Article (Périodiques scientifiques)
New string attractor-based complexities for infinite words
Cassaigne, Julien; Gheeraert, France; Restivo, Antonio et al.
2024In Journal of Combinatorial Theory. Series A, 208, p. 105936
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
String_attractors__journal_version_ (2).pdf
Preprint Auteur (375.19 kB) Licence Creative Commons - Transfert dans le Domaine Public
Télécharger

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
String attractor; factor complexity; recurrence function; appearance function; repetitiveness measure; span complexity; leftmost complexity; morphic word; Sturmian word; quasi-Sturmian word; k-bonacci word; k-bonacci number
Résumé :
[en] The notion of string attractor has been introduced by Kempa and Prezza in 2018 in the context of data compression. It represents a set of positions of a finite word in which all of its factors can be “attracted”, i.e., each factor occurs crossing a position from the set. The smallest size γ∗ of a string attractor for a finite word is a lower bound for several repetitiveness measures associated with the most common compression schemes, including BWT-based and LZ-based compressors. The combinatorial properties of the measure γ∗ have been studied in 2021 by Mantaci et al. Very recently, a complexity function, called the string attractor profile function, has been introduced for infinite words, by evaluating γ∗ on each prefix. Such a complexity function has been studied for automatic sequences and linearly recurrent infinite words by Schaeffer and Shallit. Our contribution to the topic is threefold. First, we explore the relationship between the string attractor profile function and other well-known combinatorial notions related to repetitiveness in the context of infinite words, such as the factor complexity and the property of recurrence. Moreover, we study its asymptotic growth in the case of purely morphic words and obtain a complete description in the binary case. Second, we study similar properties for two new string attractor-based complexity functions, in which the structure and the distribution of positions in a string attractor are taken into account. We also show that these measures provide a finer classification of some infinite families of words, namely the Sturmian and quasi-Sturmian words. Third, we explicitly give the three complexities for some specific morphic words called k-bonacci words.
Disciplines :
Mathématiques
Auteur, co-auteur :
Cassaigne, Julien
Gheeraert, France  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Restivo, Antonio
Romana, Giuseppe
Sciortino, Marinella
Stipulanti, Manon  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Langue du document :
Anglais
Titre :
New string attractor-based complexities for infinite words
Date de publication/diffusion :
2024
Titre du périodique :
Journal of Combinatorial Theory. Series A
ISSN :
0097-3165
Maison d'édition :
Elsevier, Atlanta, Géorgie
Volume/Tome :
208
Pagination :
105936
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Disponible sur ORBi :
depuis le 11 décembre 2023

Statistiques


Nombre de vues
151 (dont 18 ULiège)
Nombre de téléchargements
199 (dont 8 ULiège)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBi