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Abstract

A string attractor is a set of positions in a word such that each distinct factor has an occurrence
crossing a position from the set. This definition comes from the field of data compression, where
the size 𝛾∗ of a smallest string attractor represents a lower bound for the output size of a wide
family of string compressors exploiting repetitions in words, including BWT-based and LZ-based
compressors. On finite words, the combinatorial properties of string attractors have been studied
in 2021 by Mantaci et al. Later, Schaeffer and Shallit introduced the string attractor profile
function, a complexity function which evaluates for each 𝑛 > 0 the size 𝛾∗ of the length-𝑛 prefix
of a one-sided infinite word.

A natural development of the research on the topic is to link string attractors with other classical
notions of repetitiveness in combinatorics on words. Our contribution in this sense is threefold.
First, we explore the relation between the string attractor profile function and other well-known
combinatorial complexity functions in the context of infinite words, such as the factor complexity
and the property of recurrence. Moreover, we study its asymptotic growth in the case of purely
morphic words and obtain a complete description in the binary case. Second, we introduce two
new string attractor-based complexity functions, in which the structure and the distribution of
positions in a string attractor are taken into account, and we study their combinatorial properties.
We also show that these measures provide a finer classification of some infinite families of words,
namely the Sturmian and quasi-Sturmian words. Third, we explicitly give the three complexities
for some specific morphic words called 𝑘-bonacci words.

A preliminary version of some results presented in this paper can be found in [Restivo,
Romana, Sciortino, String Attractors and Infinite Words, LATIN 2022].
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1. Introduction

Repetitiveness is a central notion in the field of Combinatorics on Words, which has been
approached from various perspectives. For instance, the factor complexity function is probably the
most extensively studied repetitiveness measure [7]. For an infinite word x, its factor complexity
function 𝑝x counts, for each 𝑛 ≥ 0, the number of distinct factors of length 𝑛. Intuitively, the
lower the factor complexity, the more repetitive the infinite word. Indeed, a famous theorem by
Morse and Hedlund characterizes the words with (eventually) constant factor complexity as being
eventually periodic, i.e. obtained by repeating the same factor, starting after a certain finite prefix.
Within the sphere of infinite aperiodic words, some of the most studied words are the Sturmian
words, which are the infinite aperiodic words with the lowest factor complexity function, i.e. their
factor complexity is 𝑛+1 for every 𝑛. Quasi-Sturmian words represent the simplest generalization
of Sturmian words in terms of factor complexity, they are infinite words having factor complexity
𝑛 + 𝑑, with 𝑑 ≥ 1, for every large enough 𝑛.

The analysis of repetitiveness in words can also be conducted using the recurrence function.
It is another powerful measure that, in a complementary way, unveils the repetitive structure
of infinite words. This notion was initially defined by Morse and Hedlund [32] but has found
widespread recognition in the literature. See [6] for a survey. An infinite word x is recurrent if
every factor of x occurs infinitely often. The recurrence function 𝑅x for an infinite word x gives,
for each 𝑛 ≥ 0, if it exists, the size of the smallest window containing all the length-𝑛 factors of
x, no matter where this window is located in x. Intuitively, it is closely related to the maximum
gap between two consecutive occurrences of any length-𝑛 factor. Essentially, it provides an idea
of how quickly factors repeat within an infinite word and how distributed the repetitive elements
are in the word. If 𝑅x (𝑛) is defined for all 𝑛, then the word is called uniformly recurrent, and if
𝑅x is linear, then x is called linearly recurrent.

In application contexts, repetitiveness has recently become a fundamental concept that is
gaining increasing relevance [34]. Due to the abundance of highly repetitive data and the need to
manage them efficiently, being able to effectively evaluate and measure the repetitiveness of data is
fundamental to optimize processes and resources. For instance, in the realm of indexing massive
text collections, defining data structures that enable querying data using space proportional to the
size of compressed data becomes crucial [35]. In such a scenario, finding good measures capable
of capturing the level of repetitiveness in a text is strongly related to having effective parameters
to evaluate the performance of such compressed data structures, both in terms of space and time.
For this reason, the most commonly used measures in this field stem from compression schemes,
such as the number of phrases in the LZ77 parsing and the number of equal letter runs produced
by the Burrows-Wheeler Transform [36].

With the aim of unifying existing compressor-based measures, Kempa and Prezza proposed
in [23] a repetitiveness measure related to combinatorial properties of the text instead of being
associated with a specific compressor. A string attractor Γ for a text 𝑤 is a set of positions in 𝑤

such that each factor of 𝑤 has an occurrence crossing some position in Γ. Intuitively, the more
repetitive the text, the lower the number of positions needed in a string attractor. The measure
𝛾∗ (𝑤) is then the minimal size of a string attractor for 𝑤. On the one hand, it has been proven
that 𝛾∗ is a lower bound for all other usual compressor-based repetitiveness measures. On the
other hand, finding the smallest attractor size 𝛾∗ for a given text 𝑤 is an NP-complete problem.

Recently much interest has been aroused by the combinatorial properties of string attractors.
Firstly, in [30] the sensitivity of the measure 𝛾∗ with respect to the combinatorial operations on
finite words has been studied. In particular, it has been shown that 𝛾∗ is not monotone, in the
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sense that the measure 𝛾∗ of a word can be smaller than that of its prefixes. Also, the measure 𝛾∗

has been studied for families of finite prefixes of well-known infinite words such as Thue-Morse
word [26, 41], Episturmian words [17], k-bonacci-like words [20] and Rote sequences [18], as
well as for finite factors of the Thue-Morse word [11]. Moreover, a variation of 𝛾∗ in which
cyclic factors are considered has been used to characterize the necklaces of standard Sturmian
words [30], well-known infinite families of finite words used as bricks to construct particular
Sturmian words, called characteristic Sturmian words.

A groundbreaking research connecting the notion of string attractors with previously men-
tioned classical combinatorial notions of repetitiveness for infinite words has been presented
in [41]. In particular, the string attractor profile function 𝑠x of an infinite word x is introduced. It
measures, for each 𝑛 ≥ 1, the smallest size of a string attractor for the length-𝑛 prefix of x. The
authors study the behavior of 𝑠x when x is linearly recurrent, and when x is automatic, i.e., x can
be defined through a finite automaton [1].

In this paper, in addition to the size of a string attractor, we also take into account the
distribution of the positions within the string attractor. This leads to the definition of two new
measures: for a finite word 𝑤, the span of 𝑤 is the minimal span (or width) of a string attractor
of 𝑤 and the leftmost measure of 𝑤 is the smallest rightmost position of a string attractor of 𝑤.
Starting from these two notions the new complexity measures lmx and spanx can be defined for an
infinite word x. In particular, the span complexity function spanx (𝑛) and the leftmost complexity
function lmx (𝑛) give the value of the span and the leftmost measure applied to the length-𝑛 prefix
of x.

The main goal of this paper is to explore the relation between the three string attractor-
based complexities 𝑠x, lmx, and spanx for an infinite word x, and other combinatorial notions
of repetitiveness. The main results shown in this paper highlight that such complexity functions
are able to capture some aspects of repetitiveness that are not necessarily detected by the other
known functions. A preliminary version of some of such results can be found in the conference
paper [40].

Firstly, we investigate in depth the connection between the function 𝑠x and the well-known
notions of repetitiveness. We prove that the values taken by 𝑠x for infinitely many lengths of
prefixes give an upper bound on the factor complexity. Moreover, it is possible to prove that a
necessary condition for aperiodic words to have bounded 𝑠x is that the word x is 𝜔-power-free
and its factor complexity 𝑝x is linear. Recall that an infinite word is 𝜔-power-free if it does not
contain arbitrarily long consecutive repetitions of any factor. Here, we prove that such a condition
is not sufficient, thus answering negatively to a question raised in [40].

Secondly, we prove that, analogously to the factor complexity, the leftmost complexity char-
acterizes eventually periodic infinite words. Moreover, we provide a new characterization of
Sturmian words in terms of both the span and the leftmost complexity functions. In particular, we
prove that an infinite word x is Sturmian if and only if lmx is unbounded and spanx = 1 infinitely
often. Unlike the factor complexity, the span and leftmost complexities uniquely determine a
characteristic Sturmian word, up to exchanging the two letters of the alphabet. Analogously
to Sturmian words, a characterization in terms of both the span and the leftmost complexity
functions is provided for quasi-Sturmian words.

Finally, the behaviour of the three complexity functions is studied for the 𝑘-bonacci words,
which can be considered a generalization of the well-known Fibonacci word to a larger alphabet
of size 𝑘 > 2. A new technique to build a string attractor of smallest size for the finite 𝑘-bonacci
words is presented. The recursive procedure to construct the positions of these string attractors
can be extended to more general families of words obtained by applying morphisms, which
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represent a classical mechanism to generate repetitive words.
The paper is organized as follows. In Section 2 we give all the preliminary definitions.

Section 3 is focused on the string attractor profile function and its relation with the factor
complexity and the recurrence property. Moreover, we study the behavior of the string attractor
profile function for infinite fixed points of morphisms. In Section 4, we introduce the span and
leftmost measures of a finite word. We relate these notions to the number of distinct factors of the
word, to its smallest string attractor, and to images under a morphism. Afterwards, we study these
measures for prefixes of an infinite word, leading to the definition of the span and the leftmost
complexities. We explain some links between these complexities and the combinatorial notions
of recurrence, periodicity, and factor complexity in Section 5. In Section 6, we first describe
the three complexities for characteristic Sturmian words. Using this description, we obtain the
previously mentioned new characterizations of Sturmian and quasi-Sturmian words. Finally,
in Section 7, we move the focus to the 𝑘-bonacci words and we show that each prefix of the
𝑘-bonacci word admits a string attractor of size at most 𝑘 . We also give the explicit computation
of the leftmost and the span complexities. We end the paper with remarks and future works in
Section 8.

2. Preliminaries

Combinatorics on words. An alphabet is a finite set of letters. A finite (resp., infinite) word
on an alphabet Σ is simply a finite (resp., infinite) sequence of letters of Σ. To distinguish them
from finite words, infinite words are written in bold and we start indexing both finite and infinite
words at 1, e.g., we will write x = 𝑥1𝑥2 · · · . For a finite or infinite word 𝑥, we let |𝑥 | denote its
length, i.e., the number of letters in 𝑥, and alph(𝑥) denote the set of letters appearing in 𝑥. The
empty-word Y is the only word that verifies |Y | = 0. We let Σ∗ (resp., Σ+) denote the set of finite
(resp., non-empty finite) words over Σ. For all 𝑛 ≥ 0, we let Σ𝑛 denote the set of length-𝑛 words
over Σ.

Given a word

𝑥 =

{
𝑥1𝑥2 · · · 𝑥 |𝑥 | , if 𝑥 is finite;
𝑥1𝑥2 · · · , if 𝑥 is infinite;

an integer 1 ≤ 𝑖 ≤ |𝑥 | is called a position within 𝑥. Given two positions 1 ≤ 𝑖, 𝑗 ≤ |𝑥 |, we use
the notation 𝑥 [𝑖, 𝑗] = 𝑥𝑖𝑥𝑖+1 · · · 𝑥 𝑗 ; note that 𝑥 [𝑖, 𝑗] = Y if 𝑗 < 𝑖. Such a portion 𝑥 [𝑖, 𝑗] for 𝑖 ≤ 𝑗

is called a factor of 𝑥. We let 𝐹 (𝑥) denote the set of factors of 𝑥. The factor 𝑦 ∈ 𝐹 (𝑥) is proper
if 𝑦 ≠ 𝑥. The word 𝑢 is a prefix (resp., suffix) of 𝑥 if 𝑥 = 𝑢𝑣 (resp., 𝑥 = 𝑣𝑢) for some word 𝑣. A
factor 𝑢 of 𝑥 is right special (resp., left special) if there exist distinct letters 𝑎, 𝑏 ∈ Σ such that
both 𝑢𝑎 and 𝑢𝑏 (resp., 𝑎𝑢 and 𝑏𝑢) are factors of 𝑥. The reverse of a finite word 𝑥 = 𝑥1𝑥2 . . . 𝑥 |𝑥 |
is the word read from right to left, i.e., 𝑥𝑅 = 𝑥 |𝑥 |𝑥 |𝑥 |−1 · · · 𝑥1. If 𝑥 = 𝑥𝑅, then 𝑥 is a palindrome.

String attractor of a finite word. Roughly, a string attractor for a finite word is a set of
positions within the word such that each of its factors has an occurrence “crossing” at least one
element of the set. More formally, a string attractor of a finite word 𝑥 is a set Γ of positions within
𝑥 such that, for every non-empty factor 𝑤 ∈ 𝐹 (𝑥), there exist integers 𝑖, 𝑗 such that 𝑤 = 𝑥 [𝑖, 𝑗]
and [𝑖, 𝑗] ∩ Γ ≠ ∅. We denote by 𝛾∗ (𝑥) the size of a smallest string attractor for 𝑥. It is easy to
see that 𝛾∗ (𝑥) ≥ |alph(𝑥) |.
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Example 1. Let 𝑥 = 𝑎𝑑𝑐𝑏𝑎𝑎𝑑𝑐𝑏𝑎𝑑𝑐 be a word on Σ = {𝑎, 𝑏, 𝑐, 𝑑} (the reason why some letters
are underlined will become clear later on). The set Γ = {1, 4, 6, 8, 11} is a string attractor for 𝑥.
Note that Γ′ = Γ \ {1} = {4, 6, 8, 11} is still a string attractor for 𝑥 since each factor that crosses
position 1 has another occurrence that crosses a different position in Γ. The positions of Γ′ are
underlined above. The set Γ′ is also a smallest string attractor since |Γ′ | = |Σ |, so 𝛾∗ (𝑥) = 4.
Note that {3, 4, 5, 11} and {3, 4, 6, 7, 11} are also string attractors for 𝑥. It is easy to verify that
the set Δ = {1, 2, 3, 4} is not a string attractor since, for instance, the factor 𝑎𝑎 does not intersect
any position in Δ.

Factor complexity. For an infinite word x, its factor complexity function 𝑝x counts, for any
integer 𝑛 ≥ 0, the distinct length-𝑛 factors of x, i.e., 𝑝x (𝑛) = |𝐹 (x) ∩ Σ𝑛 | for all 𝑛 ≥ 0.

Periodicity. Given a word 𝑥, a natural number 𝑝 ≥ 1 is called a period of 𝑥 if 𝑥𝑖 = 𝑥 𝑗 when
𝑖 ≡ 𝑗 mod 𝑝. An infinite word x is eventually periodic if there exist 𝑢 ∈ Σ∗ and 𝑣 ∈ Σ+ such
that x = 𝑢𝑣𝜔 , i.e., x is the concatenation of 𝑢 followed by infinite copies of a non-empty word
𝑣 (denoted by 𝑣𝜔). If 𝑢 = Y, then x is said to be periodic. An infinite word is aperiodic if it is
not eventually periodic. We recall the famous Morse-Hedlund theorem (see, for instance, [28,
Theorem 1.3.13]).

Theorem 2 (Morse-Hedlund theorem). Let x be an infinite word. The following are equivalent.
1. The word x is eventually periodic.
2. We have 𝑝x (𝑛 + 1) = 𝑝x (𝑛) for some integer 𝑛 ≥ 0.
3. The complexity function 𝑝x is bounded.

Recurrence and appearance functions. An infinite word x is said to be recurrent if every
factor of x occurs infinitely often (in x). The recurrence function 𝑅x : 𝑛 ↦→ 𝑅x (𝑛) gives, for each
𝑛, the least integer 𝑚 (or ∞ if no such 𝑚 exists) such that each length-𝑚 factor of x contains
at least an occurrence of each length-𝑛 factor of x. An infinite word x is uniformly recurrent if
𝑅x (𝑛) < ∞ for each 𝑛 ≥ 1. Note that 𝑅x (𝑛) − 𝑛 + 1 is the maximum gap between consecutive
occurrences of the same factor, when all length-𝑛 factors are considered. If 𝑅x (𝑛) is linear, then
x is linearly recurrent. It is easy to see that a periodic word x is linearly recurrent. On the other
hand, if x is eventually periodic but not periodic, then x is not recurrent. Therefore, a recurrent
word is either aperiodic or periodic. For an infinite word x and an integer 𝑛, we let 𝐴x (𝑛) denote
the length of the shortest prefix containing all length-𝑛 factors of 𝑥. The function 𝑛 ↦→ 𝐴x (𝑛) is
called the appearance function of x.

Example 3. For the binary word x = 11011100101110111 · · · , which is the concatenation of all
binary representations of the positive integers, the function 𝐴x is easily seen to be exponential.
This also follows from the fact that 𝑝x is exponential as well, as explained in the remark below.

Remark 4. For any infinite word x over Σ, the fact that Σ is finite implies that 𝐴x (𝑛) is defined
for each 𝑛 ≥ 1. One then easily sees that 𝑝x (𝑛) + 𝑛 − 1 ≤ 𝐴x (𝑛) ≤ 𝑅x (𝑛).

Power freeness. An infinite word x is said to be 𝑘-power free for some 𝑘 > 1 if, for every
factor 𝑤 of x, 𝑤𝑘 is not a factor of x. If for each factor 𝑤 of x, there exists some integer 𝑘 > 1
such that 𝑤𝑘 is not a factor of x, then x is 𝜔-power free.

Morphisms. They represent a mechanism to generate infinite families of repetitive sequences,
which have many mathematical properties [1, 3, 16]. Let Σ and Σ′ be alphabets. A morphism
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is a map 𝜑 : Σ∗ → Σ′∗ that satisfies the identity 𝜑(𝑢𝑣) = 𝜑(𝑢)𝜑(𝑣) for all words 𝑢, 𝑣 ∈ Σ∗. A
morphism 𝜑 is prolongable on a letter 𝑎 ∈ Σ if 𝜑(𝑎) = 𝑎𝑢 with 𝑢 ∈ Σ+. If 𝜑(𝑎) ≠ Y for all 𝑎 ∈ Σ,
then the morphism 𝜑 is said to be non-erasing. Given a non-erasing morphism 𝜑 prolongable
on some 𝑎 ∈ Σ, the sequence (𝜑𝑖 (𝑎))𝑖≥0 of finite words gives an infinite family of prefixes of a
unique infinite word 𝜑∞ (𝑎) = lim𝑖→∞ 𝜑𝑖 (𝑎), which is called a purely morphic word or a fixed
point of 𝜑. A morphism 𝜑 is primitive if there exists 𝑡 ≥ 1 such that 𝑏 ∈ 𝐹 (𝜑𝑡 (𝑎)) for every pair
of letters 𝑎, 𝑏 ∈ Σ. If there exists 𝑘 such that |𝜑(𝑎) | = 𝑘 for every 𝑎 ∈ Σ, then 𝜑 is said to be
𝑘-uniform.

Example 5. Let us consider the Thue–Morse word t = 0110100110010110 · · · which is the fixed
point of the 2-uniform morphism 0 ↦→ 01, 1 ↦→ 10. It is known that the functions 𝑝t (𝑛), 𝑅t (𝑛)
and 𝐴t (𝑛) are Θ(𝑛). See [1] for details.

Lempel-Ziv factorization. The Lempel-Ziv factorization or parsing (LZ77 parsing in short)
of a finite word 𝑤 is its factorization 𝐿𝑍 (𝑤) = 𝑣1𝑣2 · · · 𝑣𝑧 built from left to right in a greedy
way as follows: each new factor (also called an LZ-phrase) 𝑣𝑖 is either the leftmost occurrence
of a letter in 𝑤 or the longest prefix of 𝑣𝑖 · · · 𝑣𝑧 occurring in 𝑣1 · · · 𝑣𝑖−1. We let 𝑧(𝑤) denote
the number of LZ-phrases in the LZ77 parsing of 𝑤. A measure on infinite words is naturally
associated [10]: for an infinite word x, the LZ-complexity function 𝑧x maps each 𝑛 ≥ 1 to the
number 𝑧(x[1, 𝑛]) of LZ-phrases of the length-𝑛 prefix of x.

The link between string attractors and LZ77 parsings is given in the result below. It follows
from the fact that any given finite word has a string attractor of size equal to the number of its
LZ-phrases.

Proposition 6 ([23]). For every word 𝑤 ∈ Σ∗, 𝛾∗ (𝑤) ≤ 𝑧(𝑤).

3. String attractor profile function, factor complexity and recurrence

In this section, we explore the growth of the size of the smallest string attractor when
considering larger and larger prefixes of an infinite word. Such an idea was first considered
in [41].

Definition 7. Let x be an infinite word. The string attractor profile function of x is the map
𝑠x : 𝑛 ↦→ 𝛾∗ (x[1, 𝑛]), i.e. 𝑠x (𝑛) is the size of a smallest string attractor for the length-𝑛 prefix of
x.

We will study the link between the string attractor profile function and different notions
measuring the repetitiveness of factors within infinite sequences of symbols. We start by estab-
lishing a bond between the appearance, factor complexity and string attractor profile functions.
In particular, it shows that upper bounds on 𝑠x induce upper bounds on 𝑝x.

Proposition 8. Let x be an infinite word. For all 𝑛 ≥ 1, we have 𝑝x (𝑛) ≤ 𝑛 · 𝑠x (𝐴x (𝑛)).

Proof. Since alphabets are finite, so is the value 𝐴x (𝑛). By definition 𝑠x (𝐴x (𝑛)) is the size of
a smallest string attractor Γ of the prefix of length 𝐴x (𝑛). Therefore, each length-𝑛 factor of x
crosses at least one element of this string attractor. Since each element of Γ is crossed by at most
𝑛 distinct length-𝑛 factors of x, one has 𝑝x (𝑛) ≤ 𝑛 · 𝑠x (𝐴x (𝑛)). □

Using the link between string attractors and LZ77 parsings, we easily obtain an upper bound
on 𝑠x as follows.
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Proposition 9. Let x be an infinite word. Then 𝑠x (𝑛) = 𝑂

(
𝑛

log 𝑛

)
.

Proof. Using Proposition 6, we have 𝑠x (𝑛) ≤ 𝑧x (𝑛). To conclude, it suffices to use the fol-
lowing upper bound on 𝑧x (𝑛) from [27]: the number of LZ-phrases for a length-𝑛 word on
an alphabet Σ is bounded by 𝑛

(1−𝜖𝑛 ) log|Σ | (𝑛)
, where |Σ | denotes the size of the alphabet Σ and

𝜖𝑛 = 2 1+log|Σ | (log|Σ | (𝑛 |Σ | ) )
log|Σ | (𝑛)

. □

It is possible to construct an infinite word x for which there exists a sequence of positive
integers 𝑛𝑖 , 𝑖 ≥ 1, such that 𝑠x (𝑛𝑖) = Θ( 𝑛𝑖

log 𝑛𝑖 ). For instance, such a word x can be constructed by
using a suitable sequence of de Bruijn words. However, having information on the values of the
string attractor profile function over a sequence (𝑛𝑖)𝑖≥1 does not allow us to precisely determine
its entire behavior. Therefore, we do not know whether the bound of Proposition 9 is tight.

However, if we assume that the appearance function is linear, a better bound on the function
𝑠x is given below.

Theorem 10 ([41]). Let x be an infinite word. If 𝐴x (𝑛) = Θ(𝑛), then 𝑠x (𝑛) = 𝑂 (log 𝑛).

In the following subsections we show several examples in which different repetitiveness
aspects are considered (Subsection 3.1, we analyse which combinatorial notions of repetitiveness
are related to the boundedness of the string attractor profile function (Subsection 3.2) and, finally,
we study the behaviour of the string attractor profile function in case of infinite words generated
by morphisms (Subsection 3.3).

3.1. Some concrete examples
In this subsection, we study the behavior of the string attractor profile function of various

types of infinite words and we focus on the relation with other measures of repetitiveness.
First, we look at the string attractor profile function of a periodic word representing the

simplest case of repetitiveness.

Example 11. Let us consider the word (01)𝜔 = 01010101 · · · . The word is periodic, and
therefore 𝑝 (01)𝜔 (𝑛) = Θ(1) and 𝐴(01)𝜔 (𝑛) = 𝑛 + 1. Since each non-empty factor 𝑣 of (01)𝜔 has
an occurrence starting either in the first or in the second position (respectively when 𝑣 starts with
0 or 1), the set {1, 2} is a string attractor for each prefix of length 𝑛 ≥ 2 of (01)𝜔 , and therefore
𝑠 (01)𝜔 (𝑛) = Θ(1).

As shown later in Proposition 19, every infinite word with factor complexity Θ(1) has a
bounded string attractor profile function. Since by Proposition 8 we can see that a word with factor
complexity Θ(𝑛1+Y) can not have a bounded string attractor profile function, in this subsection
we consider different case studies with linear factor complexity. In the following example, we
provide a non-recurrent infinite word having linear complexity function and unbounded string
attractor profile function.

Example 12. Let us consider the characteristic sequence c = 1101000100000001 · · · of powers
of 2, i.e., 𝑐𝑖 = 1 if 𝑖 = 2 𝑗 for some 𝑗 ≥ 0, 𝑐𝑖 = 0 otherwise. It is easy to see that c is aperiodic
and not recurrent (e.g., the factor 11 occurrs only once). It is known that 𝑝c (𝑛) and 𝐴c (𝑛) are
Θ(𝑛) [1]. One can prove that 𝑠c (𝑛) = Θ(log 𝑛) [25, 30, 41].

Example 13 gives a recurrent (not uniformly) infinite word with linear factor complexity and
unbounded string attractor profile function.

7



Example 13. Let ` : {0, 1}∗ → {0, 1}∗ be the 3-uniform morphism defined by `(0) = 010 and
`(1) = 111. The infinite word w = `∞ (0) = 010111010111111111010 · · · has linear factor
complexity 𝑝w. Moreover, it is recurrent, but not uniformly. Finally, since all factors 013𝑘0,
𝑘 ≥ 1, occur in w and do not overlap with each other, the string attractor profile function 𝑠w is not
bounded by a constant. Actually, as a consequence of Theorem 22 (proved in Subsection 3.3),
we can conclude that 𝑠w (𝑛) = Θ(log 𝑛).

In the previous example, the fact that the string attractor profile function is unbounded follows
from the existence of arbitrary large powers of 1. The example below uses the Thue-Morse word
to give an 𝜔-power free infinite word with linear factor complexity and unbounded string attractor
profile function.

Example 14. Let 𝜓 : {𝑠, 𝑎0, 𝑏0, 𝑎1, 𝑏1}∗ → {𝑠, 𝑎0, 𝑏0, 𝑎1, 𝑏1}∗ be the 2-uniform morphism de-
fined by 𝜓(𝑠) = 𝑠𝑏0, 𝜓(𝑎𝑥) = 𝑎𝑥𝑏𝑥 , and 𝜓(𝑏𝑥) = 𝑏𝑥𝑎𝑥 for all 𝑥 ∈ {0, 1}, where 𝑥 = 1− 𝑥. Since
𝜓 is 2-uniform, it follows that the infinite word v = 𝜓∞ (𝑠) = 𝑠𝑏0𝑏1𝑎1𝑏0𝑎0𝑎0𝑏0𝑏1𝑎1𝑎1𝑏1 · · ·
has linear factor complexity [1]. Moreover, one can observe that if we consider the coding
_ : {𝑠, 𝑎0, 𝑏0, 𝑎1, 𝑏1}∗ ↦→ {0, 1}∗ defined by _(𝑠) = _(𝑎0) = _(𝑎1) = 0 and _(𝑏0) = _(𝑏1) = 1
and apply it on v, we obtain the Thue-Morse word t = 0110100110010110 · · · . Since t is 3-power
free [1], it follows that v is 𝜔-power free. Finally, since all the factors 𝑏0𝜓

2𝑘−1 (𝑏0)𝑏0, 𝑘 ≥ 1,
occur only once in v and do not overlap with each other, the string profile function 𝑠v is not
bounded by a constant.

The next example shows an infinite word that is uniformly recurrent and with linear factor
complexity. Also in this case the string attractor profile function is unbounded.

Example 15. Let us consider the two 3-uniform morphisms

` :

{
0 ↦→ 010
1 ↦→ 111

and ¯̀ :

{
0 ↦→ 000
1 ↦→ 101

and the word q = lim𝑛→∞ ¯̀ ◦ ` ◦ ¯̀2 ◦ `2 ◦ · · · ◦ ¯̀𝑛 ◦ `𝑛 (0). This word is of linear factor
complexity [14, Proposition 2.1] and is uniformly recurrent [13, Lemma 7]. Let us show that, for
all 𝑛 ≥ 1, the prefix 𝑢𝑛 = ¯̀ ◦ ` ◦ ¯̀2 ◦ `2 ◦ · · · ◦ ¯̀𝑛 ◦ `𝑛 (0) of q requires at least 𝑛− 1 positions in
any of its string attractors. Observe that, in `𝑛 (0), we have the factors 013𝑖0 for all 1 ≤ 𝑖 ≤ 𝑛 − 1
which do not overlap one another. Let us show that their images under 𝜎 = ¯̀◦`◦ ¯̀2◦`2◦· · ·◦ ¯̀𝑛
do not overlap either. We first make the following observation. By definition of the morphism
`, for any words 𝑢 and 𝑤, if 𝑢 contains (at least) a 0, then any occurrence of `(𝑢) in `(𝑤)
corresponds to an occurrence of 𝑢 in 𝑤. In other words, for any 𝑢 and 𝑣 containing (at least) a 0
each, `(𝑢) and `(𝑣) overlap in `(𝑤) if and only if 𝑢 and 𝑣 overlap in 𝑤. Similarly, for any 𝑢 and
𝑣 containing (at least) a 1 each, ¯̀(𝑢) and ¯̀ (𝑣) overlap in [(𝑤) if and only if 𝑢 and 𝑣 overlap in
𝑤. As 𝜎 is a composition of ` and ¯̀, this shows that the factors 𝜎(013𝑖0), 1 ≤ 𝑖 ≤ 𝑛 − 1, do not
overlap in 𝑢𝑛. We conclude that 𝑠q is not bounded.

However, many classical infinite words in literature have a known string attractor profile
function bounded by a constant. It is the case of the Thue–Morse word (Example 24), the period-
doubling word (Example 25), and, as shown in this paper, the characteristic Sturmian words
(Theorem 43), the 𝑘-bonacci words (Theorem 57) and the family of words defined by S. Holub
in [22] (Example 16).
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Example 16. Let us define an infinite word u introduced by S. Holub in [22]. For that, let (𝑛𝑖)𝑖≥1
be an increasing sequence of positive integers with 𝑛1 ≥ 2. We recursively define the sequence
(𝑢𝑖)𝑖≥0 as 𝑢0 = Y and 𝑢𝑖 = 𝑢𝑖−10(𝑢𝑖−11)𝑛𝑖𝑢𝑖−1. It has been proven in [22] that u = lim𝑖→∞ 𝑢𝑖 is
uniformly recurrent but not linearly recurrent. Moreover, for each 𝑖 ≥ 1, u can be factorized as
a product of words 𝑢𝑖0 and 𝑢𝑖1, i.e., u = 𝑢𝑖𝑐1𝑢𝑖𝑐2𝑢𝑖𝑐3 · · · , where 𝑐 𝑗 ∈ {0, 1}. More precisely it
has been proved in [22] that each occurrence of 𝑢𝑖 starts at position that is a multiple of |𝑢𝑖 | + 1.
By using such a property, the word 𝑢 has exactly two right special factors of length 𝑛, for each
𝑛 ≥ 1. They are precisely the length-𝑛 suffixes of 𝑢𝑖−10(𝑢𝑖−11)𝑛𝑖𝑢𝑖−1 and (𝑢𝑖−11)𝑛𝑖𝑢𝑖−10𝑢𝑖−1
where |𝑢𝑖−1 | + 1 ≤ 𝑛 ≤ |𝑢𝑖 |. Consequently, 𝑝u (𝑛) = 2𝑛 [4].

Furthermore, it is possible to prove that, for 𝑖 ≥ 1, the set

Γ (𝑖) =

{
|𝑢𝑖−1 | + 1,

𝑖−1∑︁
𝑘=0

( |𝑢𝑘 | + 1), 2|𝑢𝑖−1 | + 2

}
is a string attractor for 𝑢𝑖 . In fact, given the recursive construction of u, for each factor 𝑣 of 𝑢𝑖 we
can find 0 ≤ 𝑗 ≤ 𝑖 − 1 such that |𝑢 𝑗 | < |𝑣 | ≤ |𝑢 𝑗+1 |, and each of these factors must fall in one of
the following mutually exclusive cases:

1. 𝑣 = 𝑠 𝑗 (1𝑢 𝑗 )𝑞1 0(𝑢 𝑗1)𝑞2 𝑝 𝑗 , for some 𝑞1, 𝑞2 ≥ 0 such that 𝑞1 + 𝑞2 ≤ 𝑛 𝑗+1, and for some
prefix 𝑝 𝑗 and suffix 𝑠 𝑗 of 𝑢 𝑗 ;

2. 𝑣 = 𝑠 𝑗 (1𝑢 𝑗 )ℎ1 0𝑢 𝑗0(𝑢 𝑗1)ℎ2 𝑝 𝑗 , for some 𝑗 < 𝑖 − 1 and ℎ1, ℎ2 ≥ 0 such that ℎ1 + ℎ2 < 𝑛 𝑗+1,
and for some prefix 𝑝 𝑗 and suffix 𝑠 𝑗 of 𝑢 𝑗 ;

3. 𝑣 = 𝑠 𝑗 (1𝑢 𝑗 )𝑘1𝑝 𝑗 , for some 0 ≤ 𝑘 < 𝑛𝑖 (resp. 0 ≤ 𝑘 ≤ 𝑛 𝑗 ) if 𝑗 = 𝑖 − 1 (resp. if 𝑗 < 𝑖 − 1),
and for some prefix 𝑝 𝑗 and suffix 𝑠 𝑗 of 𝑢 𝑗 .

One can observe that for all 𝑗 < 𝑖 − 1, the factors 𝑣 from case 1. have an occurrence crossing
the position

∑𝑖−1
𝑘=0 ( |𝑢𝑘 | + 1) ∈ Γ (𝑖) , while if 𝑗 = 𝑖 − 1 the only occurrence of 𝑣 in 𝑢𝑖 crosses

the position |𝑢𝑖−1 | + 1 ∈ Γ (𝑖) . The factors 𝑣 that fall in case 2. on the other hand overlap the
first position in Γ (𝑖) in correspondence to the 0 in 𝑣 at position |𝑠 𝑗 | + ℎ1 (1 + |𝑢 𝑗 |) + 1, that is
|𝑢 𝑗 | + 1 ∈ Γ (𝑖) once again. Finally, one occurrence of each factor falling in case 3. can be found
overlapping the last position in Γ (𝑖) , where the last 1 right before 𝑝 𝑗 ends up exactly at position
2|𝑢𝑖 | + 2 ∈ Γ (𝑖) .

We deduce a string attractor for the length-𝑛 prefix of u as follows: if 𝑖 is such that |𝑢𝑖 | <
𝑛 < |𝑢𝑖+1 |, we can merge the set Γ (𝑖) with the positions ≤ 𝑛 in Γ (𝑖+1) to obtain a string attractor
for the length-𝑛 prefix. Such a string attractor can have up to 6 positions, and it follows that
𝑠u (𝑛) = Θ(1).

3.2. The bounded case
Supported by the previous subsection, it is relevant to detect which combinatorial properties

of infinite words are related to the boundedness of the string attractor profile function. Observe
that we already know the following result.

Theorem 17 ([41]). For any linearly recurrent infinite word x, we have 𝑠x (𝑛) = Θ(1).
The previous theorem is not a characterization. Indeed, Example 16 exhibits uniformly (and

not linearly) recurrent words x for which 𝑠x is bounded. In this section, we gather results towards
a characterization.

First, we analyze how the boundedness of 𝑠x structures the infinite word x and we show that
if an infinite word ha s its string attractor profile function bounded by some constant value, then
it has at most linear factor complexity. More precisely, we have the following result.
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Theorem 18. Let x be an infinite word. If 𝑠x = Θ(1), then either x is eventually periodic, or x is
𝜔-power free and 𝑝x = Θ(𝑛).

Proof. First, Proposition 8 implies that, if 𝑘 is such that 𝑠x (𝑛) < 𝑘 for each 𝑛 ≥ 1, then
𝑝x (𝑛) ≤ 𝑛 · 𝑘 for each 𝑛 ≥ 1. Therefore, the factor complexity is (at most) linear. Towards a
contradiction, let us assume now that x is aperiodic and not 𝜔-power free. Then there exists a
factor 𝑤 of x such that, for every 𝑞 ≥ 1, 𝑤𝑞 is factor of x. Moreover, the assumption on x implies
that x ≠ 𝑢𝑤𝜔 for any 𝑢 ∈ Σ∗. It follows that there exists an increasing sequence (𝑞 𝑗 ) 𝑗≥1 of
integers such that, for each 𝑗 , there exist a proper suffix 𝑠 𝑗 and a proper prefix 𝑝 𝑗 of 𝑤, and two
letters 𝑎 𝑗 and 𝑏 𝑗 such that 𝑎 𝑗 𝑠 𝑗 is not a suffix of 𝑤, 𝑝 𝑗𝑏 𝑗 is not a prefix of 𝑤, and 𝑎 𝑗 𝑠 𝑗𝑤

𝑞 𝑗 𝑝 𝑗𝑏 𝑗

is a factor of x. As any position can cover at most two such factors, 𝑠x is unbounded. This is a
contradiction. □

The following proposition shows that, in the case of eventually periodic words, the string
attractor profile function is bounded by a constant.

Proposition 19. For any eventually periodic infinite word x, we have 𝑠x (𝑛) = Θ(1).

Proof. Let 𝑢 ∈ Σ∗ and 𝑣 ∈ Σ+ such that x = 𝑢𝑣𝜔 . For all 𝑛 ≥ 1, {1, . . . ,min{𝑛, |𝑢𝑣 |}} is a string
attractor for the length-𝑛 prefix. Therefore, 𝑠x (𝑛) ≤ |𝑢𝑣 | for all 𝑛. □

However, the converse of Theorem 18 does not hold. Indeed, in Example 14 a 𝜔-power free
word with linear factor complexity and unbounded string attractor profile function is given.

Note that even the stronger hypothesis of uniform recurrence together with linear factorial
complexity does not guarantee that the string profile function is bounded, as shown in Example 15.

Observe that Examples 15 and 14 negatively answer to the questions posed in [40] in which
it was asked whether linear factor complexity along with either uniformly recurrence or 𝜔-power
freeness property are sufficient to guarantee a bounded string attractor profile function for a given
infinite word.

The problem of finding a complete characterization of the infinite words having a bounded
string attractor profile function is still open.

We conclude this subsection with Table 1 showing a synoptic overview of the factor com-
plexity, repetitiveness properties, and string attractor profile function for both the infinite words
described in this section and those that will be considered in the rest of the paper. Note that
apart from the periodic word (01)𝜔 , all words considered in the table have linear factor com-
plexity. By Theorem 18, linear factor complexity is a necessary but not sufficient condition for
an aperiodic infinite word to have a bounded string attractor profile function. Four infinite words
with unbounded string attractor profile function are shown while, for the other words, we have
𝑠x (𝑛) = Θ(1). In these cases, the exact values of 𝑠x (𝑛), for 𝑛 large enough, are reported in the
table. This points out both that different repetitiveness aspects may be hiding behind a constant
string attractor profile function but also that infinite words having deeply different combinatorial
structures and properties may have point-wise equal values of the function 𝑠x (𝑛). This fact
motivates the use of the notion of string attractor to define new complexity measures with the
goal of capturing such combinatorial properties, as we describe in the next sections.

3.3. The case of purely morphic words
Some data compression measures have been explored when applied to fixed points of mor-

phisms, or more specifically, to iterated images of a morphism. It is the case of the number of
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Infinite word x 𝑝x (𝑛) Recurrence 𝜔-power
free 𝑠x (𝑛)

(01)𝜔 (Ex. 11) Θ(1) linearly
recurrent No 2

c (Ex. 12) Θ(𝑛) not
recurrent No Θ(log 𝑛)

w (Ex. 13) Θ(𝑛) recurrent No Θ(log 𝑛)
v (Ex. 14) Θ(𝑛) not recurrent Yes Θ(log 𝑛)

q (Ex. 15) Θ(𝑛) uniformly
recurrent Yes Θ(log 𝑛)

u (Ex. 16) Θ(𝑛) uniformly
recurrent Yes 3

s (Sec. 6) Θ(𝑛) uniformly
recurrent Yes 2

t (Ex. 24) Θ(𝑛) linearly
recurrent Yes 4

pd (Ex. 25) Θ(𝑛) linearly
recurrent Yes 2

b(𝑘 ) (Sec. 7) Θ(𝑛) linearly
recurrent Yes 𝑘

Table 1: The table shows the factor complexity 𝑝x (𝑛) , recurrence properties, 𝜔-power freeness and the string attractor
profile function 𝑠x (𝑛) for large enough 𝑛, for all the infinite words x considered in Sections 3, 6 and 7, namely: the
periodic word (01)𝜔 , the characteristic sequence c of powers of 2; the purely morphic word w generated by the morphism
` defined by ` (0) = 010 and ` (1) = 111; a purely morphic word v generated by a 2-uniform morphism; a uniformly
recurrent word q defined using ` and its counterpart obtained by echanging 0 and 1; an infinite word u introduced by
Holub in [22]; any characteristic Sturmian word s; the Thue-Morse word t; the period doubling word pd; the 𝑘-bonacci
word b(𝑘) defined over an alphabet of size 𝑘.

BWT equal-letter runs [19] and of the LZ-complexity function [10]. Therefore, it is natural to
wonder if similar results can be obtained for the string attractor profile function.

First we present an upper bound on the string attractor profile function of purely morphic
words.

