
careful preprocessing might be needed before being fed into neural networks. Another
issue while using deep-learning-based models is caused by the fact that images have to
be resized (usually downsized and tiled) to make them suitable for use in CNNs. As
microscopic or histological images are of very high resolution, downscaling or squeezing
them will lead to extensive loss of pixel-level information that should be retained during
the study of the micro-anatomy of cells, tissues, and organs. Strategies such as multiple in-
stance learning and weakly-supervised learning are currently being developed to deal with
very large images in digital histology [77] and might be similarly useful in high-resolution
fish imaging.

5.2. Choice of Image Analysis Methods/Protocols

Traditional image analysis methods that use simple image processing functions are
good when the information they process is small. With the growing dimensionality of
the data, the use of traditional methods is time-consuming and requires a lot of human
intervention with technical expertise to analyze the data. Artificial intelligence (AI)-based
techniques, especially deep-learning methods, are helpful to speed up the analysis by
making the process semi- or fully automatic. However, training deep-learning-based
CNN for high-content image analysis is an uphill task, and applying them effectively in
biomedical image analysis tasks is still challenging. In most biomedical images, preserving
spatial information is very crucial; thus, if the architecture of the CNN does not preserve
the spatial information during training, it may fail to produce the desired results. The
choice of the neural network architecture is also dependent upon the imaging data being
used for training. Another prominent challenge to deal with in biomedical image analyses
is a class imbalance, occurring, for example, when segmenting small cells or tissues of a few
pixels areas from large-sized images [57,78,79]. Proper care is needed to take this problem
into account while designing an image processing pipeline. Overall, there is also a need for
more standardized implementations of image processing workflows (including software
dependencies, input and output data formats, and application programming interfaces)
to enable reproducible benchmarking [80] and to ease the choice of the best-performing
method on a given problem. In addition, tools to foster interdisciplinary collaboration
between biologists and computer scientists, providing easy ways to annotate images,
execute, and proofread algorithm predictions, are also required [81].

5.3. Lack of Annotated Bioimages

The scarcity of well-annotated bioimage data is one of the prime concerns while
designing an image analysis tool or method for biomedical research that requires annotated
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datasets to be trained, tuned, and validated. Natural image data sets are available in
abundance on different platforms with open-source access. In contrast, bioimage datasets
are acquired with expensive instruments in a laboratory in controlled conditions and are
not easily accessible to the common people. The majority of bioimage datasets originate
from either patients or model animals, and they are often restricted to specific laboratories
or individuals. Furthermore, these datasets typically consist of a relatively small number
of images, ranging from a few hundred to a few thousand, in contrast to natural image
datasets that often encompass millions or even billions of well-annotated images. A limited
set of well-annotated images is frequently inadequate for training deep-learning models,
leading to suboptimal performance. Models trained with insufficient image data often
struggle, making it challenging for analysts to deploy them effectively for image analysis
tasks. One solution to address the problem of data availability is to use deep transfer
learning approaches where a pre-trained and well-optimized CNN is used for training on
small bioimage datasets. The authors in [82] exploit the deep transfer learning approaches
to address the challenges faced in bioimaging due to its complex structure and lack of data
availability. Another solution to deal with small datasets is to use data augmentation [83]
techniques in which the data set is increased on the fly during training, using some image
processing functions such as random rotation, shift, crop, shear, etc., depending upon
the requirement. There are ongoing initiatives to set large repositories of fish bioimages
with different modalities (microscopy, radiography, etc.) [84], and the European Union
encourages researchers and academicians to provide their annotated bioimages for open-
access research. This initiative further inspires fish communities to build substantially large
fish bioimage datasets that would be helpful in advancing the research in aquaculture.

5.4. Miscellaneous

Although computer-vision-based deep-learning models outperform other traditional
computer vision image processing methods and are increasingly becoming a favorite choice
among the biomedical research community, they still suffer from a lack of interpretability.
Even in general computer vision tasks, deep learning is mostly considered as black box
learning, and research is still ongoing on how to interpret its results and learning mecha-
nisms [85]. Moreover, medical images are content-sensitive, i.e., pixel-level information
is needed, and resizing or squeezing to the size required by the network architectures
adversely affects the performance due to loss of information. In aquaculture, real-time
deployment of AI models for actually sorting the fish will require thorough testing of the
working conditions (underwater, while swimming, in the air) and may be challenging due
to variations in lighting, pose, background, occlusion, and water turbidity [86], leading to a
decrease in the performance of the AI models. In such a complex setting, a considerable
number of sensors, cameras, and other equipment must be deployed to gather and analyze
real-time information, resulting in a substantial upfront capital investment [69]. Deploying
large AI models is also demanding in terms of memory requirements, and incorporating
these models into small memory chips poses a significant challenge. These challenges
can be addressed using smart automation systems that include the integration of artificial
intelligence, robotics, Internet of Things (IoT), edge computing, and advanced distributed
algorithms for real-time image analysis [87–89]. Real-time applications of AI models in
aquaculture would include, among others, fish counting, fish monitoring, fish feeding, fish
classification (normal or deformed), fish behavior analysis, or fish sorting. From a biomedi-
cal imaging point of view, deep-learning-based models should be designed in more generic
ways so that they can be trained without losing much of the information from the high-
resolution images. Moreover, most biomedical researchers are from a non-mathematical
background, and they might be more interested in knowing the objective interpretation
of why rather than the subjective interpretation of how these deep-learning-based neural
networks are predicting the discriminating features that often defy the common logic of
human interpretation.
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6. Conclusions

This paper highlights the current state-of-the-art machine and deep-learning methods
being used in biomedical and aquaculture research for morphometric studies related to
bone development. In this context, we describe the application of various deep-learning
methodologies that can be applied in several bioimage analysis tasks, such as fish body
part segmentation or anatomical landmark identification. The methods are not only helpful
to speed up the image analysis, but also efficient in terms of accuracy, objectivity, and ease
of availability.

Funding: This work was supported by the EU MSCA-ITN project BioMedAqu (GA 766347) that has
received funding from the European Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No. 766347. N.K. was an MSCA Ph.D. fellow and
was later funded by the Faculty of Applied Sciences of the University of Liège. M.M. is a “Maître
de Recherche au F.N.R.S.”. R.M. is supported by the BigPicture EU Research and Innovation Action
(Grant agreement number 945358). This work was also partially supported by Service Public de
Wallonie Recherche under Grant No. 2010235—ARIAC by DIGITALWALLONIA4.AI.

Institutional Review Board Statement: All studies reported here adhered to the code of ethics for
scientific research, compliant with European Directive 2010/63/EU. Details can be found in the
cited literature.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this review article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Biomolecules 2023, 13, 1797 14 of 18

Appendix A

Table A1. Image Analysis Tools and their specifications.

Name Ref. Paper Image Modality Fish Type Application Open Source? Data
Availability Research Area

EmbryoNet [47]
D. Capek et al. Light microscopy

Zebrafish embryos (1–26 hpf 1),
Medaka embryos (0–48 hpf),

Stickleback larvae (0–140 hpf)
Phenotype classification Yes Yes Biomedical

ZF-AutoML [90]
R. Sawaki et al. Light microscopy Zebrafish larvae (0–96 hpf) Phenotype classification Yes No Biomedical

ZFTool
[91]

M. J. Carreira
et al.

Fluorescent
Green Channel

Microscopy
Zebrafish larvae (0–72 hpf) Toxicity screening Yes Yes Biomedical

FishInspector [50]
E. Teixido et al. Light microscopy Zebrafish embryos (0–96 hpf) Phenotype screening Yes Yes Biomedical

ZebrafishMiner [92]
M. Reischl et al.

Fluorescent
microscopy

Zebrafish embryos and larvae
(32 hpf)

Fluorescent quantification in
body parts No No Biomedical

ZFBone [54]
M. Tarasco et al.

Fluorescent
microscopy Zebrafish larvae (6 dpf 2) Morphometric analysis Yes Yes Biomedical

IMAFISH_ML [93]
A. Navarro et al.

Microscopy, RGB,
radiography

Adult gilthead seabream, meagre,
red porgy Morphometric analysis Yes No Aquaculture

Cytomine [58]
R. Marée et al. All types All types General image analysis Yes Yes Biomedical,

Aquaculture
1 hours post-fertilization; 2 days post-fertilization.
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