[en] Image reconstruction in off-axis Terahertz digital holography is complicated due to the harsh recording conditions and the non-convexity form of the problem. In this paper, we propose an inverse problem-based reconstruction technique that jointly reconstructs the object field and the amplitude of the reference field. Regularization in the wavelet domain promotes a sparse object solution. A single objective function combining the data-fidelity and regularization terms is optimized with a dedicated algorithm based on an alternating direction method of multipliers framework. Each iteration alternates between two consecutive optimizations using projections operating on each solution and one soft thresholding operator applying to the object solution. The method is preceded by a windowing process to alleviate artifacts due to the mismatch between camera frame truncation and periodic boundary conditions assumed to implement convolution operators. Experiments demonstrate the effectiveness of the proposed method, in particular, improvements of reconstruction quality, compared to two other methods.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Mathematics Computer science
Author, co-author :
Kirkove, Murielle ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Zhao, Yuchen ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Leblanc, Olivier; UCL - Université Catholique de Louvain [BE] > ICTEAM Institute > ISPGroup, INMA
Jacques, Laurent; UCL - Université Catholique de Louvain [BE] > ICTEAM Institute > ISPGroup, INMA
Georges, Marc ; Université de Liège - ULiège > Centres généraux > CSL (Centre Spatial de Liège)
Language :
English
Title :
ADMM-inspired image reconstruction for Terahertz off-axis digital holography
Publication date :
08 December 2023
Journal title :
Journal of the Optical Society of America. A, Optics, Image Science, and Vision
FEDER - Fonds Européen de Développement Régional Région wallonne F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
European Regional Development Fund/Wallonia region (2014-
2020 “En Mieux” program, project TERA4ALL), “Fonds de la Recherche
Scientifique – FNRS” (grant T.0136.20, project Learn2Sense).
Y. S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), Vol. 170.
A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34, 500–518 (2013).
M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Toward real-time terahertz imaging,” Adv. Opt. Photonics 10, 843–938 (2018).
D. M. Mittleman, “Twenty years of terahertz imaging [Invited],” Opt. Express 26, 9417–9431 (2018).
L. Valzania, Y. Zhao, L. Rong, D. Wang, M. Georges, E. Hack, and P. Zolliker, “THz coherent lensless imaging,” Appl. Opt. 58, G256–G275 (2019).
M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
Y. Zhao, J.-F. Vandenrijt, M. Kirkove, and M. Georges, “Iterative phase-retrieval-assisted off-axis terahertz digital holography,” Appl. Opt. 58, 9208–9216 (2019).
M. Kirkove, Y. Zhao, and M. P. Georges, “Inverse-problem-based algorithm for sparse reconstruction of Terahertz off-axis holograms,” in OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, pcAOP) (Optica Publishing Group, 2021), paper DM1B.4.
E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
J. A. Fessler and S. Sotthivirat, “Simplified digital holographic reconstruction using statistical methods,” in International Conference on Image Processing-ICIP (2004), Vol. 4, pp. 2435–2438.
S. Sotthivirat and J. A. Fessler, “Reconstruction from digital holograms by statistical methods,” in 37th Asilomar Conference on Signals, Systems and Computers (2003), Vol. 2, pp. 1928–1932.
S. Sotthivirat and J. A. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am. A 21, 737–750 (2004).
A. A. Bourquard, N. Pavillon, E. Bostan, C. Depeursinge, and M. Unser, “A practical inverse-problem approach to digital holographic reconstruction,” Opt. Express 21, 3417–3433 (2013).
C. Schretter, D. Blinder, S. Bettens, H. Ottevaere, and P. Schelkens, “Regularized non-convex image reconstruction in digital holographic microscopy,” Opt. Express 25, 16491–16508 (2017).
Y. Zhao, M. Kirkove, and M. P. Georges, “Inverse-problem based algorithm for THz off-axis digital holography reconstruction,” in Imaging and Applied Optics Congress (Optica Publishing Group, 2020), paper HF4G.6.
C. A. González González, “Solving inverse problems in imaging using robust and regularized optimization,” Ph.D. thesis (Université libre de Bruxelles, 2016).
F. Soulez, É. Thiébaut, A. Schutz, A. Ferrari, F. Courbin, and M. Unser, “Proximity operators for phase retrieval,” Appl. Opt. 55, 7412–7421 (2016).
D. S. Weller, A. Pnueli, G. Divon, O. Radzyner, Y. C. Eldar, and J. A. Fessler, “Undersampled phase retrieval with outliers,” IEEE Trans. Comput. Imaging 1, 247–258 (2015).
M. S. C. Almeida and M. Figueiredo, “Deconvolving images with unknown boundaries using the alternating direction method of multipliers,” IEEE Trans. Image Process. 22, 3074–3086 (2013).
M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Trans. Image Process. 12, 906–916 (2003).
E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69 (2000).
F. Dubois, O. Monnom, C. Yourassowsky, and J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41, 2621–2626 (2002).
D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).
J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
S. Bettens, H. Yan, D. Blinder, H. Ottevaere, C. Schretter, and P. Schelkens, “Studies on the sparsifying operator in compressive digital holography,” Opt. Express 25, 18656–18676 (2017).
M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in signal priors,” Inverse Probl. 23, 947 (2007).
S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed. (Academic, 2008).
W. Sweldens, “The lifting scheme: a custom-design construction of biorthogonal wavelets,” Appl. Comput. Harmon. Anal. 3, 186–200 (1996).
P. Schelkens, A. Skodras, and T. Ebrahimi, The JPEG 2000 Suite (Wiley, 2009).
L. Li, X. Wang, and G. Wang, “Alternating direction method of multipliers for separable convex optimization of real functions in complex variables,” Math. Probl. Eng. 2015, 1–14 (2015).
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3, 1–122 (2011).
M. K. Ng, P. Weiss, and X. Yuan, “Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods,” SIAM J. Sci. Comput. 32, 2710–2736 (2010).
K. Scheinberg, S. Ma, and D. Goldfarb, “Sparse inverse covariance selection via alternating linearization methods,” in Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 2-NIPS (Curran Associates, 2010), Vol. 23, pp. 2101–2109.
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
M. Kirkove, Y. Zhao, P. Blain, J.-F. Vandenrijt, and M. Georges, “Thermography-inspired processing strategy applied on shearography towards nondestructive inspection of composites,” Proc. SPIE 11056, 110560G (2019).
M. S. C. Almeida and M. A. T. Figueiredo, “Parameter estimation for blind and non-blind deblurring using residual whiteness measures,” IEEE Trans. Image Process. 22, 2751–2763 (2013).
A. Gonzalez, V. Delouille, and L. Jacques, “Non-parametric PSF estimation from celestial transit solar images using blind deconvolution,” J. Space Weather Space Clim. 6, A1 (2016).
N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim. 1, 127–239 (2014).
H. Attouch, J. Bolte, and B. Svaiter, “Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods,” Math. Program. 137, 91–129 (2013).
J.-J. Moreau, “Fonctions convexes duales et points proximaux dans un espace hilbertien,” C.R. Acad. Sci. Paris Ser. A Math. 255, 2897–2899 (1962).
D. H. Brandwood, “A complex gradient operator and its application in adaptive array theory,” IEEE Proc. F: Commun. Radar Signal Process. 130, 11–16 (1983).