Theorem 20. Let x = 𝜑∞ (𝑎) be the fixed point of a morphism 𝜑 prolongable on 𝑎 ∈ Σ. Then
𝑠x (𝑛) = 𝑂 (𝑖), where 𝑖 is such that |𝜑𝑖 (𝑎) | ≤ 𝑛 < |𝜑𝑖+1 (𝑎) |. In particular, if there exists 𝜌 > 1
such that |𝜑𝑖 (𝑎) | = Ω(𝜌𝑖), then 𝑠x (𝑛) = 𝑂 (log 𝑛).

To prove Theorem 20, we use Proposition 6 and the following result about the number of
LZ-phrases in the LZ77 parsing in purely morphic words.

Proposition 21 ([10]). Let x = 𝜑∞ (𝑎) be the fixed point of a non-erasing morphism 𝜑 prolongable
on 𝑎 ∈ Σ. Then

𝑧(𝜑𝑖 (𝑎)) =
{
Θ(1), if x is eventually periodic;
Θ(𝑖), otherwise.

Proof of Theorem 20. For all 𝑖 ≥ 0, define 𝑛𝑖 = |𝜑𝑖 (𝑎) |. By Proposition 21, there exist two
constant 𝑐1, 𝑐2 ≥ 1 such that for all 𝑛 ∈ [𝑛𝑖 , 𝑛𝑖+1), we have 𝑐1 · 𝑖 ≤ 𝑧x (𝑛𝑖) ≤ 𝑧x (𝑛) ≤ 𝑧x (𝑛𝑖+1) ≤
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𝑐2 · 𝑖 + 𝑐2. Note that the second and third inequalities follow by the monotonicity of the measure
𝑧 (i.e., 𝑧(𝑢) ≤ 𝑧(𝑢𝑣) for all 𝑢, 𝑣 ∈ Σ∗). This implies that 𝑧x (𝑛) = Θ(𝑖), and by Proposition 6 it
follows that 𝑠x = 𝑂 (𝑖). In particular, if |𝜑𝑖 (𝑎) | = Ω(𝜌𝑖) for some 𝜌 > 1, then one has 𝑛 ∈ Ω(𝜌𝑖)
or, conversely, 𝑖 = 𝑂 (log 𝑛) so the conclusion 𝑠x (𝑛) = 𝑂 (𝑖) = 𝑂 (log 𝑛) follows. □

In the following theorem, we provide a finer result in the case of binary purely morphic word.

Theorem 22. Let ` : {𝑎, 𝑏}∗ → {𝑎, 𝑏}∗ be a morphism prolongable on 𝑎 and x = `∞ (𝑎). Then
either 𝑠x (𝑛) = Θ(1) or 𝑠x (𝑛) = Θ(log 𝑛), and it is decidable whether the former or the latter
occurs.

Proof. Based on the morphism `, we can decide in which of the following (mutually exclusive)
cases we are.

1. The word x is eventually periodic [38, Theorem 4].
2. The word x is aperiodic and there exist a non-erasing morphism 𝜏 : Σ∗ → {𝑎, 𝑏}∗ and

a primitive morphism 𝜑 : Σ∗ → Σ∗ such that x = `∞ (𝑎) = 𝜏(𝜑∞ (𝑎)) (whenever ` is
primitive, as well as some decidable cases where `(𝑏) = 𝑏 by [37, Theorem 4.1] and its
proof).

3. The word x is aperiodic and contains arbitrarily large powers of 𝑏’s (whenever ` = 𝑏𝑘 ,
𝑘 ≥ 2, as well as some decidable cases where `(𝑏) = 𝑏 by [37, Theorem 4.1]).

Let us now show that, in each case, we have either 𝑠x (𝑛) = Θ(1) or 𝑠x (𝑛) = Θ(log 𝑛). For the
first case, we have 𝑠x (𝑛) = Θ(1) as a direct consequence of Proposition 19. In the second case,
as 𝜑 is primitive, 𝜑∞ (𝑎) is linearly recurrent (see [15, Proposition 25]). This implies that x is
also linearly recurrent and thus that 𝑠x (𝑛) = Θ(1) by Theorem 17.

We now turn to the third case. Observe that, by Theorem 18, we cannot have 𝑠x (𝑛) = Θ(1),
so we show that 𝑠x (𝑛) = Θ(log 𝑛). By [19, Proposition 20 and Corollary 27], the number of
distinct maximal runs of 𝑏’s grows logarithmically with respect to the length of the prefixes of
x. As a position in a string attractor can cover at most two different runs of 𝑏’s, this implies
that 𝑠x (𝑛) = Ω(log 𝑛). On the other hand, observe that by aperiodicity `(𝑎) contains at least
two occurrences of 𝑎. Therefore, |`𝑛 (𝑎) | = Ω(2𝑛) and, by Theorem 20, we conclude that
𝑠x (𝑛) = 𝑂 (log 𝑛) so 𝑠x (𝑛) = Θ(log 𝑛). □

The same result has been obtained for another class of words as reported below. In short, an
infinite word x is 𝑘-automatic, with 𝑘 ≥ 2, if and only if there exist a coding 𝜏 : Σ → Σ and a
𝑘-uniform morphism `𝑘 such that x = 𝜏(`∞

𝑘
(𝑎)), for some 𝑎 ∈ Σ [1]. An infinite word is called

automatic if it is 𝑘-automatic for some 𝑘 ≥ 2.

Theorem 23 ([41]). Let x be an automatic infinite word. Then, either 𝑠x (𝑛) = Θ(1) or 𝑠x (𝑛) =
Θ(log 𝑛), and it is decidable whether the former or the latter occurs.

Examples 12 and 13 show two automatic sequences for which the string attractor profile
function is Θ(log 𝑛).

For some particular automatic words obtained as fixed points of morphisms, string attractors
may be found by using their specific combinatorial structure and properties, as shown in the next
example.

Example 24. Let us consider the Thue–Morse word t = 0110100110010110 · · · . It is a purely
morphic word, as described in Example 5. It has been proven in [41] (cf. also [26, 11]) that
𝑠t (𝑛) = 4 for all 𝑛 ≥ 25.
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Moreover, the authors of [41] show that, if the string attractor profile function is bounded,
it is possible to build an automaton which returns the positions of a smallest string attractor for
each prefix. However, the construction of such an automaton is done case by case using the
theorem-proving software Walnut [33]. Such a technique has been used in [41] to find a string
attractor of smallest size for the automatic infinite word considered in the next example.

Example 25. Consider the period-doubling word pd = 101110101011 · · · , which is the fixed
point of the morphism 1 ↦→ 10, 0 ↦→ 11. It has been proven in [41, Theorem 3] that 𝑠pd (𝑛) = 2
for all 𝑛 ≥ 1. In particular, it has been shown [41, Theorem 4] that for the prefix of pd of length
𝑛 ≥ 6, a string attractor of smallest size is

Γ(pd[1, 𝑛]) =
{
{3 · 2𝑖−3, 3 · 2𝑖−2}, if 2𝑖 ≤ 𝑛 < 3 · 2𝑖;
{2𝑖 , 2𝑖+1}, if 3 · 2𝑖 ≤ 𝑛 < 2𝑖+1.

4. Two new string attractor-based measures

In this section, we introduce two new notions related to the string attractors of a word. Indeed,
knowing the minimal size of a string attractor is often not sufficient to understand the structure of
a word or choose interesting string attractors. Therefore, it can be useful to also take into account
the distribution of the positions in the string attractors. This is what our new measures capture
and, as we will show later on, they will allow us to distinguish families of words.

The first measure is the span of a word, which gives the minimum distance between the
rightmost and the leftmost positions of any string attractor.

Definition 26. Let 𝑤 be a finite word and let G be the set of all string attractors for 𝑤. The (string
attractor) span of 𝑤 is the value span(𝑤) = minΓ∈G (max Γ−min Γ). We will also abusively say
that the quantity (max Γ − min Γ) is the span of the string attractor Γ.

Example 27. Let us consider the word 𝑤 = 𝑎𝑏𝑐𝑐𝑎𝑏𝑐 on the alphabet Σ = {𝑎, 𝑏, 𝑐}. One can
see that the sets Γ1 = {4, 5, 6} (underlined positions) and Γ2 = {1, 2, 4} (overlined positions) are
two suitable string attractors for 𝑤. Both are of minimal size as |Γ1 | = |Γ2 | = |Σ | but they have
different spans. Moreover, since all of the positions of Γ1 are consecutive, it is of minimal span
and therefore span(𝑤) = 6 − 4 = 2.

The span can be used to derive an upper-bound on the number of distinct factors, as shown
below.

Proposition 28. For any finite word 𝑤 over Σ, we have |𝐹 (𝑤) ∩ Σ𝑛 | ≤ 𝑛 + span(𝑤) for all
1 ≤ 𝑛 ≤ |𝑤 |.

Proof. Let Γ be a string attractor of minimal span and write 𝛿 = min Γ and 𝛿′ = max Γ. Then,
the interval Γ′ = [𝛿, 𝛿′] contains Γ and is a string attractor for 𝑤. Since every factor has an
occurrence crossing a position in Γ′, it is possible to find all length-𝑛 factors of 𝑤 by considering
a window of length 𝑛 sliding from position max{𝛿 − 𝑛 + 1, 1} to position min{𝛿′, |𝑤 | − 𝑛 + 1}.
One can see that this interval is of size at most 𝛿′ − (𝛿 − 𝑛 + 1) + 1 = 𝑛 + span(𝑤). This ends the
proof. □

In addition, we may compare string attractors of a given word according to their rightmost
positions. More specifically, we will want the string attractor having the smallest such position.
This gives the notion defined below.
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Definition 29. Let 𝑤 be a finite word and let G be the set of all string attractors for 𝑤. The
leftmost string attractor for 𝑤 is a string attractor Γ ∈ G such that, for all Γ′ ∈ G, we have
max Γ ≤ max Γ′. The (string attractor) leftmost measure of 𝑤 is then lm(𝑤) = max Γ, where Γ

is a leftmost string attractor.

Example 30. We resume Example 27. First, we have 4 = max Γ2 < max Γ1 = 6. Second, the set
Δ = {1, 2, 3} is not a string attractor for 𝑤. Therefore lm(𝑤) = 4.

Examples 27 and 30 show that for the finite word 𝑤 = 𝑎𝑏𝑐𝑐𝑎𝑏𝑐, these two measures can be
realized by distinct string attractors. In fact, in this case, it is not possible to find a leftmost string
attractor having minimal span since {2, 3, 4} is not a string attractor.

Similarly to what we did for the span, we can use the leftmost measure to obtain an upper-
bound on the number of distinct factors.

Proposition 31. For any finite word 𝑤 over Σ, we have |𝐹 (𝑤) ∩Σ𝑛 | ≤ lm(𝑤) for all 1 ≤ 𝑛 ≤ |𝑤 |.

Proof. The proof follows the same lines as that of Proposition 28 by considering a leftmost string
attractor Γ, and Γ′ = [1,max Γ] instead. □

In Examples 27 and 30, we can see that 𝛾∗ (𝑤) − 1 ≤ span(𝑤) ≤ lm(𝑤) − 1. This is a general
result as shown below.

Proposition 32. Let 𝑤 be an finite word. Then, 𝛾∗ (𝑤) − 1 ≤ span(𝑤) ≤ lm(𝑤) − 1.

Proof. Let Γ be a string attractor of 𝑤 with minimal span. It contains at most max Γ−min Γ+1 =

span(𝑤) + 1 elements, therefore 𝛾∗ (𝑤) ≤ span(𝑤) + 1.
Let Γ′ be a leftmost string attractor of 𝑤. Its span is at most max Γ′−1 = lm(𝑤) −1, therefore

span(𝑤) ≤ lm(𝑤) − 1. □

The following proposition shows how the size of the smallest string attractor, the span and
the leftmost measure of a word yield bounds on the corresponding measures for its image under
a morphism.

Proposition 33. Let 𝜑 : Σ∗ → Σ′∗ be a morphism. There exists a constant 𝐶 ≥ 1 which depends
only on 𝜑 such that, for every 𝑤 ∈ Σ+, the following hold:

1. 𝛾∗ (𝜑(𝑤)) ≤ 2𝛾∗ (𝑤) + 𝐶;
2. span(𝜑(𝑤)) ≤ 𝐶 · span(𝑤);
3. lm(𝜑(𝑤)) ≤ 𝐶 · lm(𝑤).

Proof. Starting from a given string attractor Γ for 𝑤, we show how one can build a valid string
attractor for 𝜑(𝑤) in two steps.

Step 1. First, we consider the factors of the images of letters, i.e., the elements of 𝐹𝜑 =⋃
𝑎∈Σ 𝐹 (𝜑(𝑎)). Recall that for every symbol 𝑎 ∈ Σ there is at least one position 𝑗 ∈ Γ such that

𝑤 𝑗 = 𝑎; let us denote 𝑗𝑎 such a position. Then, for every 𝑎 ∈ Σ we can choose any minimum
string attractor Γ𝑎 of 𝜑(𝑎) and overlay it on the occurrence of 𝜑(𝑤 𝑗𝑎 ) to cover the factors of 𝜑(𝑎).
In other words, every element of 𝐹𝜑 has an occurrence in 𝑤 crossing at least a position in

T𝜑 =
⋃
𝑎∈Σ

{|𝜑(𝑤 [1, 𝑗𝑎 − 1]) | + 𝛿 : 𝛿 ∈ Γ𝑎}.
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Step 2. Let us now consider the other factors of 𝜑(𝑤), i.e., the elements of 𝐹 (𝜑(𝑤)) which are
not in 𝐹𝜑 . To cover these factors, we define two sets of positions. Let T𝑓 = {|𝜑(𝑤 [1, 𝑗 −1]) | +1 :
𝑗 ∈ Γ} be the set of positions corresponding to the first letter of 𝜑(𝑤 𝑗 ), where 𝑗 is a position in Γ.
Analogously, we define the set Tℓ = {|𝜑(𝑤 [1, 𝑗]) | : 𝑗 ∈ Γ} as the set of positions corresponding
to the last letter of some 𝜑(𝑤 𝑗 ) with 𝑗 ∈ Γ.

Let 𝑢 ∈ 𝐹 (𝜑(𝑤)) \ 𝐹𝜑 and let 𝑣 be a factor of 𝑤 of minimal length such that 𝑢 is a factor of
𝜑(𝑣). Observe that, by definition of 𝐹𝜑 , 𝑣 is of length at least 2. As 𝑣 is a factor of 𝑤, it has an
occurrence crossing some position 𝑗 ∈ Γ. By minimality of 𝑣, we know that 𝑢 has an occurrence
crossing either the first position of 𝜑(𝑤 𝑗 ), or the last position of 𝜑(𝑤 𝑗 ) (or both). Therefore, 𝑢
crosses a position in T𝑓 or Tℓ .

As a consequence of the previous two steps, Γ′ = T𝜑 ∪ T𝑓 ∪ Tℓ is a string attractor for 𝜑(𝑤).
Recall that this construction can be done starting from any string attractor Γ of 𝑤, giving different
corresponding string attractors Γ′. To obtain the three claimed inequalities, we will consider
different string attractors Γ of 𝑤. Now let us denote ℓ = max𝑎∈Σ |𝜑(𝑎) |, i.e., ℓ is the longest
image of a letter.

1. If Γ is such that |Γ | = 𝛾∗ (𝑤), then

𝛾∗ (𝜑(𝑤)) ≤ |Γ′ | ≤ |T 𝑓 | + |T 𝑙 | + |T 𝜑 | ≤ 2𝛾∗ (𝑤) +
∑︁
𝑎∈Σ

𝛾∗ (𝜑(𝑎)).

2. If Γ is such that 𝛿 = min Γ, 𝛿′ = max Γ and 𝛿′ − 𝛿 = span(𝑤), then by construction we
have min Γ′ = |𝜑(𝑤 [1, 𝛿 − 1]) | + 1 ∈ T𝑓 and max Γ′ = |𝜑(𝑤 [1, 𝛿′]) | ∈ Tℓ , and therefore

span(𝜑(𝑤)) ≤ |𝜑(𝑤 [1, 𝛿′]) | − (|𝜑(𝑤 [1, 𝛿 − 1]) | + 1) = |𝜑(𝑤 [𝛿, 𝛿′]) | − 1 ≤ ℓ · (span(𝑤) + 1).

3. If Γ is such that max Γ = lm(𝑤), then

lm(𝜑(𝑤)) ≤ max Γ′ = |𝜑(𝑤 [1,max Γ]) | ≤ ℓ · lm(𝑤).

To end the proof, we can choose the constant 𝐶 = ℓ( |Σ | + 1) (which is independent of 𝑤), and
the conclusion will follow for all three cases. □

5. Span and leftmost complexities

Based on the two new measures introduced in the previous section, we can define related
complexity functions for infinite words, respectively called the span complexity and the leftmost
complexity, which allow us to obtain a finer classification of infinite words. Indeed, Examples 35
and 44 highlight two infinite words, the period-doubling word and the Fibonacci word, which
are not distinguishable if we consider their respective string attractor profile function as they are
eventually equal to 2. However, the situation is very different if we look at how the positions
within a string attractor are arranged.

Definition 34. Let x be an infinite word. The span and leftmost complexities of x are respectively
defined by spanx (𝑛) = span(x[1, 𝑛]) and lmx (𝑛) = lm(x[1, 𝑛]) for all 𝑛 ≥ 1.

The span complexity for the period doubling word is described below.

Example 35. Consider the period-doubling word pd = 101110101011 · · · described in Exam-
ple 25 in which we recalled that 𝑠pd (𝑛) = 2 for all 𝑛 ≥ 2. It has been proven in [41, Theorem 10]
that

spanpd (𝑛) =
{

1, if 2 ≤ 𝑛 ≤ 5;
2𝑖 , if 3 · 2𝑖 ≤ 𝑛 < 3 · 2𝑖+1 for some 𝑖 ≥ 1.
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For Holub’s words, we can use Example 16 to obtain the span and the leftmost complexities
for particular prefixes, as shown below.

Example 36. Consider the word u from Example 16 in which we proved that, for all 𝑖 ≥ 0, the set
Γ (𝑖) =

{
|𝑢𝑖 | + 1,

∑𝑖
𝑘=0 ( |𝑢𝑘 | + 1), 2|𝑢𝑖 | + 2

}
is a string attractor of the length-|𝑢𝑖+1 | prefix of u. This

directly implies that spanu ( |𝑢𝑖+1 |) ≤ max Γ (𝑖)−min Γ (𝑖) = |𝑢𝑖 |+1 and that lmu ( |𝑢𝑖+1 |) ≤ 2|𝑢𝑖 |+2.
Recall moreover that consecutive occurrences of 𝑢𝑖 in u are separated by at least |𝑢𝑖 | + 1 letters.
In particular, as 𝑢𝑖+1 = 𝑢𝑖0(𝑢𝑖1)𝑛𝑖𝑢𝑖−1 with 𝑛𝑖 ≥ 2, the factor 𝑢𝑖0 only occurs as a prefix in 𝑢𝑖+1,
and 1𝑢𝑖1 does not occur before position 2|𝑢𝑖 | + 2. It follows that spanu ( |𝑢𝑖+1 |) = |𝑢𝑖 | + 1 and that
lmu ( |𝑢𝑖+1 |) = 2|𝑢𝑖 | + 2.

The next result directly follows from Proposition 32 and establishes the relationship between
the profile function, the span and leftmost complexities.

Proposition 37. For any infinite word x, we have 𝑠x (𝑛) − 1 ≤ spanx (𝑛) ≤ lmx (𝑛) − 1 for all
𝑛 ≥ 1.

As we did for the string attractor profile function, we will now focus on the case where these
new complexities are “bounded”. More specifically, we will characterize the infinite words such
that these complexities are bounded infinitely many times.

We first look at the leftmost complexity. We will use the following intermediate result, which
can be deduced from the proofs of [30, Propositions 12 and 15].

Proposition 38. Let 𝑤 be a non-empty word and let 𝑢 = 𝑤𝑟 , 𝑣 = 𝑤𝑠 be fractional powers of 𝑤
with 1 ≤ 𝑟 ≤ 𝑠. If Γ is a string attractor of 𝑢, then Γ ∪ {|𝑤 |} is a string attractor of 𝑣.

Proposition 39. For any infinite word x, the following are equivalent:

1. There exists a constant 𝐶 ≥ 1 such that lmx (𝑛) ≤ 𝐶 for infinitely many 𝑛.
2. The word x is eventually periodic.
3. The leftmost complexity lmx is bounded.

Proof. The implication (1) =⇒ (2) follows from Proposition 31. Indeed, for all 𝑚 ≥ 1, there
exists an integer 𝑛 such that lmx (𝑛) ≤ 𝐶 and x[1, 𝑛] contains all length-𝑚 factors. Therefore,
𝑝x (𝑚) ≤ 𝐶. Using Theorem 2, this implies that 𝑥 is eventually periodic.

The implication (2) =⇒ (3) follows from Proposition 38. Indeed, if x = 𝑢𝑣𝜔 , then for all
𝑛 ≥ 1, {1, 2, . . . ,min{𝑛, |𝑢𝑣 |}} is a string attractor for the word x[1, 𝑛]. Therefore, lmx (𝑛) ≤ |𝑢𝑣 |
for all 𝑛 ≥ 1.

The implication (3) =⇒ (1) is direct. □

This result gives a new characterization of eventually periodic words. Observe that the proof
uses the well-known characterization by Morse and Hedlund (Theorem 2). Note that, in the
following, we will mostly use the contraposition of Proposition 39.

We now look at a similar description for the span.

Proposition 40. Let x be an infinite word. If there exists a constant𝐶 ≥ 1 such that spanx (𝑛) ≤ 𝐶

for infinitely many 𝑛, then x is eventually periodic, or it is recurrent and there exists 𝑑 ≤ 𝐶 such
that𝑝x (𝑛) = 𝑛 + 𝑑 for all large enough 𝑛.
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Proof. Let us suppose that x is aperiodic. We first show that x is recurrent. Towards a contradic-
tion, we assume that x is not recurrent. Therefore, there exists a factor that only occurs once in x.
Say that this occurrence ends at position 𝑘 . This implies that, for all 𝑛 ≥ 𝑘 , any string attractor
of x[1, 𝑛] contains a position smaller than or equal to 𝑘 . As spanx (𝑛) ≤ 𝐶 for infinitely many 𝑛,
then lmx (𝑛) ≤ 𝑘 + 𝐶 for infinitely many 𝑛, which contradicts Proposition 39.

We now show that x has the claimed factor complexity. For all 𝑚 ≥ 1, there exists an integer
𝑛 such that spanx (𝑛) ≤ 𝐶 and x[1, 𝑛] contains all length-𝑚 factors. By Proposition 28, we have
𝑝x (𝑚) ≤ 𝑚 +𝐶. Using Theorem 2 and as x is aperiodic, we conclude that 𝑝x (𝑚) = 𝑚 + 𝑑 for all
large enough 𝑚 and for some 𝑑 ≤ 𝐶. □

Note that a converse-like characterization will be given in Theorem 49.
On the other hand, some infinite words have maximal span complexity, as stated in the

following result.

Proposition 41. For any linearly recurrent word x, if 𝑝x (𝑛) = 𝑛 +Ω(𝑛), then spanx (𝑛) = Θ(𝑛).

Proof. Since x is linearly recurrent, by Remark 4, there exists an integer 𝐴 such that, for all
𝑚, the length-(𝐴𝑚) prefix of x contains all length-𝑚 factors of x. For all 𝑛, if 𝑚 is such that
𝑛 ∈ [𝐴𝑚 + 1, 𝐴(𝑚 + 1)], Proposition 28 implies that spanx (𝑛) ≥ 𝑝x (𝑚) − 𝑚. By assumption
on the factor complexity function, we have 𝑝x (𝑚) ≥ 𝐶𝑚 for a constant 𝐶 > 1. Therefore
spanx (𝑛) ≥ (𝐶 − 1)𝑚 ≥ (𝐶 − 1) (𝑛/𝐴 − 1). This shows that spanx (𝑛) = Ω(𝑛). But since we
trivially have spanx (𝑛) = 𝑂 (𝑛), the conclusion follows. □

6. The case of Sturmian words

Sturmian words are famous combinatorial objects having a large number of mathematical
properties and characterizations. They also have a geometric description as approximations of
straight lines [28, Chapter 2]. Among aperiodic binary infinite words, they are those with minimal
factor complexity, i.e., an aperiodic infinite word x is a Sturmian word if 𝑝x (𝑛) = 𝑛 + 1, for all
𝑛 ≥ 0. Moreover, Sturmian words are uniformly recurrent.

In this section, we analyze properties of the three new string-attractor related complexities
for Sturmian words and two related families of infinite words. On the one hand, we consider the
subfamily of characteristic Sturmian words, defined as follows: a Sturmian word s is characteristic
if both 0s and 1s are Sturmian words. On the other hand, we investigate the superfamily of quasi-
Sturmian words, which can be considered the simplest generalizations of Sturmian words in terms
of factor complexity. Indeed, they are defined as follows [5]: a word x is quasi-Sturmian if there
exist integers 𝑑 and 𝑛0 such that 𝑝x (𝑛) = 𝑛 + 𝑑, for each 𝑛 ≥ 𝑛0. The infinite words having factor
complexity 𝑛 + 𝑑 have been also studied in [21] where they are called “words with minimal block
growth”.

6.1. On the string attractor-based complexities for characteristic Sturmian words
We focus here on the family of characteristic Sturmian words, for which we can explicitly give

the string attractor profile function, the span complexity and the leftmost complexity by giving
string attractors realizing them.

It is based on the construction of characteristic Sturmian words via particular finite words
called standard Sturmian words. The latter have many interesting combinatorial properties and
appear as extremal cases for several algorithms and data structures [9, 8, 24, 31, 42]. The standard
Sturmian words are defined recursively as follows [39].
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Definition 42. A directive sequence is an infinite sequence of integers (𝑞𝑖)𝑖≥0 such that 𝑞0 ≥ 0
and 𝑞𝑖 ≥ 1 for all 𝑖 ≥ 1. The corresponding sequence of standard Sturmian words (𝑥𝑖)𝑖≥0 is
defined by 𝑥0 = 𝑏, 𝑥1 = 𝑎, and 𝑥𝑖+1 = 𝑥

𝑞𝑖−1
𝑖

𝑥𝑖−1 for all 𝑖 ≥ 1.

The limits s = lim𝑖→∞ 𝑥𝑖 of such sequences of standard Sturmian words are exactly the
characteristic Sturmian words [28, Proposition 2.2.24]. Note that s starts with the letter 𝑎 if and
only if 𝑞0 ≥ 1, and s starts with the letter 𝑏 otherwise. We let 𝐸 : {𝑎, 𝑏}∗ → {𝑎, 𝑏}∗ be the
exchange morphism, i.e., 𝐸 (𝑎) = 𝑏 and 𝐸 (𝑏) = 𝑎. A well-known property of characteristic
Sturmian words is the following: s starts with a letter 𝑎 and has (𝑞𝑖)𝑖≥0 as directive sequence
if and only if 𝐸 (s) starts with a letter 𝑏 and has (𝑞′

𝑖
)𝑖≥0 as directive sequence with 𝑞′0 = 0 and

𝑞′
𝑖+1 = 𝑞𝑖 for all 𝑖 ≥ 0 [29, Section 2]. Therefore, in what follows, we only consider the case

where 𝑞0 ≥ 1.
The following result shows that each prefix of a characteristic Sturmian word has a smallest

string attractor of span 1, i.e., consisting of two consecutive positions.

Theorem 43. Consider a directive sequence (𝑞𝑖)𝑖≥0 with 𝑞0 ≥ 1, the corresponding sequence
(𝑥𝑖)𝑖≥0 of standard Sturmian words and the associated characteristic Sturmian word s = lim𝑖→∞ 𝑥𝑖
as in Definition 42. Then we have

𝑠s (𝑛) =
{

1, if 𝑛 < |𝑥2 |;
2, if 𝑛 ≥ |𝑥2 |;

spans (𝑛) =
{

0, if 𝑛 < |𝑥2 |;
1, if 𝑛 ≥ |𝑥2 |;

and

lms (𝑛) =
{

1, if 𝑛 < |𝑥2 |;
|𝑥𝑘 |, if |𝑥𝑘 | + |𝑥𝑘−1 | − 1 ≤ 𝑛 ≤ |𝑥𝑘+1 | + |𝑥𝑘 | − 2 for some 𝑘 ≥ 2.

More specifically, for all 𝑛 ≥ 1, a string attractor for s[1, 𝑛] is given by

Γ𝑛 =

{
{1}, if 𝑛 < |𝑥2 |;
{|𝑥𝑘 | − 1, |𝑥𝑘 |}, if |𝑥𝑘 | + |𝑥𝑘−1 | − 1 ≤ 𝑛 ≤ |𝑥𝑘+1 | + |𝑥𝑘 | − 2 for some 𝑘 ≥ 2.

Proof. We start the proof by showing the last part of the statement, i.e., we show that, for all
𝑛 ≥ 1, the given Γ𝑛 is a string attractor for s[1, 𝑛]. Observe first that, if 𝑛 < |𝑥2 |, then s[1, 𝑛] = 𝑎𝑛,
so {1} is directly a string attractor. For the case 𝑛 ≥ |𝑥2 |, we will need the following notations.
For all 𝑘 ≥ 2, using [29, Theorem 3], we factorize the standard Sturmian word 𝑥𝑘 into 𝑥𝑘 = 𝐶𝑘𝑢𝑘
where 𝐶𝑘 is a palindrome and 𝑢𝑘 = 𝑎𝑏 if 𝑘 is even and 𝑢𝑘 = 𝑏𝑎 if 𝑘 is odd. We also recall the
following observation from [28, Theorem 2.2.11]: for all 𝑘 ≥ 2, since

s[1, |𝑥𝑘+1 | + |𝑥𝑘 | − 2] = 𝑥𝑘+1𝐶𝑘 = 𝐶𝑘+1𝑢𝑘+1𝐶𝑘 ,

the previous word is periodic of period |𝐶𝑘 | + 2 = |𝑥𝑘 |.
Assume now that 𝑛 ≥ |𝑥2 |, and let 𝑘 ≥ 2 be such that |𝑥𝑘 | + |𝑥𝑘−1 | − 1 ≤ 𝑛 ≤ |𝑥𝑘+1 | + |𝑥𝑘 | − 2

(such a 𝑘 exists since |𝑥2 | + |𝑥1 | − 1 = |𝑥2 |). Since s[1, |𝑥𝑘+1 | + |𝑥𝑘 | − 2] is periodic of period
|𝑥𝑘 |, then it is a fractional power of 𝑥𝑘 . Therefore, using Proposition 38, it is enough to show that
Γ𝑛 = {|𝑥𝑘 | − 1, |𝑥𝑘 |} is a string attractor of the length-( |𝑥𝑘 | + |𝑥𝑘−1 | − 1) prefix of s, that we will
denote 𝑝𝑘 .

If 𝑘 = 2 or 𝑘 = 3, the conclusion is direct as 𝑝2 = 𝑥2 = 𝑎𝑞0𝑏 and 𝑝3 = (𝑎𝑞0𝑏)𝑞1𝑎𝑎𝑞0 . If
𝑘 ≥ 4, we use the fact that a similar result was proved for the standard Sturmian words in [30,
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𝑛 1 2 3 4 5 6 7 8
f [1, 𝑛] 𝑎 𝑎𝑏 𝑎𝑏𝑎 𝑎𝑏𝑎𝑎 𝑎𝑏𝑎𝑎𝑏 𝑎𝑏𝑎𝑎𝑏𝑎 𝑎𝑏𝑎𝑎𝑏𝑎𝑏 𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎

Γ𝑛 {1} {1, 2} {1, 2} {2, 3} {2, 3} {2, 3} {4, 5} {4, 5}

Table 2: For 𝑛 ∈ [1, 8], the length-𝑛 prefix of the Fibonacci word f = 𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏 · · · and its leftmost string
attractor Γ𝑛.

Theorem 22]. Namely, Γ𝑛 is a string attractor for 𝑥𝑘+1. To show that Γ𝑛 is also a string attractor
for 𝑝𝑘 , we will show that 𝑤 := s[|𝑥𝑘 |, |𝑝𝑘 |] does not occur elsewhere in 𝑝𝑘 . Indeed, this will
imply that for each factor of 𝑝𝑘 its occurrence that was covered by Γ𝑛 in 𝑥𝑘+1 is an occurrence in
𝑝𝑘 (also covered by Γ𝑛).

Observe that, as 𝑘 ≥ 4, 𝑤 = 𝑐𝐶𝑘−1𝑐 where 𝑐 is the last letter of 𝑢𝑘 and the first letter of 𝑢𝑘−1.
Note that 𝑤 is not a suffix of s[1, |𝑝𝑘 | − 1] = 𝑥𝑘𝐶𝑘−1 as 𝑥𝑘 ends with 𝑢𝑘 = 𝑑𝑐, 𝑑 ≠ 𝑐. Therefore,
if 𝑤 is a factor of 𝑥𝑘𝐶𝑘−1, it is followed by 𝑐 since 𝑥𝑘𝐶𝑘−1 is periodic of period |𝑥𝑘−1 | = |𝑤 |. In
particular, 𝐶𝑘−1𝑐𝑐 and 𝐶𝑘−1𝑐𝑑 = 𝑥𝑘−1 are factors of 𝑥𝑘𝐶𝑘−1. This implies that 𝐶𝑘−1𝑐 is right
special and, by [28, Proposition 2.1.23], 𝑐𝐶𝑘−1 is a prefix of 𝑥𝑘 . As 𝐶𝑘−1𝑐 is also a prefix of 𝑥𝑘 ,
this implies that 𝐶𝑘−1 is periodic of period 1, a contradiction as 𝑘 ≥ 4. This ends the proof that
𝑤 is not a factor of 𝑥𝑘𝐶𝑘−1 and, with it, the proof that Γ𝑛 is a string attractor of s[1, 𝑛].

Moreover, we directly have that Γ𝑛 is of minimal size and of minimal span among the string
attractors of s[1, 𝑛]. It is also a leftmost string attractor as each string attractor of s[1, 𝑛] will
contain a position greater than or equal to |𝑥𝑘 | to cover 𝑤. This proves the three claimed
complexities. □

Example 44. Consider the infinite Fibonacci word f = 𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑏𝑎𝑏𝑎𝑎 · · · , which is a
characteristic Sturmian word with directive sequence (1)𝑖≥0. In Table 2, for 1 ≤ 𝑛 ≤ 8, we
exhibit the length-𝑛 prefixes of f and their respective leftmost string attractor Γ𝑛. The underlined
positions in f [1, 𝑛] correspond to those in Γ𝑛, while the first few lengths |𝑥𝑘 |, 𝑘 ∈ [1, 5] are given
by {1, 2, 3, 5, 8}.

Note that different size-2 string attractors are obtained in Subsection 7.2.

While infinitely many characteristic Sturmian words have the same string attractor profile
function (resp., the same span complexity), the leftmost complexity uniquely determines the
characteristic Sturmian word (up to exchanging the letters 𝑎 and 𝑏, captured by the exchange
morphism 𝐸). This is the object of the result below.

Proposition 45. Let s and s′ be two characteristic Sturmian words such that lms = lms′ . Then,
either s = s′ or s = 𝐸 (s′).

Proof. As in Definition 42, let (𝑞𝑖)𝑖≥0 and (𝑝𝑖)𝑖≥0 be two directive sequences and let (𝑥𝑖)𝑖≥0
and (𝑦𝑖)𝑖≥0 be the corresponding sequences of standard Sturmian words that are prefixes of s
and s′ respectively. Now consider the associated characteristic Sturmian words s and s′. Due to
the observation made after Definition 42, we may assume that, up to exchanging 𝑎 and 𝑏, both
s and s′ start with the letter 𝑎 (i.e., 𝑞0, 𝑝0 ≥ 1). The assumption that lms = lms′ together with
Theorem 43 now implies that the sequences ( |𝑥𝑖 |)𝑖≥0 and ( |𝑦𝑖 |)𝑖≥0 are equal. A simple induction
shows that 𝑞𝑖 = 𝑝𝑖 for all 𝑖, therefore s = s′. □
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Observe that Theorem 43 is only true for characteristic Sturmian words since some prefixes
of non-characteristic Sturmian words do not admit any string attractor of span 1, as shown in the
following example.

Example 46. Let s = 𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏 · · · be a characteristic Sturmian word whose
directive sequence begins with 𝑞0 = 6 and 𝑞1 = 2 and let x be the non-characteristic Sturmian
word such that s = 𝑎𝑎𝑎𝑎 · x, hence x = 𝑎𝑎𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏 · · · . We consider the prefix
x[1, 14] = 𝑎𝑎𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑎𝑎𝑎𝑎. Since 𝑏 occurs only at positions 3 and 10 and the factor 𝑎𝑎𝑎𝑎𝑎𝑎
only in x[4, 9], the candidates as string attractor with two consecutive positions are Γ1 = {3, 4}
and Γ2 = {9, 10}. However, one can check that the factors 𝑎𝑎𝑎𝑏 and 𝑏𝑎𝑎𝑎𝑎𝑎 do not cross any
position in Γ1 and Γ2 respectively, showing that spanx (14) ≥ 2. Nonetheless, x′ [1, 14] admits a
string attractor of size 2 (but with a larger span), i.e., Γ = {4, 10}.

6.2. Characterization of Sturmian and quasi-Sturmian words
We now turn to the families of Sturmian and quasi-Sturmian words. For each, we provide a

new characterization in terms of both the span and leftmost complexities.
We start off with Sturmian words.

Theorem 47. An infinite word x is Sturmian if and only if lmx is unbounded and spanx (𝑛) = 1
for infinitely many 𝑛 ≥ 1.

Proof. For the first implication, let x be a Sturmian word. Since x is aperiodic, Proposition 39
shows that lmx satisfies the statement. We now establish the claimed property on spanx. As x
is aperiodic and recurrent, it has infinitely many right special prefixes. Moreover, for every such
prefix 𝑣, there is a characteristic Sturmian word s having 𝑣𝑅 as a prefix [28, Proposition 2.1.23].
Therefore, span(𝑣) = span(𝑣𝑅) = 1 for all long enough 𝑣 by Theorem 43 and the proof of [30,
Proposition 11].

For the other implication, consider an infinite word x satisfying the assumptions. First, it is
aperiodic by Proposition 39. Moreover, by assumption, for all 𝑚 ≥ 1, there exists an integer 𝑛
such that x[1, 𝑛] contains all length-𝑚 factors and spanx (𝑛) = 1. Therefore, 𝑝x (𝑚) ≤ 𝑚 + 1 by
Proposition 28. The fact that x is Sturmian follows from Theorem 2. □

We now turn to quasi-Sturmian words. As announced, we prove a sort of converse of
Proposition 40. We will make use of the following characterization of quasi-Sturmian words [5].

Theorem 48 ([5]). An infinite word x over the alphabet Σ is quasi-Sturmian if and only if it can
be written as x = 𝑤𝜑(s), where 𝑤 is a finite word, s is a Sturmian word on the alphabet {𝑎, 𝑏},
and 𝜑 is a morphism from {𝑎, 𝑏}∗ to Σ∗ such that 𝜑(𝑎𝑏) ≠ 𝜑(𝑏𝑎).

Theorem 49. An infinite word x is quasi-Sturmian if and only if lmx is unbounded and there exist
a suffix y of x and a constant 𝐶′ ≥ 1 such that spany (𝑛) ≤ 𝐶′ for infinitely many 𝑛 ≥ 1.

Proof. For the first implication, as quasi-Sturmian words are aperiodic by Theorem 2, lmx is
unbounded by Proposition 39. In addition, by Theorem 48, there exists a finite word 𝑤, a
Sturmian word s, and a morphism 𝜑 such that x = 𝑤𝜑(s). Consider the suffix y = 𝜑(s). By
Theorem 47, there are infinitely many integers 𝑛 such that spans (𝑛) = 1, and by Proposition 33,
there exists a constant 𝐶′ ≥ 1 such that, for all 𝑁 = |𝜑(s[1, 𝑛]) |,

spany (𝑁) = span(𝜑(s[1, 𝑛])) ≤ 𝐶′ · span(s[1, 𝑛]) = 𝐶′.
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For the other implication, by Propositions 39 and 40, 𝑝y (𝑛) = 𝑛 + 𝑑 with 𝑑 ≤ 𝐶′ for all large
enough 𝑛. Since x = 𝑤y for some finite word 𝑤, we have 𝑝x (𝑛) ≤ 𝑝y (𝑛) + |𝑤 | = 𝑛 + 𝑑 + |𝑤 | for
all large enough 𝑛. We conclude by Theorem 2 that 𝑥 is quasi-Sturmian. □

7. String attractors and complexities for 𝒌-bonacci words

In this section, we study string attractors of prefixes of some purely morphic words over an
alphabet of size 𝑘 ≥ 2, namely the so-called 𝑘-bonacci words. The case 𝑘 = 2 corresponds
to the famous Fibonacci word4, which is a Sturmian word and for which string-attractor related
concepts have already been studied. For 𝑘 = 3, each prefix of the Tribonacci word admits a string
attractor of size at most 3 as shown in [41].

More generally, as 𝑘-bonacci words are episturmian, L. Dvořáková showed that each prefix
admits a string attractor of size at most 𝑘 [17, Theorem 10]. However, this result is not constructive
in the sense that the string attractors are not explicitly given. Our contribution is to provide a
constructive description of a string attractor of size at most 𝑘 for each prefix. Our new approach
differs from the techniques used to obtain string attractors for the Thue–Morse word, the period-
doubling word, and standard Sturmian words, and may be extended to other purely morphic words.
Moreover, we precisely describe our string attractors in terms of the corresponding 𝑘-bonacci
numbers, which opens the door to considerations related to numeration systems. In fact, a first
attempt towards these considerations was done in [20] using a similar construction.

Furthermore we then study the leftmost and the span complexities of the 𝑘-bonacci words.

7.1. Useful definitions and intermediate results
Let us consider an integer 𝑘 ≥ 2 and the morphism `𝑘 : {0, . . . , 𝑘 − 1}∗ → {0, . . . , 𝑘 − 1}∗

defined by `𝑘 (𝑖) = 0(𝑖 + 1) for all 𝑖 ∈ {0, 1, . . . , 𝑘 − 2} and `𝑘 (𝑘 − 1) = 0. The infinite 𝑘-bonacci
word b(𝑘 ) is defined as the fixed-point b(𝑘 ) = `∞

𝑘
(0). The cases 𝑘 = 2 and 𝑘 = 3 correspond to

the Fibonacci and Tribonacci words respectively.
Furthermore, for all 𝑛 ≥ 0, we let 𝑏 (𝑘 )

𝑛 = `𝑛
𝑘
(0) denote the 𝑛th finite 𝑘-bonacci word. We also

set 𝑏 (𝑘 )
𝑛 = Y for all −𝑘 ≤ 𝑛 < 0. For any 𝑛 ≥ 0, we let 𝐵 (𝑘 )

𝑛 = |𝑏 (𝑘 )
𝑛 | denote the length of the 𝑛th

finite 𝑘-bonacci word. The sequence (𝐵 (𝑘 )
𝑛 )𝑛≥0 will be referred to as the sequence of 𝑘-bonacci

numbers. When the context is clear, we will drop the superscript (𝑘) in all of these notations.

Example 50. For 𝑘 = 3, we write the first few non empty finite Tribonacci words in Table 3.

𝑛 0 1 2 3 4 5
𝑏
(3)
𝑛 0 0 1 01 0 2 0102 01 0 0102010 0102 01 0102010010201 0102010 0102

Table 3: The first few finite Tribonacci words (𝑏 (3)
𝑛 )0≤𝑛≤5 (some particular decomposition is highlighted for a latter

purpose, see Proposition 51).

4Note that in Example 44, the Fibonacci word is defined on the alphabet {𝑎, 𝑏} to match the general definition of
Sturmian words. In this section, for the sake of simplicity, we define it on {0, 1} instead.
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Another way of seeing the sequence (𝑏 (𝑘 )
𝑛 )𝑛≥−𝑘 is the following, which can be proven by an

easy induction. See Table 3 for an example with 𝑘 = 3.

Proposition 51. We have

𝑏
(𝑘 )
𝑛 =

{(∏𝑘
𝑖=1 𝑏

(𝑘 )
𝑛−𝑖

)
· 𝑛 =

(∏𝑛
𝑖=1 𝑏

(𝑘 )
𝑛−𝑖

)
· 𝑛, if 0 ≤ 𝑛 ≤ 𝑘 − 1;∏𝑘

𝑖=1 𝑏
(𝑘 )
𝑛−𝑖 , if 𝑛 ≥ 𝑘.

We now define two sequences of integers (𝐿 (𝑘 )
𝑛 )𝑛≥0 and (𝑈 (𝑘 )

𝑛 )𝑛≥0 linked to 𝑘-bonacci
numbers that will help us partition N.

Definition 52. For all 𝑛 ≥ 0, we set

𝐿
(𝑘 )
𝑛 =

{
𝐵
(𝑘 )
𝑛 , if 𝑛 ≤ 𝑘;

𝐵
(𝑘 )
𝑛 + 𝐵

(𝑘 )
𝑛−𝑘−1 − 1, otherwise;

and

𝑈
(𝑘 )
𝑛 =

𝑛∑︁
𝑖=0

𝐵
(𝑘 )
𝑖

.

Example 53. When 𝑘 = 3, we obtain (𝐿 (3)
𝑛 )𝑛≥0 = 1, 2, 4, 7, 13, 25, 47, 87, . . . and (𝑈 (3)

𝑛 )𝑛≥0 =

1, 3, 7, 14, 27, 51, 95, 176, . . . .

For any 𝑘 ≥ 2, one can show that (𝑈 (𝑘 )
𝑛 )𝑛≥0 gives the lengths of palindromic prefixes of the

𝑘-bonacci word (note that the case 𝑘 = 3 gives the sequence [43, A027084]).

Remark 54. Observe that, by Proposition 51, if 1 ≤ 𝑛 ≤ 𝑘 − 1, then 𝑈
𝑛−1 = 𝐵𝑛 − 1 = 𝐿𝑛 − 1

and if 𝑛 = 𝑘 , then 𝑈
𝑘−1 = 𝐵

𝑘
= 𝐿

𝑘
. Moreover, for 𝑛 ≥ 𝑘 , we have 𝐿𝑛 ≤ 𝑈

𝑛−1 as the case 𝑛 = 𝑘

is above, and for 𝑛 > 𝑘 , we have 𝐿
(𝑘 )
𝑛 =

(∑𝑛−1
𝑖=𝑛−𝑘−1 𝐵

(𝑘 )
𝑖

)
− 1. As 𝐿0 = 1, this implies that the

intervals [𝐿𝑛,𝑈𝑛], 𝑛 ≥ 0 cover the set of integers 𝑚 ≥ 1.

7.2. String attractor profile function
We now study the string attractor profile function of the 𝑘-bonacci word b(𝑘 ) . To do so,

we will make use of Proposition 38 therefore we look at prefixes which are fractional powers
of another. More specifically, as the string attractors positions will be elements of (𝐵𝑛)𝑛≥0, we
study fractional powers of the words 𝑏𝑛, 𝑛 ≥ 0.

Proposition 55. For all 𝑛 ≥ 0, b(𝑘 ) [1,𝑈 (𝑘 )
𝑛 ] =

∏𝑛
𝑖=0 𝑏

(𝑘 )
𝑛−𝑖 . Moreover, b(𝑘 ) [1,𝑈 (𝑘 )

𝑛 ] is a
fractional power of 𝑏 (𝑘 )

𝑛 .

Proof. For 𝑛 = 0, we directly have b[1,𝑈0] = b[1, 1] = 𝑏0, so both claims hold in this case.
Assume now that the result is true for 𝑛 and let us prove it for 𝑛 + 1. By the induction hypothesis,
we have

`𝑘 (b[1,𝑈𝑛]) = `𝑘

(
𝑛∏
𝑖=0

𝑏𝑛−𝑖

)
=

𝑛∏
𝑖=0

𝑏𝑛+1−𝑖 .
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As b is a fixed point of `𝑘 , `𝑘 (b[1,𝑈𝑛]) is a prefix of b and it is followed by the image of a letter.
Thus it is followed by the letter 0, and

b[1,𝑈𝑛+1] = b

[
1,

𝑛+1∑︁
𝑖=0

𝐵𝑖

]
=

(
𝑛∏
𝑖=0

𝑏𝑛+1−𝑖

)
· 0 =

𝑛+1∏
𝑖=0

𝑏𝑛+1−𝑖 .

Moreover, since b[1,𝑈𝑛] is a fractional power of 𝑏𝑛 by the induction hypothesis, so is
b[1,𝑈𝑛] · 𝑎 for some letter 𝑎 ∈ {0, 1, . . . , 𝑘 − 1}. By applying the morphism `𝑘 on both words,
we can conclude that b[1,𝑈

𝑛+1] = `𝑘 (b[1,𝑈𝑛]) · 0 is a fractional power of 𝑏
𝑛+1 = `𝑘 (𝑏𝑛). □

Using Proposition 38, we then directly have the following corollary.

Corollary 56. For all 𝑛 ≥ 0, if Γ is a string attractor for b(𝑘 ) [1, 𝐿 (𝑘 )
𝑛 ] and if 𝐵 (𝑘 )

𝑛 ∈ Γ, then Γ is
a string attractor for b(𝑘 ) [1, 𝑚] for all 𝑚 ∈ [𝐿 (𝑘 )

𝑛 ,𝑈
(𝑘 )
𝑛 ].

We now exhibit a minimum string attractor of size at most 𝑘 for each prefix of b(𝑘 ) and deduce
the string attractor profile function.

Theorem 57. For all 𝑛 ≥ 0, the set

Γ𝑛 =

{
{𝐵 (𝑘 )

0 , . . . , 𝐵
(𝑘 )
𝑛 }, if 𝑛 ≤ 𝑘 − 1;

{𝐵 (𝑘 )
𝑛−𝑘+1, . . . , 𝐵

(𝑘 )
𝑛 }, if 𝑛 ≥ 𝑘;

is a minimum string attractor for b(𝑘 ) [1, 𝑚], for all 𝑚 ∈ [𝐿 (𝑘 )
𝑛 ,𝑈

(𝑘 )
𝑛 ]. In particular, the string

attractor profile function for b(𝑘 ) is given by

𝑠b(𝑘) (𝑛) =
{
𝑖 + 1, if 𝐵 (𝑘 )

𝑖
≤ 𝑛 < 𝐵

(𝑘 )
𝑖+1 for some 𝑖 ≤ 𝑘 − 2;

𝑘, if 𝑛 ≥ 𝐵
(𝑘 )
𝑘−1.

Proof. Using Proposition 51, a simple induction shows that, for all 𝑛 ≥ 0, the positions of Γ𝑛
correspond to different letters, which implies that, if Γ𝑛 is a string attractor of a prefix, it is
minimum. We prove that it is a string attractor of the length-𝑚 prefix, 𝑚 ∈ [𝐿𝑛,𝑈𝑛], by induction
on 𝑛 ≥ 0. More precisely, the induction step is divided into three intermediary claims:

1. Γ𝑛−1 ∪ {𝐵𝑛} is a string attractor for b[1, 𝐿𝑛];
2. Γ𝑛 is a string attractor for b[1, 𝐿𝑛];
3. Γ𝑛 is a string attractor for b[1, 𝑚] for all 𝑚 ∈ [𝐿𝑛,𝑈𝑛].

Let us prove the first claim. If 𝑛 = 0, then we take the convention that Γ−1 = ∅ and
directly conclude that {1} is a string attractor for b[1, 1]. Assume now that 𝑛 ≥ 1. Then
𝐿𝑛 = 𝑈

𝑛−1 + 1 = 𝐵𝑛 if 𝑛 ≤ 𝑘 − 1, or 𝐿𝑛 ∈ [𝐿
𝑛−1,𝑈𝑛−1] if 𝑛 ≥ 𝑘 . Therefore, by the induction

hypothesis, Γ𝑛−1 ∪ {𝐵𝑛} is a string attractor for b[1, 𝐿𝑛].
Let us prove the second claim. If 𝑛 ≤ 𝑘 −1, then Γ𝑛 = Γ𝑛−1 ∪ {𝐵𝑛} so the conclusion directly

follows from the first claim. Assume then that 𝑛 ≥ 𝑘 and let us denote b[1, 𝐿𝑛] = 𝑏𝑛𝑢, where
𝑢 = Y if 𝑛 = 𝑘 or 𝑢 is 𝑏

𝑛−𝑘−1 without its last letter if 𝑛 ≥ 𝑘 + 1. Using the first claim, it remains
to show that the position 𝐵

𝑛−𝑘 is not needed in the string attractor, i.e., the factors of b[1, 𝐿𝑛]
that are covered by position 𝐵

𝑛−𝑘 are still covered by Γ𝑛. As the first position in Γ𝑛 is 𝐵
𝑛−𝑘+1,

it suffices to consider the factor occurrences crossing position 𝐵
𝑛−𝑘 in b[1, 𝐵

𝑛−𝑘+1 − 1]. As
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b[1, 𝐵
𝑛−𝑘+1 − 1] is 𝑏

𝑛−𝑘+1 without its last letter, Proposition 51 implies that they are occurrences
in

𝑘∏
𝑖=1

𝑏𝑛−𝑘+1−𝑖 = 𝑏𝑛−𝑘𝑏𝑛−𝑘−1

𝑘∏
𝑖=3

𝑏𝑛−𝑘+1−𝑖 .

Note that 𝑏
𝑛−𝑘𝑢 is a prefix of this word. We consider two cases: either the considered occurrence

is entirely contained in 𝑏
𝑛−𝑘𝑢 or it crosses position 𝐵

𝑛−𝑘 + 𝐵
𝑛−𝑘−1. Observe that, if 𝑛 ≥ 𝑘 + 1,

these two cases are mutually exclusive.
Case 1. Since 𝑏

𝑛−𝑘 is a suffix of 𝑏𝑛 by Proposition 51, the factors having an occurrence
in 𝑏

𝑛−𝑘𝑢 crossing position 𝐵
𝑛−𝑘 have an occurrence in 𝑏𝑛𝑢 crossing position 𝐵𝑛, so they are

covered by Γ𝑛. See Figure 1.

b[1, 𝐿𝑛] = 𝑏𝑛 𝑢

𝑏
𝑛−𝑘 𝑢

𝐵
𝑛−𝑘

𝑏
𝑛−𝑘 𝑢

𝐵𝑛

Figure 1: Case 1 in the proof of Theorem 57.

Case 2. Similarly, by Proposition 51, 𝑏
𝑛−𝑘𝑏𝑛−𝑘−1 is a suffix of 𝑏

𝑛−1 and
∏𝑘

𝑖=3 𝑏𝑛−𝑘+1−𝑖 =∏𝑘−2
𝑖=1 𝑏

𝑛−𝑘−1−𝑖 is a prefix of 𝑏
𝑛−𝑘−1, so of 𝑏

𝑛−2 (as the finite 𝑘-bonacci words are prefixes of
each other). As 𝑏

𝑛−1𝑏𝑛−2 is a prefix of 𝑏𝑛, we conclude that the factors having an occurrence
in b[1, 𝐵

𝑛−𝑘+1 − 1] crossing position 𝐵
𝑛−𝑘 + 𝐵

𝑛−𝑘−1 have an occurrence in 𝑏𝑛 crossing position
𝐵
𝑛−1, so they are covered by Γ𝑛. See Figure 2. This ends the proof of the second claim.

b[1, 𝐿𝑛] = 𝑏
𝑛−1 𝑏

𝑛−2 · · · 𝑏𝑛−𝑘 𝑢

𝑏
𝑛−𝑘𝑏𝑛−𝑘−1 𝑣

𝐵
𝑛−𝑘 + 𝐵

𝑛−𝑘−1

𝑏
𝑛−𝑘𝑏𝑛−𝑘−1 𝑣

𝐵
𝑛−1

Figure 2: Case 2 in the proof of Theorem 57 with 𝑣 =
∏𝑘

𝑖=3 𝑏𝑛−𝑘+1−𝑖 .

The third claim is a direct consequence of the second claim and of Corollary 56, and this
ends the proof that, for all 𝑛 ≥ 0 and for all 𝑚 ∈ [𝐿𝑛,𝑈𝑛], Γ𝑛 is a string attractor of the length-𝑚
prefix of b. Finally, the string attractor profile function follows from Remark 54. □

Remark 58. Observe that, in the Tribonacci case, the elements in our string attractors are the
same as in [41, Theorem 6]. The corresponding intervals of prefix lengths are also linked. Indeed,
our sequence (𝑈 (3)

𝑛 )𝑛≥0 is related to the sequence (𝑊𝑛)𝑛≥4 defined in [41, Theorem 6] as follows:
we have 𝑊𝑛+3 = 𝑈

(3)
𝑛+1 for all 𝑛 ≥ 1. Therefore, our upper bounds and that of Schaeffer and

Shallit coincide. However, our lower bounds are smaller than theirs. On the other hand, the string
attractors obtained for the palindromic prefixes in [17] are different from ours. For instance, the
case 𝑘 = 3 is treated in [17, Example 8].
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7.3. Leftmost complexity
We can further prove that the string attractor from Theorem 57 is actually a leftmost string

attractor. For the purpose of the next few results, we set 𝑈 (𝑘 )
−1 = 0.

Proposition 59. The leftmost complexity of b(𝑘 ) satisfies lmb(𝑘) (𝑚) = 𝐵
(𝑘 )
𝑛 for all 𝑛 ≥ 0 and

𝑚 ∈ [𝑈 (𝑘 )
𝑛−1 + 1,𝑈 (𝑘 )

𝑛 ].

Proof. We show that the factor b[𝐵𝑛,𝑈𝑛−1 + 1] does not occur in b before position 𝐵𝑛. This
implies that, for all 𝑚 ≥ 𝑈

𝑛−1 +1, any string attractor of b[1, 𝑚] contains a position at least equal
to 𝐵𝑛 and, combined with Theorem 57, proves the claimed leftmost complexity.

The claim is direct for 𝑛 = 0 as 𝐵0 = 1 = 𝑈−1 + 1. Assume now that it is true for 𝑛 and let us
prove it for 𝑛 + 1. By construction, the 𝐵

𝑛+1th letter of b is the last letter of the image of the 𝐵𝑛th
letter under `𝑘 , and, by Proposition 55, b[𝐵

𝑛+1 + 1,𝑈𝑛 + 1] is the image of b[𝐵𝑛 + 1,𝑈
𝑛−1 + 1],

potentially followed by a letter 0 (this occurs when b[𝐵𝑛,𝑈𝑛−1 + 1] ends with the letter 𝑘 − 1).
Therefore, each occurrence of b[𝐵

𝑛+1,𝑈𝑛 + 1] in b is associated with the image of an occurrence
of b[𝐵𝑛,𝑈𝑛−1 + 1]. Using the induction hypothesis, we conclude that b[𝐵

𝑛+1,𝑈𝑛 + 1] does not
occur before position 𝐵

𝑛+1. □

7.4. Span complexity
For the 𝑘-bonacci words b(𝑘 ) , the factor complexity function is given by 𝑝b(𝑘) (𝑛) = (𝑘−1)𝑛+1.

Therefore, when 𝑘 ≥ 3, Proposition 41 implies that the span complexity is linear. However, the
string attractors described in Section 7.2 do not have the smallest difference between their extreme
positions. In what follows, we compute the span for infinitely many prefixes and describe string
attractors (of unbounded size) having that span.

We first make the following observation which gives a lower bound on the span. Recall that
we have set 𝑈 (𝑘 )

−1 = 0.

Proposition 60. Let 𝑘 ≥ 2. For all 𝑛 ≥ 2, the factors b(𝑘 ) [𝑖, 𝑖 + 𝑈
(𝑘 )
𝑛−3] are distinct for all

𝑖 ∈ [𝐵 (𝑘 )
𝑛−2 + 1, 𝐵 (𝑘 )

𝑛 ].

Proof. Let us prove the result by induction on 𝑛. For 𝑛 = 2, we need to consider the letters in
𝑢 = b[2, 𝐵2]. If 𝑘 = 2, then 𝑢 = 10 and if 𝑘 ≥ 3, then 𝑢 = 102 so all the letters are indeed distinct.

Let us now assume that the claim is true for 𝑛 ≥ 2 and let us prove it for 𝑛 + 1. We proceed
by contradiction and assume that there exist 𝑖, 𝑗 ∈ [𝐵

𝑛−1 + 1, 𝐵
𝑛+1] minimal such that 𝑖 < 𝑗 and

b[𝑖, 𝑖 +𝑈
𝑛−2] = b[ 𝑗 , 𝑗 +𝑈

𝑛−2]. As 𝐵
𝑛−1 + 1 marks the beginning of the image of a letter in b

and 𝑖 and 𝑗 are taken minimal, we know that the factor 𝑢 = b[𝑖, 𝑖 +𝑈
𝑛−2] = b[ 𝑗 , 𝑗 +𝑈

𝑛−2] begins
with 0. We may also assume that it does not end with 0. Indeed, otherwise, we consider the word
𝑢 = b[𝑖, 𝑖 +𝑈

𝑛−2 − 1] = b[ 𝑗 , 𝑗 +𝑈
𝑛−2 − 1] instead.

As the word 𝑢 starts with 0, there exist 𝑖′ < 𝑗 ′ such that `𝑘 (b[1, 𝑖′ − 1]) = b[1, 𝑖 − 1] and
`𝑘 (b[1, 𝑗 ′ − 1]) = b[1, 𝑗 − 1]. Moreover, as 𝑈

𝑛−2 + 1 ≥ 2 and as 𝑢 does not end with a 0, it can
be uniquely desubstituted (i.e., its preimage under `𝑘 is unique). There thus exists ℓ such that
b[𝑖′, 𝑖′ + ℓ] = b[ 𝑗 ′, 𝑗 ′ + ℓ] and `𝑘 (b[𝑖′, 𝑖′ + ℓ]) = 𝑢.

As |`𝑘 (b[1, 𝑖′ − 1]) | = 𝑖 − 1 ∈ [𝐵
𝑛−1, 𝐵𝑛+1 − 1], we have 𝑖′ ∈ [𝐵

𝑛−2 + 1, 𝐵𝑛]. The same
holds for 𝑗 ′. Therefore, by the induction hypothesis, we have b[𝑖′, 𝑖′ +𝑈

𝑛−3] ≠ b[ 𝑗 ′, 𝑗 ′ +𝑈
𝑛−3].

Let us take ℓ′ ∈ [ℓ,𝑈
𝑛−3 − 1] maximal such that b[𝑖′, 𝑖′ + ℓ′] = b[ 𝑗 ′, 𝑗 ′ + ℓ′] and let us denote

𝑣 = b[𝑖′, 𝑖′ + ℓ′]. By maximality of ℓ′, 𝑣 is right special. Moreover, the set of factors of b is
stable under reversal [12, Theorem 5], i.e., the reversal of any factor of b is also a factor. In
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particular, 𝑣𝑅 is a left special factor of b. Furthermore, the left special factors of b are exactly
its prefixes [12, Proposition 5], so 𝑣𝑅 is a prefix of b and also of b[1,𝑈

𝑛−3] as ℓ′ ≤ 𝑈
𝑛−3 − 1.

However, we have
|`𝑘 (𝑣𝑅) | = |`𝑘 (𝑣) | ≥ |`𝑘 (b[𝑖′, 𝑖′ + ℓ]) | ≥ 𝑈𝑛−2

by definition of ℓ. This is a contradiction as, by Proposition 55, we have |`𝑘 (𝑣𝑅) | ≤ |`𝑘 (b[1,𝑈𝑛−3]) | <
𝑈

𝑛−2. □

We now describe a new string attractor for prefixes of the 𝑘-bonacci word.

Proposition 61. Let 𝑘 ≥ 2. For all 𝑛 ≥ 1 and for all 𝑚 ∈ [𝑈 (𝑘 )
𝑛−1 + 1,𝑈 (𝑘 )

𝑛 ], Γ𝑛 = {𝑈 (𝑘 )
𝑛−2 +

1,𝑈 (𝑘 )
𝑛−2 + 2, . . . , 𝐵 (𝑘 )

𝑛 } is a string attractor of b(𝑘 ) [1, 𝑚].

Proof. We proceed by induction on 𝑛 ≥ 1. For the base case 𝑛 = 1, the interval [𝑈1−1 + 1,𝑈2]
becomes [2, 3], and Γ1 = {1, 2}, so the conclusion follows.

Now assume that the result is true for 𝑛 ≥ 1 and we show it also holds for 𝑛 + 1. To do so, we
will use the following observation. From Proposition 55 and [2, Proposition 4.4], one may prove
that b[1,𝑈𝑛] is a palindrome for all 𝑛 ≥ −1. By the induction hypothesis, Γ𝑛 is a string attractor
for b[1,𝑈𝑛]. As this word is a palindrome, it also has the string attractor

Γ𝑅
𝑛 = {𝑈𝑛 + 1 − 𝐵𝑛, . . . ,𝑈𝑛 + 1 −𝑈𝑛−2 − 1} = {𝑈𝑛−1 + 1, . . . , 𝐵𝑛 + 𝐵𝑛−1}.

In particular, Γ𝑛+1 ⊇ Γ𝑅
𝑛 is a string attractor of b[1,𝑈𝑛] when 𝐵

𝑛+1 ≤ 𝑈𝑛. If 𝐵
𝑛+1 > 𝑈𝑛,

then 𝑛 ≤ 𝑘 − 1 and 𝐵
𝑛+1 = 𝑈𝑛 + 1, so Γ𝑛+1 is a string attractor of b[1,𝑈𝑛 + 1]. In both cases,

Propositions 38 and 55 imply thatΓ𝑛+1 is a string attractor of b[1, 𝑚] for all𝑚 ∈ [𝑈𝑛+1,𝑈
𝑛+1]. □

Corollary 62. Let 𝑘 ≥ 2. For all 𝑛 ≥ 2 and for all 𝑚 ∈ [𝑈 (𝑘 )
𝑛 − 𝐵

(𝑘 )
𝑛−1 − 𝐵

(𝑘 )
𝑛−2,𝑈

(𝑘 )
𝑛 ], we have

spanb(𝑘) (𝑚) = 𝐵
(𝑘 )
𝑛 −𝑈 (𝑘 )

𝑛−2 −1. In particular, for infinitely many prefixes, there is a factor length
for which the bound given by Proposition 28 is tight.

Proof. Using Propositions 60 and 28, we know that for 𝑚 ≥ 𝐵𝑛 +𝑈
𝑛−3, we have spanb (𝑚) ≥

𝐵𝑛 − 𝐵
𝑛−2 − 𝑈

𝑛−3 − 1 = 𝐵𝑛 − 𝑈
𝑛−2 − 1. Observe that 𝐵𝑛 + 𝑈

𝑛−3 = 𝑈𝑛 − 𝐵
𝑛−1 − 𝐵

𝑛−2.
On the other hand, using Proposition 61, we know that for 𝑚 ∈ [𝑈

𝑛−1 + 1,𝑈𝑛], we have
spanb (𝑚) ≤ 𝐵𝑛 −𝑈

𝑛−2 − 1.
If 𝑘 ≥ 3, then 𝐵𝑛 + 𝑈

𝑛−3 ≥ 𝑈
𝑛−1 + 1 so, for all 𝑚 ∈ [𝑈𝑛 − 𝐵

𝑛−1 − 𝐵
𝑛−2,𝑈𝑛], we have

spanb (𝑚) = 𝐵𝑛−𝑈𝑛−2−1, as desired. It remains to consider 𝑘 = 2. In that case, 𝐵𝑛−𝑈𝑛−2−1 = 1
which does not depend on 𝑛. Therefore spanb (𝑚) ≥ 1 for all𝑚 ≥ 𝐵2+𝑈−1 = 3 and spanb (𝑚) ≤ 1
for all 𝑚 ≥ 𝑈0 + 1 = 2. Therefore, the conclusion follows for all 𝑚 ≥ 3. □

Observe that, for the Fibonacci word, we once again obtain that spanb(2) = 1, as in Theorem 43.

8. Conclusions

In this paper, we have shown the close relationship between string attractor based measures
and classical notions of repetitiveness on infinite words, like the factor complexity and the
recurrence function. In particular, we identify some of the combinatorial properties that an
infinite word needs in order to have a bounded string attractor profile function. Nonetheless,
a complete characterization of these words is still missing. Furthermore, we have used the
new leftmost and span complexities to obtain novel characterizations of infinite words, such as
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periodic and aperiodic words, and the families of Sturmian and quasi-Sturmian words. We wonder
if other measures based on the distribution of the positions of a string attractor can be used to
characterize other combinatorial properties or families of words. Finally, for the 𝑘-bonacci words
we have shown how to construct for each prefix a string attractor with minimum size, minimum
leftmost measure, or minimum span. The methods presented here rely on the properties that
𝑘-bonacci words inherit from their morphic construction. A future direction of research could
be a generalization of such a strategy to extend the construction of a smallest string attractor to
other families of morphic sequences.
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[4] Cassaigne, J., 1997a. Complexité et facteurs spéciaux. Bulletin of the Belgian Mathematical Society-Simon Stevin
4, 67–88.

[5] Cassaigne, J., 1997b. Sequences with grouped factors, in: Developments in Language Theory, Aristotle University
of Thessaloniki. pp. 211–222.

[6] Cassaigne, J., 2001. Recurrence in infinite words, in: STACS, Springer. pp. 1–11.
[7] Cassaigne, J., Nicolas, F., 2010. Factor complexity, in: Berthé, V., Rigo, M. (Eds.), Combinatorics, Automata and
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